
2110200 Discrete Structures
Department of Computer Engineering Faculty of ENGINEERING | Chulalongkorn University

21102002110200
DISCRETE STRUCTUREDISCRETE STRUCTURE

ผศ. ดร.อรรถสิทธิ์ สุรฤกษ
ผศ. ดร.อรรถวิทย สุดแสง
ผศ. ดร.อติวงศ สุชาโต

2110200 Discrete Structures
Department of Computer Engineering Faculty of ENGINEERING | Chulalongkorn University

Course OutlineCourse Outline
• 4 parts:
• Part1: Discrete Math Fundamentals
• Part2: Graphs and Trees
• Part3: Counting Techniques
• Part4: Number Theory

2110200 Discrete Structures
Department of Computer Engineering Faculty of ENGINEERING | Chulalongkorn University

Why ?Why ?????

ProblemProblem

SolutionSolution

Formulate associated
Mathematical

arguments

Solve the problem
mathematically

2110200 Discrete Structures
Department of Computer Engineering Faculty of ENGINEERING | Chulalongkorn University

Goals of Discrete Math.Goals of Discrete Math.
•• Mathematical ReasoningMathematical Reasoning

– Read, comprehend, and construct mathematical
arguments

•• Combinatorial AnalysisCombinatorial Analysis
– Perform analysis to solve counting problems

•• Discrete StructureDiscrete Structure
– Able to work with discrete structures: sets, graphs,

finite-state machines, etc.

2110200 Discrete Structures
Department of Computer Engineering Faculty of ENGINEERING | Chulalongkorn University

Goals of Discrete Math.Goals of Discrete Math.
•• Algorithmic ThinkingAlgorithmic Thinking

– Specify, verify, and analyze an algorithm

•• Applications and ModelingApplications and Modeling
– Apply the obtained problem-solving skills to model and

solve problems in computer science and other areas,
such as:

• Business
• Chemistry
• Linguistics
• Geology
• etc

2110200 Discrete Structures
Department of Computer Engineering Faculty of ENGINEERING | Chulalongkorn University

Gateway to . . .Gateway to . . .

Data Structures

Algorithms

Database
Theory

Automata
Theory

Formal
Languages

Compiler
Theory

Operating
Systems

Computer
Securities

2110200 Discrete Structures
Department of Computer Engineering Faculty of ENGINEERING | Chulalongkorn University

ABET AccreditationABET Accreditation

Programs containing the modifier
“computer” in the title must also

demonstrate that graduates have a
knowledge of

“discrete mathematics”.

2110200 Discrete Structures
Department of Computer Engineering Faculty of ENGINEERING | Chulalongkorn University

Foundations of Discrete Math.Foundations of Discrete Math.
•• LogicLogic

– Specify the meaning of Mathematical statements
– Basis of all Mathematical reasoning

•• SetsSets
– Sets are collections of objects, which are used for

building many important discrete structures.

•• FunctionsFunctions
– Used in the definition of some important structures
– Represent complexity of an algorithm, and etc.

2110200 Discrete Structures
Department of Computer Engineering Faculty of ENGINEERING | Chulalongkorn University

Rules of logic gives precise meaning to mathematical statements.

2110200 Discrete Structures
Department of Computer Engineering Faculty of ENGINEERING | Chulalongkorn University

Proposition: Building Blocks of LogicProposition: Building Blocks of Logic
• Proposition =

– Declarative sentence
– Either TRUE or FALSE (not both)

propositionproposition proposition

proposition proposition proposition

Logical operator

Compound
proposition

2110200 Discrete Structures
Department of Computer Engineering Faculty of ENGINEERING | Chulalongkorn University

Logical OperatorsLogical Operators
• Negation (NOT)

• Conjunction (AND)
• Disjunction (OR)

• Exclusive OR (XOR)
• Implication (IF..THEN)

• Biconditional (IF & ONLY IF)

2110200 Discrete Structures
Department of Computer Engineering Faculty of ENGINEERING | Chulalongkorn University

NegationNegation

TF
FT

¬ pp

• The negation of p has opposite truth value to p

2110200 Discrete Structures
Department of Computer Engineering Faculty of ENGINEERING | Chulalongkorn University

ConjunctionConjunction
• The conjunction of p and q, is true when, and

only when, both p and q are true.

