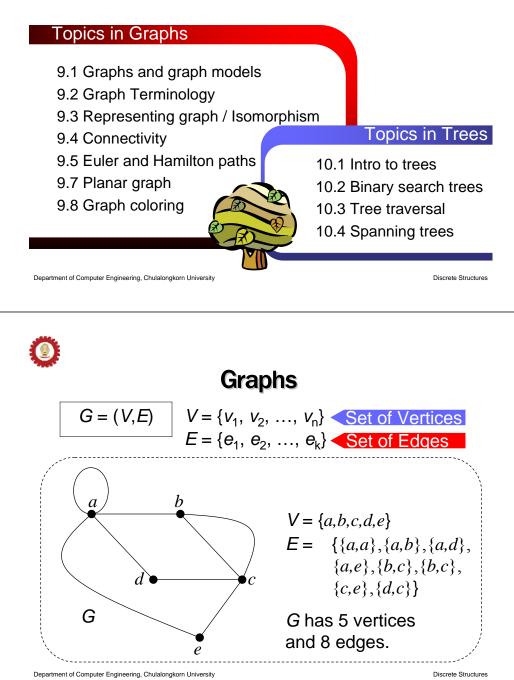


Graphs & Trees

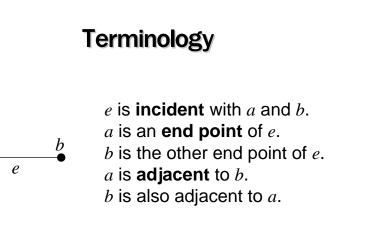


Today's Topics

- Graph Definition
- Terminology
- Simple Graphs, Multigraphs, Pseudographs
- Directed Graphs
- Degrees
- Special Types of Graph
- Bipartite Graphs
- Subgraph
- Union of Graphs

Department of Computer Engineering, Chulalongkorn University

Discrete Structures



Simple Graph, Multigraph, Pseudograph

Simple Graph

No more than 1 edge between any pair of vertices. No loops.

Multigraph

There can be more than 1 edge between any pair of vertices. No loops.

Pseudograph

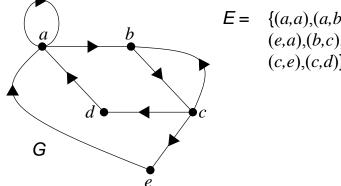
Any graph.

Department of Computer Er	naineerina. C	Chulalongkorn U	Jniversitv

Discrete Structures

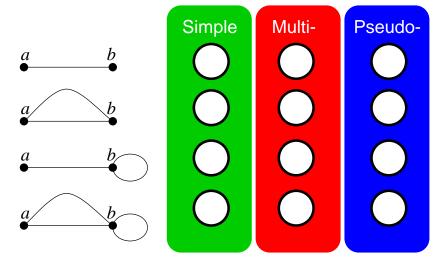
Directed Graphs

Edges are described using "ordered pairs".



 $E = \{(a,a), (a,b), (d,a), \}$ (e,a),(b,c),(c,b),(c,e),(c,d)

Simple Graph, Multigraph, Pseudograph



Department of Computer Engineering, Chulalongkorn University

Discrete Structures

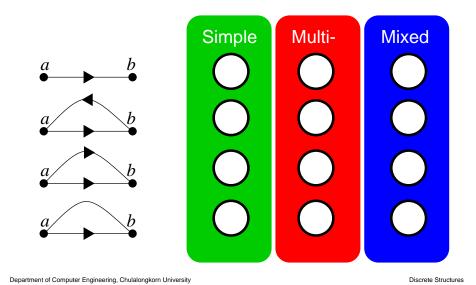
Directed Graphs

Simple Directed Graph No repeated edges (order matters). No loops

Directed Multigraph There can be repeated edges and/or loops.

Mixed Graph There are both directed and undirected edges.

Directed Graphs



٥

Degree of a Vertex

- Degree of v, deg(v) = number of edges incident with v
- Out-degree of v, deg⁺(v) = number of edges, each of which has v as their initial vertex.
- In-degree of v, deg⁻(v) = number of edges, each of which has v as their end vertex.

