Course Outline

2110200 DISCRETE STRUCTURE

ผศ. ดร.อรรถสิทธิ์ สุรฤกษ์
ผศ. ดร.อรรถวิทย์ สุดแสง
ผศ. ดร.อติวงศ์ สุชาโต

- 4 parts:
- Part1: Discrete Math Fundamentals
- Part2: Graphs and Trees
- Part3: Counting Techniques
- Part4: Number Theory

Why ???

Goals of Discrete Math.

- Mathematical Reasoning
- Read, comprehend, and construct mathematical arguments
- Combinatorial Analysis
- Perform analysis to solve counting problems
- Discrete Structure
- Able to work with discrete structures: sets, graphs, finite-state machines, etc.

Goals of Discrete Math.

- Algorithmic Thinking

- Specify, verify, and analyze an algorithm
- Applications and Modeling
- Apply the obtained problem-solving skills to model and solve problems in computer science and other areas, such as:
- Business
- Chemistry
- Linguistics
- Geology
- etc

Foundations of Discrete Math.

- Logic
- Specify the meaning of Mathematical statements
- Basis of all Mathematical reasoning
- Sets
- Sets are collections of objects, which are used for building many important discrete structures.
- Functions
- Used in the definition of some important structures
- Represent complexity of an algorithm, and etc.

Logic

Rules of logic gives precise meaning to mathematical statements.

Logical Operators

- Negation (NOT)
- Conjunction (AND)
- Disjunction (OR)
- Exclusive OR (XOR)
- Implication (IF..THEN)
- Biconditional (IF \& ONLY IF)

Proposition: Building Blocks of Logic

- Proposition =
- Declarative sentence
- Either TRUE or FALSE (not both)

Negation

- The negation of p has opposite truth value to p

p	$\neg p$
T	F
F	T

Conjunction

- The conjunction of p and q, is true when, and only when, both p and q are true.

p	q	$p \wedge q$
T	T	T
T	F	F
F	T	F
F	F	F

Exclusive OR

- Exclusive or $=$ OR but NOT both $p \oplus q=(p \vee q) \wedge \neg(p \wedge q)$

p	q	$p \oplus q$
T	T	F
T	F	T
F	T	T
F	F	F

Disjunction

- The disjunction of p and q, is true when at least one of p or q is true.

p	q	$p \vee q$
T	T	T
T	F	T
F	T	T
F	F	F

Implication

- It is false when p is true and q is false, and true otherwise.

p	q	$p \rightarrow q$
T	T	T
T	F	F
F	T	T
F	F	T

Biconditional

- $p \leftrightarrow q$ is true when p and q have the same truth value.
- Intuitively, $p \leftrightarrow q$ is $(p \rightarrow q) \wedge(q \rightarrow p)$

p	q	$p \leftrightarrow q$
T	T	T
T	F	F
F	T	F
F	F	T

Contrapositive

- The contrapositive of an implication $p \rightarrow q$ is:

$$
\neg q \rightarrow \neg p
$$

- has the same truth values as $p \rightarrow q$

General Compound Proposition

- Example:

$$
(p \wedge q) \vee \neg p
$$

Converse and Inverse

- The converse of an implication $p \rightarrow q$ is:

$$
q \rightarrow p
$$

- The inverse of an implication $p \rightarrow q$ is:

$$
\neg p \rightarrow \neg q
$$

- DO NOT have the same truth values as $p \rightarrow q$

Precedence of Logical Operators

Operator	Precedence
\square	1
\wedge	2
\vee	3
\longrightarrow	4
\longleftrightarrow	5

Translating from Natural language

- Example (Rosen):

You cannot ride the rollercoaster if you are under 4 feet tall unless you are older than 16 years old.
q : You can ride the roller coaster
r. You are under 4 feet tall

$$
(r \wedge \neg s) \rightarrow \neg q
$$

s : You are older than 16 years old
q : You can ride the roller coaster
$\neg r$. You are at least 4 feet tall
s : You are older than 16 years old

$$
\neg(\neg r v s) \rightarrow \neg q
$$

Consistency

- Translating natural language to logical expressions is essential to specifying system spec.
- Specifications are "consistent" when they do not conflict with one another. i.e.:

There must be an assignment of truth values to every expression that make all the expression true.

Consistency

- Whenever the system is being upgraded, users cannot access the file system.
- If users can access the file system, they can save new files.
- If users cannot save new files, the system is not being upgraded.

Consistency

- Whenever the system is being upgraded, users cannot access the file system. $p \rightarrow \neg q$
- If users can access the file system, they can save new files.
$q \rightarrow r$
- If users cannot save new files, the svstem is not being upgraded.
$\rightarrow r \rightarrow \neg$

\boldsymbol{p}	\boldsymbol{q}	\boldsymbol{r}	$\boldsymbol{p} \rightarrow \boldsymbol{\sim} \boldsymbol{q}$	$\boldsymbol{q} \rightarrow \boldsymbol{r}$	$\boldsymbol{r} \rightarrow \boldsymbol{\boldsymbol { p }}$
T	F	T	T	T	T

These spec. are consistent.