FFF
FTF
FFT
TTT

p ∧ qqp

2110200 Discrete Structures
Department of Computer Engineering Faculty of ENGINEERING | Chulalongkorn University

DisjunctionDisjunction
• The disjunction of p and q, is true when at least

one of p or q is true.

FFF
TTF
TFT
TTT

p ∨ qqp

2110200 Discrete Structures
Department of Computer Engineering Faculty of ENGINEERING | Chulalongkorn University

Exclusive ORExclusive OR
• Exclusive or = OR but NOT both

p ⊕ q = (p ∨ q) ∧ ¬(p ∧ q)

FFF
TTF
TFT
FTT

p ⊕ qqp

2110200 Discrete Structures
Department of Computer Engineering Faculty of ENGINEERING | Chulalongkorn University

ImplicationImplication
• It is false when p is true and q is false, and true

otherwise.

TFF
TTF
FFT
TTT

p → qqp

2110200 Discrete Structures
Department of Computer Engineering Faculty of ENGINEERING | Chulalongkorn University

BiconditionalBiconditional
• p ↔ q is true when p and q have the same truth

value.
• Intuitively, p ↔ q is (p→q)∧(q→p)

TFF
FTF
FFT
TTT

p ↔ qqp

2110200 Discrete Structures
Department of Computer Engineering Faculty of ENGINEERING | Chulalongkorn University

General Compound PropositionGeneral Compound Proposition
• Example:

(p∧q)∨¬p

F
F

T
T

p

F
F

T
F

T
F

T
F

p ∧ qq

T
T

F
F

¬ p (p ∧ q)∨ ¬ p

T

F

T

T

2110200 Discrete Structures
Department of Computer Engineering Faculty of ENGINEERING | Chulalongkorn University

ContrapositiveContrapositive
• The contrapositive of an implication p → q is:

¬q → ¬p
• has the same truth values as p → q

2110200 Discrete Structures
Department of Computer Engineering Faculty of ENGINEERING | Chulalongkorn University

Converse and InverseConverse and Inverse
• The converse of an implication p → q is:

q → p
• The inverse of an implication p → q is:

¬p → ¬q
• DO NOT have the same truth values as p → q

2110200 Discrete Structures
Department of Computer Engineering Faculty of ENGINEERING | Chulalongkorn University

Precedence of Logical OperatorsPrecedence of Logical Operators

5↔

4→

3∨

2∧

1¬
PrecedenceOperator p ∧¬q ∨ r→ p ↔ s

((p ∧(¬q) ∨ r)→ p) ↔ s

2110200 Discrete Structures
Department of Computer Engineering Faculty of ENGINEERING | Chulalongkorn University

Translating from Natural languageTranslating from Natural language
• Example (Rosen):

You cannot ride the rollercoaster if you are under
4 feet tall unless you are older than 16 years old.

q: You can ride the roller coaster
r: You are under 4 feet tall
s: You are older than 16 years old

(r∧¬s)→ ¬q

¬(¬ r∨s)→ ¬q
q: You can ride the roller coaster
¬ r: You are at least 4 feet tall
s: You are older than 16 years old

2110200 Discrete Structures
Department of Computer Engineering Faculty of ENGINEERING | Chulalongkorn University

ConsistencyConsistency
• Translating natural language to logical expressions

is essential to specifying system spec.
• Specifications are ““consistentconsistent”” when they do not

conflict with one another. i.e.:

There must be an assignment of truth values
to every expression that make all the
expression true.

2110200 Discrete Structures
Department of Computer Engineering Faculty of ENGINEERING | Chulalongkorn University

ConsistencyConsistency
• Whenever the system is being upgraded, users

cannot access the file system.
• If users can access the file system, they can

save new files.
• If users cannot save new files, the system is not

being upgraded.

• Whenever the system is being upgraded, users
cannot access the file system.

• If users can access the file system, they can
save new files.

• If users cannot save new files, the system is not
being upgraded.

2110200 Discrete Structures
Department of Computer Engineering Faculty of ENGINEERING | Chulalongkorn University

ConsistencyConsistency
• Whenever the system is being upgraded, users

cannot access the file system.
• If users can access the file system, they can

save new files.
• If users cannot save new files, the system is not

being upgraded.