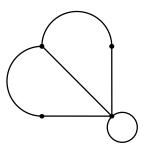
A loop contributes **twice** to the degree of a vertex. A directed loop contributes **once** to the in-degree and **once** to the out-degree.

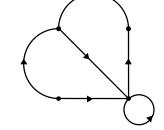
Department of Computer Engineering, Chulalongkorn University

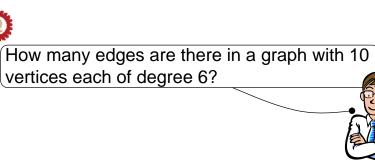
Discrete Structures

٢

Degree of a Vertex





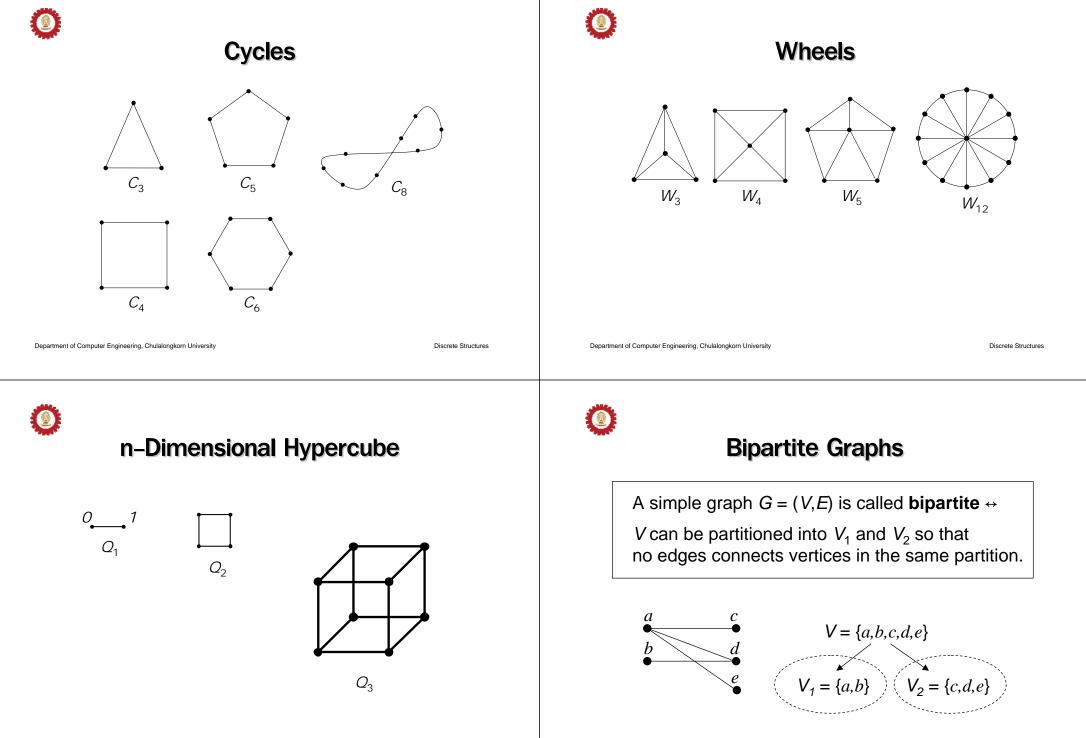


The Handshaking Theorem

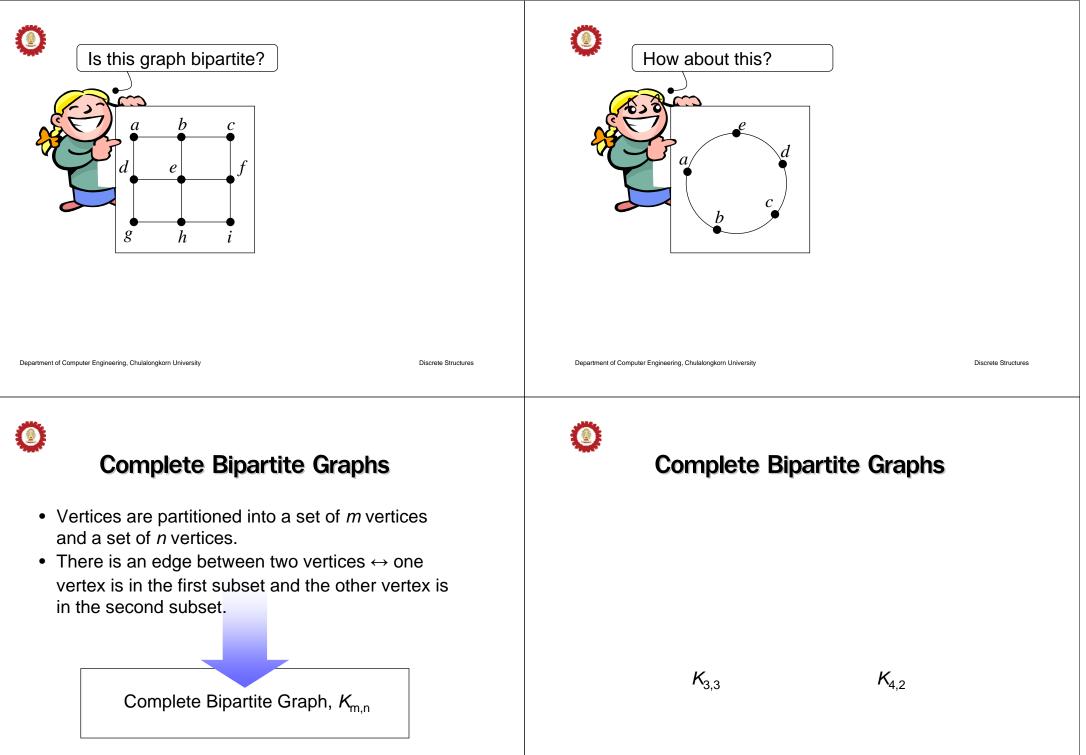
	Oud Degrees
Let $G = (V, E)$ be an undirected graph with e edges, then $2 = \sum_{i=1}^{n} deg(v_i)$	In an undirected graph, there must be an even number of vertices with odd degree.
$2e = \sum_{v \in V} \deg(v)$	Proof:
artment of Computer Engineering, Chulalongkorn University Discrete Structures	Department of Computer Engineering, Chulalongkorn University Discrete Structu
