Generating Functions

- Readings:

Generating Functions
Rosen section 7.4

Generating Functions

- The generating function for the sequence $a_{n}=a_{0}$, a_{1}, a_{2}, \ldots of real numbers is the infinite series

$$
G(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots=\sum_{k=0}^{\infty} a_{k} x^{k}
$$

Generating Functions

- Used to represent sequences efficiently by coding the terms of a sequence as coefficients of powers of a variable x in a power series.

Why so?

- Generating functions can be used for:
- solving many types of counting problems
- solving recurrence relations
- proving combinatorial identities

Useful Facts about Power Series

- $1 /(1-x)=1+x+x^{2}+\ldots$ for $|x|<1$
- $1 /(1-a x)=1+a x+a x^{2}+\ldots$ for $|a x|<1$

Adding \& multiplying two generating functions
Let $f(x)=\sum_{k=0}^{\infty} a_{k} x^{k}$ and $g(x)=\sum_{k=0}^{\infty} b_{k} x^{k}$
$f(x)+g(x)=\sum_{k=0}^{\infty}\left(a_{k}+b_{k}\right) x^{k}$
$f(x) g(x)=\sum_{k=0}^{\infty}\left(\sum_{j=0}^{k} a_{j} b_{k-j}\right) x^{k}$
Atiwong Suchato
Department of Computer Engineering, Chulalongkorn University

Extended Binomial Coefficient

- To apply binomial theorem for exponents that are not positive integers.

Let \underline{u} be a real number and k a nonnegative integer. Then the extended binomial coefficient, $\binom{u}{k}$, is defined by:

$$
\binom{u}{k}= \begin{cases}u(u-1) \ldots(u-k+1) / k! & \text { if } k>0 \\ 1 & \text { if } k=0\end{cases}
$$

- Example:

$$
\binom{-6}{3}=\quad\binom{0.8}{5}=
$$

- When the top parameter is a negative number, the extended binomial coefficient can be expressed in terms of an ordinary binomial coefficient.

$$
\binom{-n}{r}=
$$

Counting Problems and Generating

Functions

Example:
Find the number of solutions of $e_{1}+e_{2}+e_{3}=17$ where $2 \leq e_{1} \leq 5,3 \leq e_{2} \leq 6,4 \leq e_{3} \leq 7$

Extended Binomial Theorem

- Let x be a real number with $|x|<1$ and let u be a real number. Then
$(1+x)^{u}=\sum_{k=0}^{\infty}\binom{u}{k} x^{k}$
$(1+x)^{-n}=$
$(1-x)^{-n}=$
- Example:

Find the number of ways to insert tokens worth \$1, \$2, and \$5 into a vending machine to pay for an item that costs \$r:
When order does not matter.

Example:
Find the number of ways to insert tokens worth $\$ 1, \$ 2$, and $\$ 5$ into a vending machine to pay for an item that costs \$r:
When order does matter.

Example:
Use generating functions to find the number of k combination of a set with n elements. (Assume that the binomial theorem has been established.)

- Example:

Use generating functions to find the number of r combination of a set with n elements when repetition of elements is allowed
repention of

Using Generating Functions to Solve Recurrence Relations

- Example:
$a_{k}=3 a_{k-1}$ for $k=1,2,3, \ldots$ and $a_{0}=2$

\circ
 Proving Identities via Generating

 Functions- Example :

Use generating functions to show that

$$
\sum_{k=0}^{n} c(n, k)^{2}=c(2 n, n)
$$