• Whenever the system is being upgraded, users
cannot access the file system.

• If users can access the file system, they can
save new files.

• If users cannot save new files, the system is not
being upgraded.

p → ¬ qp → ¬ q

q → rq → r

¬r → ¬p¬r → ¬p

TTTTFT

¬r → ¬pq → rp → ¬ qrqp

These spec. are consistent.

2110200 Discrete Structures
Department of Computer Engineering Faculty of ENGINEERING | Chulalongkorn University

Tautology, Contradiction, & ContingencyTautology, Contradiction, & Contingency

• A compound proposition that is always true is
called a ““tautologytautology””.

• A compound proposition that is always false is
called a ““contradictioncontradiction””.

• If neither a tautology nor a contradiction, it is
called a ““contingencycontingency””.

2110200 Discrete Structures
Department of Computer Engineering Faculty of ENGINEERING | Chulalongkorn University

Logical EquivalencesLogical Equivalences
The propositions p and q are called “logical

equivalent” (p ≡ q) if p ↔ q is a tautology
The propositions p and q are called “logical

equivalent” (p ≡ q) if p ↔ q is a tautology

2110200 Discrete Structures
Department of Computer Engineering Faculty of ENGINEERING | Chulalongkorn University

Showing Logically Equivalent propositionsShowing Logically Equivalent propositions

Show that the truth values of these propositions
are always the same.

11

→ Construct truth tables.

2110200 Discrete Structures
Department of Computer Engineering Faculty of ENGINEERING | Chulalongkorn University

Showing Logically Equivalent propositionsShowing Logically Equivalent propositions

• Example (Rosen):
Show that p → q ≡ ¬p ∨ q

FF
TF
FT
TT
qp

T
T
F
T

p → q

T
T
F
F

¬ p

T
T
F
T

¬ p∨ q

Logically EquivalentLogically Equivalent

2110200 Discrete Structures
Department of Computer Engineering Faculty of ENGINEERING | Chulalongkorn University

Showing Logically Equivalent propositionsShowing Logically Equivalent propositions

Show that the truth values of these propositions
are always the same.

11

Use series of established equivalences.22

2110200 Discrete Structures
Department of Computer Engineering Faculty of ENGINEERING | Chulalongkorn University

Logical EquivalencesLogical Equivalences
• Distributive Laws

p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r)
p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)

• De Morgan’s Laws
¬ (p ∧ q) ≡ ¬ p ∨ ¬ q
¬ (p ∨ q) ≡ ¬ p ∧ ¬ q

• More can be found in the textbook

2110200 Discrete Structures
Department of Computer Engineering Faculty of ENGINEERING | Chulalongkorn University

Showing Logically Equivalent propositionsShowing Logically Equivalent propositions

• Example (Rosen):
Show that ¬ (p ∨ (¬ p ∧ q)) ≡ ¬ p ∧ ¬ q

¬(p ∨ (¬p ∧ q)) ≡ ¬p ∧ ¬(¬p ∧ q) De Morgan’s
≡ ¬p ∧ (¬(¬p) ∨ ¬q) De Morgan’s
≡ ¬p ∧ (p ∨ ¬q) Double negative
≡ (¬p ∧ p) ∨ (¬p ∧ ¬q) Distributive
≡ F ∨ (¬p ∧ ¬q)
≡ ¬p ∧ ¬q

2110200 Discrete Structures
Department of Computer Engineering Faculty of ENGINEERING | Chulalongkorn University

Predicate LogicPredicate Logic
• In Propositional Logic, ‘the atomic units’ are

propositions.
• E.g.:

– p: John goes to school., q: Mary goes to school.

• In Predicate Logic, we look at each
proposition as the combination of variablesvariables
and predicatespredicates .

• E.g.:
– X goes to school, where X can be John or Mary.

2110200 Discrete Structures
Department of Computer Engineering Faculty of ENGINEERING | Chulalongkorn University

Predicate LogicPredicate Logic
• The statement “x go to school” has two parts:

Variable “x”
The predicate “go to school”

• This statement can be denoted by P(x), where P
denotes the predicate “go to school”.

• P(x) is said to be the value of the propositional
function P at x.

• Once a value has been assigned to the variable
x, the statement P(x) becomes a proposition and
has a truth value.

