Course Outline

2110200 DISCRETE STRUCTURE

> ผศ. คร.อรรถสิทธิ์ สุรฤกษ์ ผศ. คร.อรรถวิทย์ สุดแสง ผศ. คร.อติวงศ์ สุชาโต

- 4 parts:
- Part1: Discrete Math Fundamentals
- Part2: Graphs and Trees
- Part3: Counting Techniques
- Part4: Number Theory

Goals of Discrete Math.

- Algorithmic Thinking
 - Specify, verify, and analyze an algorithm
- Applications and Modeling
 - Apply the obtained problem-solving skills to model and solve problems in computer science and other areas, such as:
 - Business
 - Chemistry
 - · Linguistics
 - · Geology
 - etc

110200 Discrete Structures

Department of Computer Engineering

ABET Accreditation

Programs containing the modifier "computer" in the title must also demonstrate that graduates have a knowledge of "discrete mathematics".

Foundations of Discrete Math.

- Logic
 - Specify the meaning of Mathematical statements
 - Basis of all Mathematical reasoning
- <u>Sets</u>
 - Sets are collections of objects, which are used for building many important discrete structures.
- Functions
 - Used in the definition of some important structures
 - Represent complexity of an algorithm, and etc.

<section-header><section-header><section-header><section-header><section-header><section-header><section-header><text></text></section-header></section-header></section-header></section-header></section-header></section-header></section-header>	<section-header><section-header><section-header><section-header><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></section-header></section-header></section-header></section-header>
 Logical Operators Negation (NOT) Conjunction (AND) 	 Negation • The negation of <i>p</i> has opposite truth value to <i>p</i>
 Disjunction (OR) Exclusive OR (XOR) Implication (IFTHEN) Biconditional (IF & ONLY IF) 	クリーフタ T F F T

Conjunction

• The conjunction of *p* and *q*, is true when, and only when, both *p* and *q* are true.

р	q	$p \wedge q$
Т	Т	Т
Т	F	F
F	Т	F
F	F	F

Disjunction

• The disjunction of *p* and *q*, is true when at least one of *p* or *q* is true.

р	q	$p \lor q$
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F

Exclusive OR

• Exclusive or = OR but NOT both $p \oplus q = (p \lor q) \land \neg (p \land q)$

р	q	$p\oplus q$
Т	Т	F
Т	F	Т
F	Т	Т
F	F	F

Implication

• It is false when *p* is true and *q* is false, and true otherwise.

р	q	$p \rightarrow q$
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

110200 Discrete Structures

Department of Computer Engineering

Faculty of ENGINEERING | Chulalongkorn University

2110200 Discrete Structures

Department of Computer Engineering

Biconditional

- $p \leftrightarrow q$ is true when p and q have the same truth value.
 - Intuitively, $p \leftrightarrow q$ is $(p \rightarrow q) \land (q \rightarrow p)$

р	q	$p \leftrightarrow q$
Т	Т	Т
Т	F	F
F	Т	F
F	F	Т

General Compound Proposition

• Example:

2110200 Discrete Structures

Department of Computer Engineering

 $(p \land q) \lor \neg p$

.

- Contrapositive
- The *contrapositive* of an implication $p \rightarrow q$ is:

 $\neg q \rightarrow \neg p$

• has the same truth values as $p \rightarrow q$

Converse and Inverse

• The *converse* of an implication $p \rightarrow q$ is:

 $q \rightarrow p$

• The *inverse* of an implication $p \rightarrow q$ is:

$$\neg p \rightarrow \neg$$

• DO NOT have the same truth values as $p \rightarrow q$

110200 Discrete Structures

Department of Computer Engineering

Faculty of ENGINEERING | Chulalongkorn University

2110200 Discrete Structures Department of Computer Engineering

Faculty of ENGINEERING | Chulalongkorn Universit

2110200 Discrete Structures Department of Computer Engineering

Consistency

- Whenever the system is being upgraded, users cannot access the file system.
- If users can access the file system, they can save new files. $q \rightarrow r$
- If users cannot save new files, the system is not being upgraded.
 ¬r → ¬p

p	q	r	$p \rightarrow \neg q$	$q \rightarrow r$	$\neg r \rightarrow \neg p$
Т	F	Т	т	т	Т

These spec. are consistent.

Tautology, Contradiction, & Contingency

- A compound proposition that is always *true* is called a *"tautology"*.
- A compound proposition that is always *false* is called a *"contradiction"*.
- If neither a tautology nor a contradiction, it is called a *"contingency"*.