In-degree = Out-degree	Complete Graphs
Let $G = (V, E)$ be a directed graph, then	
$\sum_{v \in V} \deg^{-}(v) = \sum_{v \in V} \deg^{+}(v) = E $	$\begin{array}{c c} K_1 \\ K_1 \\ K_3 \\ K_4 \end{array}$
	K_2 K_5

The Number of Vertices with

Odd Degrees



Discrete Structures



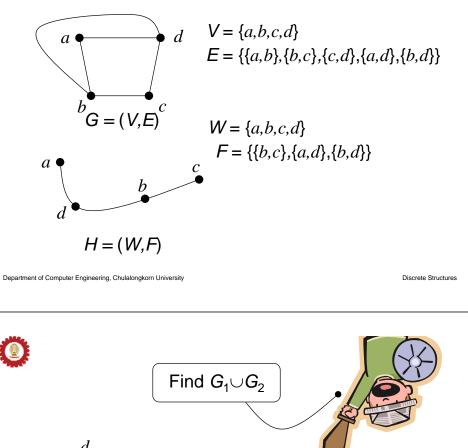
Subgraphs

A **subgraph** of G=(V,E) is a graph H=(W,F)where $W \subseteq V$ and $F \subseteq E$

A subgraph of *H* of *G* is a **proper subgraph** of *G* if $H \neq G$

٢

Subgraphs

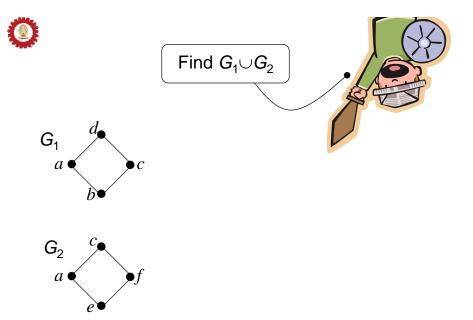


Union

The **union** of two simple graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ is the simple graph H = (W, F) where $W = V_1 \cup V_2$ and $F = E_1 \cup E_2$

Denoted by $G_1 \cup G_2$

Department of Computer Engineering, Chulalongkorn University



Discrete Structures