• E.g: P(John) and P(Mary) have truth values.

2110200 Discrete Structures
Department of Computer Engineering Faculty of ENGINEERING | Chulalongkorn University

Creating propositions from a propositional functionCreating propositions from a propositional function

Assign values to all variables in a propositional
function.
Use “Quantification”

11

22

2110200 Discrete Structures
Department of Computer Engineering Faculty of ENGINEERING | Chulalongkorn University

Universal QuantifierUniversal Quantifier
•• ∀∀xP(xxP(x)) (read “for all x P(x)”) denotes:

P(x) is true for all values x in the universal of
discourse.
P(x) is true for all values x in the universal of
discourse.

•• ∀∀xP(xxP(x)) is the same as:
P(x1)∧P(x2)∧…∧P(xn)

When all elements in the universe of discourse
can be listed as (x1 , x2 , … , xn)

2110200 Discrete Structures
Department of Computer Engineering Faculty of ENGINEERING | Chulalongkorn University

Universal QuantifierUniversal Quantifier
• Example (Rosen):
• What is the truth value of ∀xP(x2 ≥ x), when the

universe of discourse consists of:
– all real numbers?
– all integers?

Since x2 ≥ x only when x ≤ 0 or x ≥ 1, ∀xP(x2 ≥ x)
is false if the universe consists of all real
numbers. However, it is true when the universe
consists of only the integers.

2110200 Discrete Structures
Department of Computer Engineering Faculty of ENGINEERING | Chulalongkorn University

Existential QuantifierExistential Quantifier
•• ∃∃xP(xxP(x)) (read “for some x P(x)”) denotes:

There exists an element x in the universe of
discourse that P(x) is true.
There exists an element x in the universe of
discourse that P(x) is true.

•• ∃∃xP(xxP(x)) is the same as:
P(x1)∨ P(x2)∨ …∨ P(xn)

When all elements in the universe of discourse
can be listed as (x1 , x2 , … , xn)

2110200 Discrete Structures
Department of Computer Engineering Faculty of ENGINEERING | Chulalongkorn University

Existential QuantifierExistential Quantifier
• Example (Rosen):
• What is the truth value of ∃xP(x) where P(x) is

the statement x2 > 10, and the universe of
discourse consists of the positive integers not
exceeding 4?
Since the elements in the universe can be listed
as {1,2,3,4}, ∃xP(x) is the same as P(1)∨P(2)∨
P(3)∨P(4). There for ∃xP(x) is true since P(4) is
true.

2110200 Discrete Structures
Department of Computer Engineering Faculty of ENGINEERING | Chulalongkorn University

NegationsNegations

Negation of
“Every 2nd year students loves Discrete math.” is
“There is a 2nd year student who does not love Discrete math.”

¬∀xP(x) ≡ ∃x ¬P(x)

¬∃xP(x) ≡ ∀x ¬P(x)

Negation of
“Some student in this class get ‘A’.” is
“None of the students in this class get ‘A’.”

2110200 Discrete Structures
Department of Computer Engineering Faculty of ENGINEERING | Chulalongkorn University 2110200 Discrete Structures

Department of Computer Engineering Faculty of ENGINEERING | Chulalongkorn University

SetsSets
• A set is an unordered collection of objects.
• Objects in a set are called “members” or

“elements” of that set.
• Two sets are equal ↔ they have the same

elements

• A set is an unordered collection of objects.
• Objects in a set are called “members” or

“elements” of that set.
• Two sets are equal ↔ they have the same

elements

• Are {1,2,3} and {3,2,1} equal?
• Are {0,1,2} and {0,0,0,1,1,2} equal?

2110200 Discrete Structures
Department of Computer Engineering Faculty of ENGINEERING | Chulalongkorn University

Set Builder NotationSet Builder Notation
• Stating the properties that all elements must

have to be members.