Showing Logically Equivalent propositions

1) Show that the truth values of these propositions are always the same.
\rightarrow Construct truth tables.

Showing Logically Equivalent propositions

- Example (Rosen):

Show that $p \rightarrow q \equiv \neg p \vee q$

p	q
T	T
T	F
F	T
F	F

$p \rightarrow q$
T
F
T
T

Showing Logically Equivalent propositions

1 Show that the truth values of these propositions are always the same.

2 Use series of established equivalences.

Logical Equivalences

- Distributive Laws
$p \vee(q \wedge r) \equiv(p \vee q) \wedge(p \vee r)$
$p \wedge(q \vee r) \equiv(p \wedge q) \vee(p \wedge r)$
- De Morgan's Laws
$\neg(p \wedge q) \equiv \neg p \vee \neg q$
$\neg(p \vee q) \equiv \neg p \wedge \neg q$
- More can be found in the textbook

Showing Logically Equivalent propositions

- Example (Rosen):

Show that $\neg(p \vee(\neg p \wedge q)) \equiv \neg p \wedge \neg q$

$$
\begin{array}{rlr}
\neg(p \vee(\neg p \wedge q)) & \equiv \neg p \wedge \neg(\neg p \wedge q) \quad \text { De Morgan's } \\
& \equiv \neg p \wedge(\neg(\neg p) \vee \neg q) \text { De Morgan's } \\
& \equiv \neg \mathrm{p} \wedge(p \vee \neg q) \quad \text { Double negative } \\
& \equiv(\neg p \wedge p) \vee(\neg p \wedge \neg q) \text { Distributive } \\
& \equiv F \vee(\neg p \wedge \neg q) \\
& \equiv \neg p \wedge \neg q
\end{array}
$$

Predicate Logic

- In Propositional Logic, 'the atomic units' are propositions.
- E.g.:
$-p$: John goes to school., q : Mary goes to school.
- In Predicate Logic, we look at each proposition as the combination of variables and predicates .
- E.g.:
- X goes to school, where X can be John or Mary.

Creating propositions from a propositional function

1 Assign values to all variables in a propositional function.

2 Use "Quantification"

Predicate Logic

- The statement " x go to school" has two parts:

Variable " x "
The predicate "go to school"

- This statement can be denoted by $P(x)$, where P denotes the predicate "go to school".
- $P(x)$ is said to be the value of the propositional function P at x.
- Once a value has been assigned to the variable x, the statement $P(x)$ becomes a proposition and has a truth value.
- E.g: P(John) and P(Mary) have truth values.

Universal Quantifier

- $\forall x P(x)$ (read "for all $x P(x)$ ") denotes:
$P(x)$ is true for all values x in the universal of discourse.
- $\forall x P(x)$ is the same as:

$$
P\left(x_{1}\right) \wedge P\left(x_{2}\right) \wedge \ldots \wedge P\left(x_{n}\right)
$$

When all elements in the universe of discourse can be listed as $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$

Universal Quantifier

- Example (Rosen):
- What is the truth value of $\forall x P\left(x^{2} \geq x\right)$, when the universe of discourse consists of:
- all real numbers?
- all integers?

Since $x^{2} \geq x$ only when $x \leq 0$ or $x \geq 1, \forall x P\left(x^{2} \geq x\right)$ is false if the universe consists of all real numbers. However, it is true when the universe consists of only the integers.

Existential Quantifier

- Example (Rosen):
- What is the truth value of $\exists x P(x)$ where $P(x)$ is the statement $x^{2}>10$, and the universe of discourse consists of the positive integers not exceeding 4 ?
Since the elements in the universe can be listed as $\{1,2,3,4\}, \exists x P(x)$ is the same as $P(1) \vee P(2) \vee$ $P(3) \vee P(4)$. There for $\exists x P(x)$ is true since $P(4)$ is true.

Existential Quantifier

- $\exists x P(x)$ (read "for some $x P(x)$ ") denotes:

There exists an element x in the universe of discourse that $P(x)$ is true.

- $\exists x P(x)$ is the same as:

$$
P\left(x_{1}\right) \vee P\left(x_{2}\right) \vee \ldots \vee P\left(x_{n}\right)
$$

When all elements in the universe of discourse can be listed as $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$

Negations

$$
\begin{aligned}
& \neg \forall x P(x) \equiv \exists x \neg P(x) \\
& \neg \exists x P(x) \equiv \forall x \neg P(x)
\end{aligned}
$$

Negation of
"Every $2^{\text {nd }}$ year students loves Discrete math." is
"There is a $2^{\text {nd }}$ year student who does not love Discrete math." Negation of
"Some student in this class get ' A '." is
"None of the students in this class get ' A '."