Logical Equivalences

The propositions *p* and *q* are called "**logical** equivalent" ($p \equiv q$) if $p \leftrightarrow q$ is a tautology

Showing Logically Equivalent propositions

Show that the truth values of these propositions are always the same.

 \rightarrow Construct truth tables.

epartment of Computer Engineering

Faculty of ENGINEERING | Chulalongkorn University

110200 Discrete Structures

Pepartment of Computer Engineering

Showing Logically Equivalent propositions

• Example (Rosen): Show that $p \rightarrow q \equiv \neg p \lor q$

Showing Logically Equivalent propositions

Logical Equivalences

- Distributive Laws
 - $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$ $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$
- De Morgan's Laws

$$\neg (p \land q) \equiv \neg p \lor \neg q$$
$$\neg (p \lor q) \equiv \neg p \land \neg q$$

• More can be found in the textbook

Showing Logically Equivalent propositions

• <u>Example</u> (Rosen): Show that $\neg (p \lor (\neg p \land q)) \equiv \neg p \land \neg q$ $\neg (p \lor (\neg p \land q)) \equiv \neg p \land \neg (\neg p \land q)$ De Morgan's $\equiv \neg p \land (\neg (\neg p) \lor \neg q)$ De Morgan's $\equiv \neg p \land (p \lor \neg q)$ Double negative $\equiv (\neg p \land p) \lor (\neg p \land \neg q)$ Distributive $\equiv F \lor (\neg p \land \neg q)$ $\equiv \neg p \land \neg q$

2110200 Discrete Structures Department of Computer Engineering

110200 Discrete Structures

Department of Computer Engineering

Predicate Logic

- In Propositional Logic, 'the atomic units' are propositions.
- E.g.:
 - *p*: John goes to school., *q*: Mary goes to school.
- In Predicate Logic, we look at each proposition as the combination of *variables* and *predicates*.
- E.g.:

10200 Discrete Structures

epartment of Computer Engineering

– X goes to school, where X can be John or Mary.

Predicate Logic

- The statement "*x* go to school" has two parts: Variable "*x*"
 - The predicate "go to school"
- This statement can be denoted by *P*(*x*), where *P* denotes the predicate "go to school".
- *P*(*x*) is said to be the value of the propositional function *P* at *x*.
- Once a value has been assigned to the variable *x*, the statement *P*(*x*) becomes a proposition and has a truth value.
- E.g: P(John) and P(Mary) have truth values.

Creating propositions from a propositional function

- Assign values to all variables in a propositional function.
- Use "Quantification"

Universal Quantifier

• $\forall x P(x)$ (read "for all x P(x)") denotes:

P(x) is true for all values x in the universal of discourse.

• $\forall x P(x)$ is the same as:

 $P(x_1) \land P(x_2) \land \ldots \land P(x_n)$

When all elements in the universe of discourse can be listed as $(x_1, x_2, ..., x_n)$

Faculty of ENGINEERING | Chulalongkorn University

2110200 Discrete Structures Department of Computer Engineering

Department of Computer Engineering

Universal Quantifier

- Example (Rosen):
- What is the truth value of ∀xP(x² ≥ x), when the universe of discourse consists of:
 - all real numbers?
 - all integers?

Since $x^2 \ge x$ only when $x \le 0$ or $x \ge 1$, $\forall x P(x^2 \ge x)$ is false if the universe consists of all real numbers. However, it is true when the universe consists of only the integers.

Existential Quantifier

• $\exists x P(x)$ (read "for some x P(x)") denotes:

There exists an element x in the universe of discourse that P(x) is true.

• $\exists x P(x)$ is the same as:

 $P(x_1) \lor P(x_2) \lor \ldots \lor P(x_n)$

When all elements in the universe of discourse can be listed as $(x_1, x_2, ..., x_n)$

110200 Discrete Structures Faculty of ENGINEERING Chulalongkorn University epartment of Computer Engineering	2110200 Discrete Structures Faculty of ENGINEERING Chulalongkom University Department of Computer Engineering
Existential Quantifier	Negations
 Example (Rosen): What is the truth value of ∃xP(x) where P(x) is the statement x² > 10, and the universe of discourse consists of the positive integers not exceeding 4? 	$\neg \forall x P(x) \equiv \exists x \neg P(x)$ $\neg \exists x P(x) \equiv \forall x \neg P(x)$ Negation of
Since the elements in the universe can be listed as {1,2,3,4}, $\exists x P(x)$ is the same as $P(1) \lor P(2) \lor$ $P(3) \lor P(4)$. There for $\exists x P(x)$ is true since $P(4)$ is true.	"Every 2 nd year students loves Discrete math." is "There is a 2 nd year student who does not love Discrete math." Negation of "Some student in this class get 'A'." is "None of the students in this class get 'A'."

epartment of Computer Engineering

Department of Computer Engineering

Cardinality

- For a set S, if there are exactly n distinct elements in S, where n is a nonnegative integer, we say that S is a *finite set* and that n is the *cardinality* of S (|S|=n)
- A set is "infinite" if it is not finite.