O = {x | x is a prime number less than 100}
R = {x | x is a real number}
U = {x | x is any of the objects

under consideration}

2110200 Discrete Structures
Department of Computer Engineering Faculty of ENGINEERING | Chulalongkorn University

SubsetSubset
A ⊆ B ↔ ∀x (x ∈ A → x ∈ B)A ⊆ B ↔ ∀x (x ∈ A → x ∈ B)

Proper SubsetProper Subset
A ⊂ B ↔ (A ⊆ B) ∧ (A ≠ B)A ⊂ B ↔ (A ⊆ B) ∧ (A ≠ B)

For any set S, “∅ ⊆ S” and “S ⊆ S”

2110200 Discrete Structures
Department of Computer Engineering Faculty of ENGINEERING | Chulalongkorn University

CardinalityCardinality
• For a set S, if there are exactly n distinct

elements in S, where n is a nonnegative integer,
we say that S is a finite set and that n is the
cardinality of S (|S|=n)

• A set is “infinite” if it is not finite.

2110200 Discrete Structures
Department of Computer Engineering Faculty of ENGINEERING | Chulalongkorn University

Power SetPower Set
• Given a set S, the power set of S, P(S), is the set

of all subsets of S
• If S has n elements, then P(S) has 2n elements.

• Examples (Rosen):

{∅,{∅}}{∅}
{∅}∅

{∅,{0},{1},{2},{0,1},{0,2},{1,2},{0,1,2}}{0,1,2}
P(S)S

2110200 Discrete Structures
Department of Computer Engineering Faculty of ENGINEERING | Chulalongkorn University

Ordered Ordered nn--tupletuple
• The ordered n-tuple (a1,a2,..,an) is the ordered

collection that has a1 as its first element, a2 as its
second element,…, and an as its nth element.

• The ordered n-tuple (a1,a2,..,an) is the ordered
collection that has a1 as its first element, a2 as its
second element,…, and an as its nth element.

Two ordered n-tuples are equal ↔ each
corresponding pair of their elements is equal

2110200 Discrete Structures
Department of Computer Engineering Faculty of ENGINEERING | Chulalongkorn University

Cartesian ProductsCartesian Products
A x B = { (a,b) | a ∈ A ∧ b ∈ B}

A1 x A2 x … x An =
{ (a1,a2,…,an,) | ai ∈ Ai for i=1,2,..,n}

• Examples:
• What is the Cartesian product AxBxC, where

A={0,1}, B={j,k}, C={x,y,z}?
AxBxC={(0,j,x),(0,j,y),(0,j,z),(0,k,x),(0,k,y),(0,k,z),

(1,j,x),(1,j,y),(1,j,z),(1,k,x),(1,k,y),(1,k,z)}

2110200 Discrete Structures
Department of Computer Engineering Faculty of ENGINEERING | Chulalongkorn University

Using Set Notation with QuantifiersUsing Set Notation with Quantifiers
• Specify the universe of discourse .
• E.g.:

∀x∈R(x2≥0)
means “for every real number x2≥0”
which is true.

2110200 Discrete Structures
Department of Computer Engineering Faculty of ENGINEERING | Chulalongkorn University

Set OperationsSet Operations
• Union (∪)

• Intersection (∩)
• Difference (−)

• Complement (′)
• Symmetric difference (⊕)

2110200 Discrete Structures
Department of Computer Engineering Faculty of ENGINEERING | Chulalongkorn University

Symmetric DifferenceSymmetric Difference
• A⊕B is the set containing those elements in

either A or B but NOT in both A and B.

Example:
A = {1,3,5}, B = {1,2,3}, A⊕B = {2,5}

2110200 Discrete Structures
Department of Computer Engineering Faculty of ENGINEERING | Chulalongkorn University

Principle of InclusionPrinciple of Inclusion--ExclusionExclusion
|A ∪ B| = |A|+|B|-|A ∩ B||A ∪ B| = |A|+|B|-|A ∩ B|

More general (Later in this course):

|A1 ∪ A2 ∪ … ∪ An| =
Σ|Ai| -Σ|Ai ∩ Aj| + Σ|Ai ∩ Aj ∩ Ak | - …
+(-1)n+1| A1 ∩ A2 ∩ … ∩ An|

|A1 ∪ A2 ∪ … ∪ An| =
Σ|Ai| -Σ|Ai ∩ Aj| + Σ|Ai ∩ Aj ∩ Ak | - …
+(-1)n+1| A1 ∩ A2 ∩ … ∩ An|

2110200 Discrete Structures
Department of Computer Engineering Faculty of ENGINEERING | Chulalongkorn University

Set IdentitiesSet Identities
• Distributive Laws

A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)
A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)

• De Morgan’s Laws
(A ∪ B)′ = A′ ∩ B′
(A ∩ B)′ = A′ ∪ B′

• More can be found in the textbook.

