

Recurrence Relations

Readings:

Recurrence Relations
Rosen section 7.1-7.2

Atiwong Suchato

Department of Computer Engineering, Chulalongkorn University

Discrete Structures

Discrete Structures

Recurrence Relations

 A recurrence relation for the sequence {a_n} is an equation that expresses a_n in terms of one or more of the previous terms, a₀, a₁,...,a_{n-1}.

$$a_n = 5a_{n-1}$$

 $b_n = b_{n-1}-2 \ b_{n-2}+100$
 $c_n = c_{n-3}+c_{n-4}+log(n)+e^n$

• A sequence is called a **solution** of a recurrence relation if its terms <u>satisfy</u> the <u>recurrence relation</u>.

Atiwong Suchato

Department of Computer Engineering, Chulalongkorn University

Discrete Structures

Recurrence Relations

Example (Rosen p.402):
 Determine whether a_n=3n, for every nonnegative integer n, is a solution of

$$a_n = 2a_{n-1} - a_{n-2}$$
; $n = 2, 3, ...$

Initial Conditions

The *initial conditions* specify the terms that precede the first term where the recurrence relation takes effect.

Atiwong Suchato

Department of Computer Engineering, Chulalongkorn University

Initial Conditions

In order to find a *unique solution* for every <u>non-negative integers</u> to:

$$b_n = b_{n-2} + b_{n-4}$$
; $n = 4, 5, ...$

how many terms of b_n needed to be given in the initial conditions?

Atiwong Suchato

Department of Computer Engineering, Chulalongkorn University

Discrete Structures

Modeling with Recurrence Relations

To find solutions for doing a task of a size *n*

Find a way to:

Construct the solution at the size n from the solution of the same tasks at smaller sizes.

Atiwong Suchato

Department of Computer Engineering, Chulalongkorn University

Discrete Structures

Example: The Tower of Hanoi

Rules:

Move a disk at a time from one peg to another. Never place a disk on a smaller disk.

The goal is to have all disk on the 2nd peg in order of size.

Find H_n , the number of moves needed to solve the problem with n disks.

Example:

A man running up a staircase of *n* stairs. Each step he takes can cover either 1 or 2 stairs. How many different ways for him to ascend this staircase?

Solving Recurrence Relations

• A *linear homogeneous* recurrence relation can be solved in a systematic way.

<u>Linear homogeneous recurrence relation of degree *k* with constant coefficients</u>

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \dots + c_k a_{n-k}$$

where $c_1, c_2, ..., c_k$ are real numbers and $c_k \neq 0$

Atiwong Suchate

Department of Computer Engineering, Chulalongkorn University

Discrete Structures

Linear Homogeneous Recurrence Rel.

•
$$a_n = a_{n-1} + a_{n-2}^2$$

•
$$H_n = 2H_{n-1} + 1$$

•
$$B_n = nB_{n-1}$$

•
$$f_n = f_{n-1} + f_{n-2}$$

Atiwong Suchate

Department of Computer Engineering, Chulalongkorn University

Discrete Structures

Solving: Linear Homogeneous Recurrence Relations

Solving: Linear Homogeneous Recurrence Relations

Recurrence Relation:

$$a_n - c_1 a_{n-1} - c_2 a_{n-2} - \dots - c_k a_{n-k} = 0$$

• Characteristic equation:

$$r^{k} - C_{1}r^{k-1} - C_{2}r^{k-2} \dots - C^{k} = 0$$

Example:

$$a_n = a_{n-1} + 3a_{n-2}$$

 $b_n = 2b_{n-1} - b_{n-2} + 5b_{n-3}$
 $d_n = d_{n-2} + d_{n-5}$

Solving: Linear Homogeneous Recurrence Relations

Let c₁, c₂, ..., c_k be real numbers. Suppose the characteristic equation:

$$r^{k} - C_{1}r^{k-1} - C_{2}r^{k-2} \dots - C^{k} = 0$$

has <u>k distinct roots</u> $r_1, r_2, ..., r_k$. Then a sequence $\{a_n\}$ is a solution of the **recurrence relation**:

$$a_n - c_1 a_{n-1} - c_2 a_{n-2} - \dots - c_k a_{n-k} = 0$$

if and only if:

$$a_n = \alpha_1 r_1^n + \alpha_2 r_2^n + \dots + \alpha_k r_k^n$$

for $n = 0, 1, 2, \dots$ Where $\alpha_1, \alpha_2, \dots, \alpha_k$ are constants.

