Recurrence Relations

- Readings:

Recurrence Relations
Rosen section 7.1-7.2

Recurrence Relations

- A recurrence relation for the sequence $\left\{a_{n}\right\}$ is an equation that expresses a_{n} in terms of one or more of the previous terms, $a_{0}, a_{1}, \ldots, a_{n-1}$.

$$
\begin{aligned}
& a_{n}=5 a_{n-1} \\
& b_{n}=b_{n-1}-2 b_{n-2}+100 \\
& c_{n}=c_{n-3}+c_{n-4}+\log (n)+e^{n}
\end{aligned}
$$

- A sequence is called a solution of a recurrence relation if its terms satisfy the recurrence relation.

Initial Conditions

The initial conditions specify the terms that precede the first term where the recurrence relation takes effect.

Initial Conditions

In order to find a unique solution for every non-negative integers to:

$$
b_{n}=b_{n-2}+b_{n-4} ; \quad n=4,5, . .
$$

how many terms of b_{n} needed to be given in the initial conditions?

Example: The Tower of Hanoi

Rules:

Move a disk at a time from one peg to another.
Never place a disk on a smaller disk.
The goal is to have all disk on the $2^{\text {nd }}$ peg in order of size.

Find H_{n}, the number of moves needed to solve the problem with n disks.

Modeling with Recurrence Relations

To find solutions for doing a task of a size n

Find a way to:
Construct the solution at the size n from the solution of the same tasks at smaller sizes.

Ativong Suchato
Department of Computer Engineering, Chulalongkorn University

Example:

A man running up a staircase of n stairs. Each step he takes can cover either 1 or 2 stairs. How many different ways for him to ascend this staircase?

Solving Recurrence Relations

- A linear homogeneous recurrence relation can be solved in a systematic way.

Linear homogeneous recurrence relation of degree k with constant coefficients

$$
a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\ldots+c_{k} a_{n-k}
$$

where $c_{1}, c_{2}, \ldots, c_{k}$ are real numbers and $c_{k} \neq 0$

Linear Homogeneous Recurrence Rel.

- $a_{n}=a_{n-1}+a^{2}{ }_{n-2}$
- $H_{n}=2 H_{n-1}+1$
- $B_{n}=n B_{n-1}$
- $f_{n}=f_{n-1}+f_{n-2}$

Solving: Linear Homogeneous Recurrence Relations

Solving: Linear Homogeneous Recurrence Relations

- Recurrence Relation:
$a_{n}-c_{1} a_{n-1}-c_{2} a_{n-2}-\ldots-c_{k} a_{n-k}=0$
- Characteristic equation:
$r^{k}-c_{1} r^{k-1}-c_{2} r^{k-2} \ldots-c^{k}=0$
Example:
$a_{n}=a_{n-1}+3 a_{n-2}$
$b_{n}=2 b_{n-1}-b_{n-2}+5 b_{n-3}$
$d_{n}=d_{n-2}+d_{n-5}$

Solving: Linear Homogeneous

Recurrence Relations

- Let $c_{1}, c_{2}, \ldots, c_{k}$ be real numbers. Suppose the characteristic equation:

$$
r^{k}-c_{1} r^{r-1}-c_{2} r^{k-2} \ldots-c^{k}=0
$$

 solution of the recurrence relation:

$$
a_{n}-c_{1} a_{n-1}-c_{2} a_{n-2}-\ldots-c_{k} a_{n-k}=0
$$

if and only if:

$$
a_{n}=\alpha_{1} r_{1}^{n}+\alpha_{2} r_{2}^{n}+\ldots+\alpha_{k} r_{k}^{n}
$$

for $n=0,1,2, \ldots$ Where $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}$ are constants.

Example:
What is the solution of the recurrence relation:

$$
a_{n}=6 a_{n-1}-11 a_{n-2}+6 a_{n-3}
$$

with $a_{0}=2, a_{1}=5$ and $a_{2}=15$?
Example :
What is the solution of the recurrence relation:

$$
a_{n}=a_{n-1}+2 a_{n-2}
$$

with $a_{0}=2$ and $a_{1}=7 ?$

Repeated Roots

- Suppose the characteristic equation has t distinct roots $r_{1}, r_{2}, \ldots, r_{t}$ with multiplicities $m_{1}, m_{2}, \ldots, m_{t}$.
- Solution:

$$
\begin{aligned}
a_{n}= & \left(\alpha_{1,0}+\alpha_{1,1} n+\ldots+\alpha_{1, m 1-1} n^{m 1-1}\right) r_{1}{ }_{1}^{n} \\
& +\left(\alpha_{2,0}+\alpha_{2,1} n+\ldots+\alpha_{2, m 2-1} n^{m 2-1}\right) r_{2}{ }^{n} \\
& +\ldots \ldots \\
& +\left(\alpha_{t, 0}+\alpha_{t, 1} n+\ldots+\alpha_{t, m t-1} n^{m t-1}\right) r_{t}^{n}
\end{aligned}
$$

Example:
What is the solution of the recurrence relation:

$$
a_{n}=-3 a_{n-1}-3 a_{n-2}-a_{n-3}
$$

with $a_{0}=1, a_{1}=-2$ and $a_{2}=-1$?

Solving: Linear Nonhomogeneous

Recurrence Relations

Atiwong Suchato
Department of Computer Engineering, Chulalongkorn University

Solving: Linear Nonhomogeneous

Recurrence Relations

- Key:

1 - Solve for a solution of the associated homogeneous part.
2 - Find a particular solution.
3 - Sum the solutions in 1 and 2

- There is no general method for finding the particular solution for every $F(n)$
- There are general techniques for some $F(n)$ such as polynomials and powers of constants.

Example:
Find the solutions of $a_{n}=5 a_{n-1}-6 a_{n-2}+7^{n}$

Example:
What form does a particular solution of

$$
a_{n}=6 a_{n-1}-9 a_{n-2}+F(n)
$$

have when:
$F(n)=3 n, F(n)=n 3^{n}, F(n)=n^{2} 2^{n}, F(n)=\left(n^{2}+1\right) 3^{n}$?

Particular Solutions

$$
F(n)=\left(b_{t} n^{t}+b_{t-1} n^{t-1}+\ldots+b_{1} n+b_{0}\right) s^{n}
$$

where $b_{0}, b_{1}, \ldots, b_{t}$ and s are real numbers.
When \boldsymbol{s} is not a root of the characteristic equation:
The particular solution is of the form:

$$
\left(p_{t} n^{t}+p_{t-1} n^{t-1}+\ldots+p_{1} n+p_{0}\right) s^{n}
$$

When \boldsymbol{s} is a root of multiplicity \boldsymbol{m} :
The particular solution is of the form:

$$
n^{m}\left(p_{t} n^{t}+p_{t-1} n^{t-1}+\ldots+p_{1} n+p_{0}\right) s^{n}
$$

Example :
Find the solution of $a_{n}=\sum_{k=1}^{n} k$