2110200 Discrete Structures
Department of Computer Engineering Faculty of ENGINEERING | Chulalongkorn University

Showing that two sets have the same elementsShowing that two sets have the same elements

Show that each set is a subset of the other.

Use set builder notation and logical
equivalences.

Build membership tables.

Use set identities.

11

22

33

44

2110200 Discrete Structures
Department of Computer Engineering Faculty of ENGINEERING | Chulalongkorn University

Proving Set EqualityProving Set Equality
Using membership tableUsing membership table

• Example Show that (A ∩ B)′ = A′ ∪ B′

01
10
10
10

(A ∩ B)′(A ∩ B)

11
01
10
00
BA

0
1
0
1
B′

0
1
1
1

A′ ∪ B′

0
0
1
1
A′

2110200 Discrete Structures
Department of Computer Engineering Faculty of ENGINEERING | Chulalongkorn University

Generalized Union and IntersectionGeneralized Union and Intersection

A1 ∪ A2 ∪ … ∪ An = ∪Ai
i=1

n

A1 ∩ A2 ∩ … ∩ An = ∩Ai
i=1

n

2110200 Discrete Structures
Department of Computer Engineering Faculty of ENGINEERING | Chulalongkorn University 2110200 Discrete Structures

Department of Computer Engineering Faculty of ENGINEERING | Chulalongkorn University

FunctionsFunctions
Definition:
• A function f from A to B is an assignment.
• assigns exactly one element of B to each of A

AA BB

a b=f(a)
ff

A: Domain
B: Codomain
b is the image of a.
a is a pre-image of b.
Range of f is the set of
all images.

•Function cannot be “one-to-many”.
•∀a∈A, f(a) must be assigned to some b.

2110200 Discrete Structures
Department of Computer Engineering Faculty of ENGINEERING | Chulalongkorn University

Adding and Multiplying FunctionsAdding and Multiplying Functions
• Two real-valued functions with the same domain

can be added and multiplied.
f1, f2 are functions from A to R
→ f1+f2 and f1f2 are also functions from A to R.

(f1+f2)(x) = f1(x)+f2(x)
(f1f2)(x) = f1(x)f2(x)

2110200 Discrete Structures
Department of Computer Engineering Faculty of ENGINEERING | Chulalongkorn University

Adding and Multiplying FunctionsAdding and Multiplying Functions
• Example (Rosen):
• f1, f2 are functions from R to R. f1(x)=x2, f2(x)=x-

x2. What are the functions f1+f2 and f1f2?

(f1+f2)(x) = f1(x)+f2(x) = x2 + x - x2 = x

(f1f2)(x) = f1(x)f2(x) = x2 (x - x2) = x3 – x4

2110200 Discrete Structures
Department of Computer Engineering Faculty of ENGINEERING | Chulalongkorn University

OneOne--toto--one Functionsone Functions
A function f is one-to-one or injective

↔ ∀x∀y (f(x)=f(y) → x=y)

Examples (Rosen)
Determine whether these functions are one-to-one.

f1(x) = x2 from the set of integers to the set of integers

f2(x) = x+1

Since f(1) = f(-1) = 1, f1(x) is not one-to-one.

x+1 ≠ y+1 when x ≠ y, then f2(x) is one-to-one.

2110200 Discrete Structures
Department of Computer Engineering Faculty of ENGINEERING | Chulalongkorn University

Conditions Guaranteeing OneConditions Guaranteeing One--toto--oneone
• Strictly increasing function:

∀x ∀y ((x<y) → (f(x)<f(y)))∀x ∀y ((x<y) → (f(x)<f(y)))

• Strictly decreasing function:

∀x ∀y ((x<y) → (f(x)>f(y)))∀x ∀y ((x<y) → (f(x)>f(y)))

where the universe of discourse = domain of f

Strictly increasing function
or

Strictly decreasing function
→ one-to-one

2110200 Discrete Structures
Department of Computer Engineering Faculty of ENGINEERING | Chulalongkorn University

Onto FunctionsOnto Functions
A function f is onto or surjective

↔ ∀y∃x (f(x) = y)