Atiwong Suchate

Department of Computer Engineering, Chulalongkorn University

Discrete Structures

Example:

What is the solution of the recurrence relation:

$$a_n = a_{n-1} + 2a_{n-2}$$

with
$$a_0 = 2$$
 and $a_1 = 7$?

Atiwong Suchato

Department of Computer Engineering, Chulalongkorn University

Discrete Structures

Example:

What is the solution of the recurrence relation:

$$a_n = 6a_{n-1} - 11a_{n-2} + 6a_{n-3}$$

with $a_0 = 2$, $a_1 = 5$ and $a_2 = 15$?

Repeated Roots

- Suppose the characteristic equation has t distinct roots $r_1, r_2, ..., r_t$ with multiplicities $m_1, m_2, ..., m_t$
- Solution:

$$a_{n} = (\alpha_{1,0} + \alpha_{1,1}n + \dots + \alpha_{1,m1-1}n^{m1-1})r_{1}^{n} + (\alpha_{2,0} + \alpha_{2,1}n + \dots + \alpha_{2,m2-1}n^{m2-1})r_{2}^{n} + \dots + (\alpha_{t,0} + \alpha_{t,1}n + \dots + \alpha_{t,mt-1}n^{mt-1})r_{t}^{n}$$

Example:

What is the solution of the recurrence relation:

$$a_n = -3a_{n-1} - 3a_{n-2} - a_{n-3}$$

with
$$a_0 = 1$$
, $a_1 = -2$ and $a_2 = -1$?

Solving: Linear Nonhomogeneous **Recurrence Relations**

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \dots + c_k a_{n-k} + F(n)$$

Associated homogeneous recurrence relation

$${a_n} = {a_n}^h + {a_n}^p$$

Department of Computer Engineering, Chulalongkorn University

Discrete Structures

Department of Computer Engineering, Chulalongkorn University

Discrete Structures

Solving: Linear Nonhomogeneous **Recurrence Relations**

- Key:
 - 1 Solve for a solution of the associated homogeneous part.
 - 2 Find a particular solution.
 - 3 Sum the solutions in 1 and 2
- There is no general method for finding the particular solution for every F(n)
- There are general techniques for some *F*(*n*) such as polynomials and powers of constants.

Find the solutions of $a_n = 3a_{n-1} + 2n$ with $a_1 = 3$

Example:

Find the solutions of $a_n = 5a_{n-1} - 6a_{n-2} + 7^n$

Particular Solutions

$$F(n) = (b_t n^t + b_{t-1} n^{t-1} + \dots + b_1 n + b_0) s^n$$

where b_0 , b_1 , ..., b_t and s are real numbers.

When **s** is **not** a root of the characteristic equation:

The particular solution is of the form:

$$(p_t n^t + p_{t-1} n^{t-1} + ... + p_1 n + p_0) s^n$$

When **s** is a root of multiplicity **m**:

The particular solution is of the form:

$$n^{m} (p_{t}n^{t} + p_{t-1}n^{t-1} + ... + p_{1}n + p_{0}) s^{n}$$

Atiwong Suchato

Department of Computer Engineering, Chulalongkorn University

Discrete Structures

Department of Computer Engineering, Chulalongkorn University

Discrete Structures

Example:

What form does a particular solution of

$$a_n = 6a_{n-1} - 9a_{n-2} + F(n)$$

have when:

$$F(n)=3n$$
, $F(n)=n3^n$, $F(n)=n^22^n$, $F(n)=(n^2+1)3^n$?

<u>Example</u>

Find the solution of
$$a_n = \sum_{k=1}^{n} k$$