Power Set

- Given a set S, the power set of S, P(S), is the set of all subsets of S
- If S has n elements, then P(S) has 2^n elements.
- Examples (Rosen):

S	P(S)
{0,1,2}	{Ø,{0},{1},{2},{0,1},{0,2},{1,2},{0,1,2}}
Ø	{Ø}
{Ø}	{Ø,{Ø}}
0200 Discrete Structures	Faculty of ENGINEERING Chulalongkorn University

Ordered n-tuple

The ordered n-tuple (a₁, a₂,..,a_n) is the ordered collection that has a₁ as its first element, a₂ as its second element,..., and an as its nth element.

Two ordered n-tuples are equal \leftrightarrow each corresponding pair of their elements is equal

Cartesian Products

 $A x B = \{ (a,b) \mid a \in A \land b \in B \}$

 $\begin{array}{l} A_1 \mathrel{x} A_2 \mathrel{x} \ldots \mathrel{x} A_n = \\ \{ \; (a_1, a_2, \ldots, a_n,) \; | \; a_i \in A_i \; \text{for i=1,2,...,n} \} \end{array}$

• Examples:

 What is the Cartesian product AxBxC, where A={0,1}, B={j,k}, C={x,y,z}?
 AxBxC={(0,j,x),(0,j,y),(0,j,z),(0,k,x),(0,k,y),(0,k,z),

(1,j,x),(1,j,y),(1,j,z),(1,k,x),(1,k,y),(1,k,z)

2110200 Discrete Structures Department of Computer Engineering

epartment of Computer Engineering

Faculty of ENGINEERING | Chulalongkorn University

110200 Discrete Structures Department of Computer Engineering

Set Operations Using Set Notation with Quantifiers · Specify the universe of discourse . • Union (∪) • E.g.: • Intersection (∩) • Difference (-) $\forall x \in \mathbf{R}(x^2 \ge 0)$ Complement (') means "for every real number $x^2 \ge 0$ " • Symmetric difference (⊕) which is true. 10200 Discrete Structures Faculty of ENGINEERING | Chulalongkorn University Faculty of ENGINEERING | Chulalongkorn University Department of Computer Engineering epartment of Computer Engineering Symmetric Difference Principle of Inclusion-Exclusion A⊕B is the set containing those elements in $|A \cup B| = |A| + |B| - |A \cap B|$ either A or B but NOT in both A and B. More general (Later in this course): Example: $|A_1 \cup A_2 \cup \ldots \cup A_n| =$ $A = \{1,3,5\}, B = \{1,2,3\}, A \oplus B = \{2,5\}$ $\Sigma |\mathsf{A}_{\mathsf{i}}| - \Sigma |\mathsf{A}_{\mathsf{i}} \cap \mathsf{A}_{\mathsf{i}}| + \Sigma |\mathsf{A}_{\mathsf{i}} \cap \mathsf{A}_{\mathsf{i}} \cap \mathsf{A}_{\mathsf{k}}| - \dots$

+(-1)ⁿ⁺¹ $| A_1 \cap A_2 \cap ... \cap A_n |$

Set Identities

• Distributive Laws

 $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

• De Morgan's Laws

110200 Discrete Structures

Department of Computer Engineering

 $(A \cup B)' = A' \cap B'$ $(A \cap B)' = A' \cup B'$

• More can be found in the textbook.

Showing that two sets have the same elements

- Use set builder notation and logical equivalences.
- Build membership tables.

Use set identities.

110200 Discrete Structure

Department of Computer Engineering

Proving Set Equality Using membership table

• Example Show that $(A \cap B)' = A' \cup B'$

Α	В	A'	B′	A′∪B′	(A ∩ B)	(A ∩ B)′
0	0	1	1	1	0	1
0	1	1	0	1	0	1
1	0	0	1	1	0	1
1	1	0	0	0	1	0

Generalized Union and Intersection

$$A_1 \cup A_2 \cup \ldots \cup A_n = \bigcup_{i=1}^n A_i$$

$$A_1 \cap A_2 \cap \ldots \cap A_n = \bigcap_{i=1}^n A_i$$

Faculty of ENGINEERING | Chulalongkorn University

Adding and Multiplying Functions

- Two real-valued functions *with the same domain* can be added and multiplied.
 - f_1 , f_2 are functions from *A* to *R* \rightarrow f_1+f_2 and f_1f_2 are also functions from *A* to *R*.