Examples (Rosen)
Determine whether these functions are onto.

f1(x) = x2 from the set of integers to the set of integers

f2(x) = x+1

No, since there is no integer x that f1(x)=-1

Yes, for every f2(x)=y, there is an integer x=y-1

2110200 Discrete Structures
Department of Computer Engineering Faculty of ENGINEERING | Chulalongkorn University

OneOne--toto--one Correspondenceone Correspondence
• One-to-one AND Onto
• Also called “bijection”

2110200 Discrete Structures
Department of Computer Engineering Faculty of ENGINEERING | Chulalongkorn University

ExamplesExamples
a
b
c

1
2
3
4

a
b
c
d

1
2
3

a
b
c
d

1
2
3
4

a
b
c
d

1
2
3
4

a
b
c

1
2
3
4

1-to-1, not onto not 1-to-1,onto 1-to-1,onto

neither 1-to-1,nor onto not a function
2110200 Discrete Structures
Department of Computer Engineering Faculty of ENGINEERING | Chulalongkorn University

Inverse FunctionsInverse Functions
• Let f be a one-to-one correspondent function

from A to B.
• f-1(b) assigns to b, belonging to B, the unique

element a, belonging to A, such that f(a)=b.

f-1(b)=a ↔ f(a)=bf-1(b)=a ↔ f(a)=b

A function that is NOT one-to-one
correspondent is NOT invertible.

2110200 Discrete Structures
Department of Computer Engineering Faculty of ENGINEERING | Chulalongkorn University

Composite FunctionsComposite Functions
• (f • g)(a) = f(g(a))
• f • g cannot be defined unless the range of g is a

subset of the domain of f.
• If f is a one-to-one correspondent function from A

to B
(f -1 • f)(a) = a, a ∈ A
(f • f -1)(b) = b, b ∈ B

2110200 Discrete Structures
Department of Computer Engineering Faculty of ENGINEERING | Chulalongkorn University

Some Important FunctionsSome Important Functions
• Floor function ⎣ ⎦

⎣x⎦ = the largest integer ≤ x

• Ceiling function ⎡ ⎤
⎡x⎤ = the smallest integer ≥ x

⎣1/2⎦ =
⎡1/2⎤ =

⎣1⎦ =
⎡1⎤ =

⎣-1/2 ⎦ =
⎡-1/2⎤ =

2110200 Discrete Structures
Department of Computer Engineering Faculty of ENGINEERING | Chulalongkorn University

ExamplesExamples
• Example (Rosen):
• Each byte is made up of 8 bits. How many bytes

are required to encoded 100 bits of data?

⎡100/8⎤ = ⎡12.5⎤ = 13 bytes

2110200 Discrete Structures
Department of Computer Engineering Faculty of ENGINEERING | Chulalongkorn University

Factorial FunctionFactorial Function
• f(n) = n! is the product of the first n positive

integers, so that
f(n) = 1 ⋅ 2 ⋅ … ⋅ (n-1) ⋅ n

and f(0) = 0! = 1

2110200 Discrete Structures
Department of Computer Engineering Faculty of ENGINEERING | Chulalongkorn University

Logic: Key TermsLogic: Key Terms
• Proposition
• Truth value
• Negation
• Logical Operator
• Compound

proposition
• Truth table
• Disjunction
• Conjunction
• Exclusive or
• Implication

• Inverse
• Converse
• Contrapositive
• Biconditional
• Tautology
• Contradiction
• Contingency
• Consistency
• Logical

equivalence

• Predicate
• Propositional

function
• Universe of

discourse
• Existential

quantifier
• Universal

quantifier

2110200 Discrete Structures
Department of Computer Engineering Faculty of ENGINEERING | Chulalongkorn University

Sets: Key TermsSets: Key Terms
• Cardinality
• Power set
• Union
• Intersection
• Difference
• Complement
• Symmetric

difference
• Membership

table

• Set
• Element
• Member
• Empty/Null set
• Universal set
• Venn diagram
• Set equality
• Subset
• Proper subset
• Finite set
• Infinite set

2110200 Discrete Structures
Department of Computer Engineering Faculty of ENGINEERING | Chulalongkorn University

Functions: Key TermsFunctions: Key Terms
• Inverse
• Composition
• Floor function
• Ceiling function
• Factorial

