Inclusion-Exclusion Principle

- Readings:

Rosen section 7.5-7.6

21102000 Discrete Stuctures Department of Computer Engineering

 Faculity of ENGINEERING | Chulalongkorn University
$\left|A_{1}\right|+\left|A_{2}\right|+\left|A_{3}\right|$ $-\left|A_{1} \cap A_{2}\right|-\left|A_{2} \cap A_{3}\right|-\left|A_{3} \cap A_{1}\right|$
$\left|A_{1}\right|+\left|A_{2}\right|+\left|A_{3}\right|$
$-\left|A_{1} \cap A_{2}\right|-\left|A_{2} \cap A_{3}\right|-\left|A_{3} \cap A_{1}\right|$ $+\left|A_{1} \cap A_{2} \cap A_{3}\right|$

Inclusion-Exclusion

- How many elements are in the union of finite sets?

$\left|A_{1} \cup A_{2} \cup A_{3}\right|=\left|A_{1}\right|+\left|A_{2}\right|+\left|A_{3}\right|$

$$
-\left|A_{1} \cap A_{2}\right|-\left|A_{2} \cap A_{3}\right|-\left|A_{3} \cap A_{1}\right|+\left|A_{1} \cap A_{2} \cap A_{3}\right|
$$

The Principle of Inclusion-

 Exclusion- Let $A_{1}, A_{2}, \ldots, A_{n}$ be finite sets. Then

$$
\begin{aligned}
\left|A_{1} \cup A_{2} \cup \cdots \cup A_{n}\right|= & \sum_{1 \leq i \leq n}\left|A_{i}\right|-\sum_{1 \leq i \leq j \leq n}\left|A_{i} \cap A_{j}\right| \\
& +\sum_{1 \leq i \leq j \leq k \leq n}\left|A_{i} \cap A_{j} \cap A_{k}\right| \\
& -\cdots+(-1)^{n+1}\left|A_{1} \cap A_{2} \cap \cdots \cap A_{n}\right|
\end{aligned}
$$

- Examples:
$\left|A_{1} \cup A_{2} \cup A_{3} \cup A_{4}\right|=$

Proof: Inclusion-Exclusion Principle

- Showing that an element in the union is counted exactly once.

Let x be an element of exactly r sets.

For example, x is an element of $A_{1}, A_{2}, \ldots, A_{r}$, But not of $A_{r+1}, A_{r+2}, \ldots, A_{n}$.

Using the Formula to find $\mid A_{1} \cap A_{2}$

$$
\begin{aligned}
\left|A_{1} \cap A_{2} \cap \ldots \cap A_{n}\right| & =|U|-\left|\left(A_{1} \cap A_{2} \cap \ldots \cap A_{n}\right)^{\prime}\right| \\
& =|U|-\left|A_{1}^{\prime} \cup A_{2}^{\prime} \cup \ldots \cup A_{n}^{\prime}\right| \\
\text { Let } B_{i}=A_{i}^{\prime} & =|U|-\left|B_{1} \cup B_{2} \cup \ldots \cup B_{n}\right| \\
& \quad \frac{\text { Use the formula }}{}
\end{aligned}
$$

Therefore, to find the number of elements in an intersection of sets

- Example:

How many solutions does $x_{1}+x_{2}+x_{3}=11$ have, where $\quad x_{1}$ is a non negative integer ≤ 3, x_{2} is a non negative integer ≤ 4,
and x_{3} is a non negative integer ≤ 6 ?

The Number of Onto Functions

- Example:

How many ways are there to assign five different jobs to four employees if every employee is assigned at least one job?

Derangements

- A derangement is a permutation of objects that leaves no object in its original position.
- Example:

Consider a sequence 12345.
21453
43512
42351

Derangements

- The number of derangements of a set with n elements, $D_{n}=$?
- Example: "The Hatcheck Problem"

An employee checks the hats of n people at a restaurant. He forgot to put claim check numbers on the hats. When customers return for their hats, this checker gives hats chosen at random to them.
What is the probability that no one receives the correct hat?