 $(f_1 + f_2)(x) = f_1(x) + f_2(x)$ $(f_1 f_2)(x) = f_1(x) f_2(x)$

Adding and Multiplying Functions

- Example (Rosen):
- f_1 , f_2 are functions from **R** to **R**. $f_1(x)=x^2$, $f_2(x)=x-x^2$. What are the functions f_1+f_2 and f_1f_2 ?

 $(f_1+f_2)(x) = f_1(x)+f_2(x) = x^2 + x - x^2 = x$

 $(f_1f_2\,)(x)=f_1(x)f_2(x)=x^2\,(x-x^2\,)=x^3-x^4$

Composite Functions

- $(f \bullet g)(a) = f(g(a))$
- f g cannot be defined unless the range of g is a subset of the domain of f.
- If f is a one-to-one correspondent function from A to B

 $(f^{-1} \bullet f)(a) = a, \quad a \in A$ $(f \bullet f^{-1})(b) = b, \quad b \in B$

Some Important Functions

- Floor function ↓ ↓
 ↓ x ↓ = the largest integer ≤ x
- Ceiling function $\lceil \rceil$ $\lceil x \rceil$ = the smallest integer $\ge x$

Examples

- Example (Rosen):
- Each byte is made up of 8 bits. How many bytes are required to encoded 100 bits of data?

[100/8] = [12.5] = 13 bytes

Factorial Function

f(n) = n! is the product of the first n positive integers, so that

 $f(n) = 1 \cdot 2 \cdot ... \cdot (n-1) \cdot n$ and f(0) = 0! = 1

2110200 Discrete Structures Faculty of ENGINEERING Chulalongkom University Department of Computer Engineering	2110200 Discrete Structures Faculty of ENGINEERING Chulalongkorn University Department of Computer Engineering
 Proposition Truth value Negation Logical Operator Compound Inverse Converse Contrapositive Biconditional Tautology Predicate Propositional function Universe of discourse 	 Set Set Cardinality Element Member Empty/Null set Intersection Difference
 proposition Truth table Disjunction Contingency Consistency Consistency Logical equivalence Implication 	 Venn diagram Set equality Subset Proper subset Finite set Infinite set 21020 Discrete Structures Complement Symmetric difference Membership table

i ui	nctions: Key Terms	
Function	Inverse	
Domain	Composition	
Codomain	Floor function	
lmage	Ceiling functionFactorial	
Pre-image Range	Factorial	
 Onto / Surjection 	on	
One-to-one / Injection		Belation
One-to-one correspondenc bijection	;e /	

Relations

- A (binary) relation form A to B is a subset of AxB
- A relation on the set A is a relation from A to A
- A function from A to B is a relation from A to B
- Examples:

 $R_1 = \{(1,1), (1,2), (2,1), (2,3)\}$ R₂ = {(a,b) | a = b or a = -b}

a and b are integers

Properties of Relations

• R on the set A is *reflexive* $\leftrightarrow \forall a ((a,a) \in R)$

Example: Consider relations on {1,2,3,4}

R must contain (1,1),(2,2),(3,3),(4,4)

 $R1 = \{(1,1), (1,2), (1,3), (2,2), (3,3), (4,1), (4,4)\}$ $R2 = \{(1,1), (2,1), (2,3), (3,1), (3,2), (3,3), (3,4), (4,4)\}$

Composite Relations

- R is a relation from A to B
- S is a relation from B to C
- SoR = {(a,c)| a∈A,c∈C, and there exists b∈B such that (a,b)∈R and (b,c)∈S}

Composite Relations

• Example (Rosen):

R is a relation from $\{1,2,3\}$ to $\{1,2,3,4\}$ with R= $\{(1,1),(1,4),(2,3),(3,1),(3,4)\}$ and S is a relation from $\{1,2,3,4\}$ to $\{0,1,2\}$ with S= $\{(1,0),(2,0),(3,1),(3,2),(4,1)\}$.

What is the composite of R and S?

 $SoR = \{(1,0), (1,1), (2,1), (2,2), (3,0), (3,1)\}$

2110200 Discrete Structures Department of Computer Engineering

Faculty of ENGINEERING | Chulalongkorn University

2110200 Discrete Structures Department of Computer Engineering