• Function
• Domain
• Codomain
• Image
• Pre-image
• Range
• Onto / Surjection
• One-to-one /

Injection
• One-to-one

correspondence /
bijection

2110200 Discrete Structures
Department of Computer Engineering Faculty of ENGINEERING | Chulalongkorn University

2110200 Discrete Structures
Department of Computer Engineering Faculty of ENGINEERING | Chulalongkorn University

RelationsRelations
• A (binary) relation form A to B is a subset of AxB
• A relation on the set A is a relation from A to A
• A function from A to B is a relation from A to B
• Examples:

R1 = {(1,1),(1,2),(2,1),(2,3)}
R2 = {(a,b) | a = b or a = -b}

a and b are integers

2110200 Discrete Structures
Department of Computer Engineering Faculty of ENGINEERING | Chulalongkorn University

Properties of RelationsProperties of Relations
• R on the set A is reflexive ↔ ∀a ((a,a)∈ R)

Example: Consider relations on {1,2,3,4}

R1 = {(1,1),(1,2),(1,3),(2,2),(3,3),(4,1),(4,4)}

R2 = {(1,1),(2,1),(2,3),(3,1),(3,2),(3,3),(3,4),(4,4)}

R must contain (1,1),(2,2),(3,3),(4,4)

2110200 Discrete Structures
Department of Computer Engineering Faculty of ENGINEERING | Chulalongkorn University

Symmetric and Symmetric and AntisymmetricAntisymmetric
• R on a set A is symmetric

↔ ∀a∀b((a,b) ∈ R → (b,a) ∈ R)
• R on a set A is antisymmetric

↔ ∀a∀b(((a,b)∈R ∧ (b,a)∈R) → (a=b))

• These two are NOT opposite.

2110200 Discrete Structures
Department of Computer Engineering Faculty of ENGINEERING | Chulalongkorn University

Symmetric and Symmetric and AntisymmetricAntisymmetric
• Symmetric ↔ ∀a∀b((a,b) ∈ R → (b,a) ∈ R)
• Antisym.↔ ∀a∀b(((a,b)∈R ∧ (b,a)∈R) → (a=b))

Example:

R1 = {(1,1),(1,2),(2,1)}
R2 = {(1,1),(1,2)}
R3 = {(a,b) | a = b } (on Int.)
R4 = {(2,1)}
R5 = {(a,b) | a + b ≤ 3} (on Int.)

Sym Antisym

2110200 Discrete Structures
Department of Computer Engineering Faculty of ENGINEERING | Chulalongkorn University

Transitive RelationsTransitive Relations
• R on a set A is transitive
↔ ∀a∀b∀c(((a,b)∈R∧(b,c)∈R) → (a,c)∈R)

Example:

R1 = {(1,2),(2,3),(1,3),(1,4)}
R2 = {(1,1),(1,2),(1,3),(2,4)}
R3 = {(a,b) | a < b}

2110200 Discrete Structures
Department of Computer Engineering Faculty of ENGINEERING | Chulalongkorn University

Combining RelationsCombining Relations
• Since a relation is a set, we can apply all set

operators to relations.
• Example (Rosen)

R1 = {(1,1),(2,2),(3,3)},
R2 = {(1,1),(1,2),(1,3),(1,4)}

R1 ∩ R2 = {(1,1)}
R1 − R2 = {(2,2),(3,3)}

2110200 Discrete Structures
Department of Computer Engineering Faculty of ENGINEERING | Chulalongkorn University

Composite RelationsComposite Relations
• R is a relation from A to B
• S is a relation from B to C
• SoR = {(a,c)| a∈A,c∈C, and there exists b∈B

such that (a,b)∈R and (b,c)∈S}

2110200 Discrete Structures
Department of Computer Engineering Faculty of ENGINEERING | Chulalongkorn University

Composite RelationsComposite Relations
• Example (Rosen):

R is a relation from {1,2,3} to {1,2,3,4} with
R={(1,1),(1,4),(2,3),(3,1),(3,4)} and S is a relation
from {1,2,3,4} to {0,1,2} with
S={(1,0),(2,0),(3,1),(3,2),(4,1)}.
What is the composite of R and S?

SoR = {(1,0),(1,1),(2,1),(2,2),(3,0),(3,1)}

