## Counting Techniques

- Readings:
5.1 The Basics of Counting
5.2 The Pigeonhole Principle
5.3 Permutations and

Combinations


## Basic Counting Principles

- The sum rule

Suppose a procedure can be divided into separate $N$ tasks which cannot be done at the same time. If there are $n_{i}$ ways to do the $i^{\text {th }}$ task.
There are $n_{1}+n_{2}+\ldots+n_{N}$ ways to do this procedure.


## Basic Counting Principles

- The product rule

Suppose a procedure can be broken down into a sequence of $N$ tasks. If there are $n_{i}$ ways to do the $i^{\text {th }}$ task. There are $n_{1} n_{2} \ldots n_{N}$ ways to do this procedure.


## Basic Counting Principles

## Example

How many functions?


How many one-to-one function?

## Basic Counting Principles

- Example : Use the product rule to show that the number of different subsets of a finite set $S$ is $2^{|S|}$


## Example:

A password can contain 6 to 8 characters. Each character can be A-Z. How many possible passwords are there?

Ativong Suchato

A parking lot consists of a single row of $n$ parking
A parking lot consists of a single row of $n$ parking
spaces. Only two cars park in this parking lot. How many ways can they park?

Example:

## The Pigeonhole Principle

If $k+1$ or more objects are placed into $k$ boxes, then there are at least one box containing two or more objects.


6 boxes
7 objects

- Example:

How many cards must be selected from a standard deck of 52 cards to guarantee that at least three cards of the same suit are chosen?


- Example:

Show that among any $n+1$ positive integers not exceeding $2 n$, there must be an integer that divides one of the other integers.
e.g.: $n=5\{3,4,5,7,8,10\}$

Permutations

- An ordered arrangement of $r$ elements of a set is called an r-permutation
- E.g.: $S=\{1,2,3\}$

1,2 is a 2-permutation of $S$
2,1 is another 2-permutation of $S$
3,2 is also another 2-permutation of $S$
$1,2,3$ is a permutation of $S$
$2,1,3$ is another permutation of $S$

Example (Rosen p.321):
How many ways are there to select a $1^{\text {st-prize }}$ winner, a $2^{\text {nd-prize }}$ winner, and a $3^{\text {rd-prize winner }}$ from 100 people?

Proof:

## Combinations

The number of $r$-combinations of a set with $n$ distinct elements is:
$C(n, r)=n!/ r!(n-r)!$

## Combinations

- An $r$-combination of elements of a set is an unordered selection of $r$ elements from the set.
- Or a subset, with $r$ elements, of the set.
E.g.: $S=\{1,2,3,4\}$
$\{1,2,3\}$ is a 3 -combination of $S$
$\{3,2,1\}$ is the same as $\{1,2,3\}$

Example:
How many ways are there to select a 3 prize winners from 100 people (when the three prizes are identical)?

Example:
How many bit strings of length 10 contain more than 2 ones?

## Permutations with Indistinguishable

 Objects- Example:

How many different strings can be made by reordering the string " $A B C D E F G H I J$ " ?

How many different strings can be made by reordering the letters of the word

## "PEPPERCORN"

Example:
How many subsets of three different integers between 1 to 90 (inclusive) are there whose sum is an even number?

Atiwong Suchato
Department of Computer Engineering, Chulalongkorn University

## Permutations with Indistinguishable

## Objects

- The number of different permutations of $\boldsymbol{n}$ objects, where there are
$n_{1}$ indistinguishable of type 1,
$\boldsymbol{n}_{\mathbf{2}}$ indistinguishable of type $2, \ldots$, and
$\boldsymbol{n}_{\boldsymbol{k}}$ indistinguishable of type $k$,
is:

$$
\frac{n!}{n_{1}!n_{2}!\ldots n_{k}!}
$$

## Distributing Objects into Boxes

- Example:

How many ways are there to distribute hands of 5 cards to each of four players from the standard deck of 52?

## Distributing Objects into Boxes

- The number of ways to distribute $\boldsymbol{n}$ distinguishable objects into k distinguishable boxes so that $\boldsymbol{n}_{\boldsymbol{i}}$ objects are placed into box $i, i$ $=1,2, \ldots, k$, equals

$$
\frac{n!}{n_{1}!n_{2}!\ldots n_{k}!}
$$