Set

Sets

- A set is an unordered collection of objects.
- Objects in a set are called "members" or "elements" of that set.
- Two sets are equal \leftrightarrow they have the same elements
- Are $\{1,2,3\}$ and $\{3,2,1\}$ equal?
- Are $\{0,1,2\}$ and $\{0,0,0,1,1,2\}$ equal?

Set Builder Notation

- Stating the properties that all elements must have to be members.
$\mathrm{O}=\{\mathrm{x} \mid \mathrm{x}$ is a prime number less than 100\}
$R=\{x \mid x$ is a real number $\}$
$U=\{x \mid x$ is any of the objects
under consideration\}

Subset

$$
\mathrm{A} \subseteq \mathrm{~B} \leftrightarrow \forall \mathrm{x}(\mathrm{x} \in \mathrm{~A} \rightarrow \mathrm{x} \in \mathrm{~B})
$$

Proper Subset

$$
A \subset B \leftrightarrow(A \subseteq B) \wedge(A \neq B)
$$

For any set S , " $\varnothing \subseteq S$ " and " $S \subseteq S$ "

Cardinality

- For a set S, if there are exactly n distinct elements in S, where n is a nonnegative integer, we say that S is a finite set and that n is the cardinality of $S(|S|=n)$
- A set is "infinite" if it is not finite.
- Examples (Rosen):
- Given a set S, the power set of $S, P(S)$, is the set of all subsets of S
- If S has n elements, then $P(S)$ has 2^{n} elements.

S	$P(S)$
$\{0,1,2\}$	$\{\varnothing,\{0\},\{1\},\{2\},\{0,1\},\{0,2\},\{1,2\},\{0,1,2\}\}$
\varnothing	$\{\varnothing\}$
$\{\varnothing\}$	$\{\varnothing,\{\varnothing\}\}$

Power Set

Ordered n-tuple

- The ordered n-tuple $\left(a_{1}, a_{2}, . ., a_{n}\right)$ is the ordered collection that has a_{1} as its first element, a_{2} as its second element,.. , and an as its $n^{\text {th }}$ element.

Two ordered n -tuples are equal \leftrightarrow each corresponding pair of their elements is equal

Cartesian Products

$$
A \times B=\{(a, b) \mid a \in A \wedge b \in B\}
$$

$$
\begin{gathered}
A_{1} \times A_{2} \times \ldots \times A_{n}= \\
\left\{\left(a_{1}, a_{2}, \ldots, a_{n}\right) \mid a_{i} \in A_{i} \text { for } i=1,2, . ., n\right\}
\end{gathered}
$$

- Examples:
- What is the Cartesian product AxBxC , where $A=\{0,1\}, B=\{j, k\}, C=\{x, y, z\}$?
AxBxC=\{(0,j,x),(0,j,y),(0,j,z),(0,k,x),(0,k,y),(0,k,z),
(1,j, x),(1,j,y),(1,j,z),(1,k,x),(1,k,y),(1,k,z)\}

Using Set Notation with Quantifiers

- Specify the universe of discourse .
- E.g.:
$\forall x \in \mathbf{R}\left(x^{2} \geq 0\right)$
means "for every real number $x^{2} \geq 0$ " which is true.

Set Operations

- Union (\cup)
- Intersection (\cap)
- Difference (-)
- Complement (')
- Symmetric difference (\oplus)

Principle of Inclusion-Exclusion

$$
|A \cup B|=|A|+|B|-|A \cap B|
$$

More general (Later in this course):

$$
\begin{aligned}
& \left|A_{1} \cup A_{2} \cup \ldots \cup A_{n}\right|= \\
& \quad \Sigma\left|A_{i}\right|-\Sigma\left|A_{i} \cap A_{j}\right|+\Sigma\left|A_{i} \cap A_{j} \cap A_{k}\right|-\ldots \\
& \quad+(-1)^{n+1}\left|A_{1} \cap A_{2} \cap \ldots \cap A_{n}\right|
\end{aligned}
$$

Set Identities

- Distributive Laws

$$
\begin{aligned}
& A \cap(B \cup C)=(A \cap B) \cup(A \cap C) \\
& A \cup(B \cap C)=(A \cup B) \cap(A \cup C)
\end{aligned}
$$

- De Morgan's Laws

$$
(A \cup B)^{\prime}=A^{\prime} \cap B^{\prime}
$$

$$
(A \cap B)^{\prime}=A^{\prime} \cup B^{\prime}
$$

- More can be found in the textbook.

Generalized Union and Intersection

$$
\begin{aligned}
& A_{1} \cup A_{2} \cup \ldots \cup A_{n}=\bigcup_{i=1}^{n} A_{i} \\
& A_{1} \cap A_{2} \cap \ldots \cap A_{n}=\bigcap_{i=1}^{n} A_{i}
\end{aligned}
$$

Functions

Definition:

- A function f from A to B is an assignment.
- assigns exactly one element of B to each of A

A: Domain
B: Codomain
b is the image of a. a is a pre-image of b.
Range of f is the set of all images.
-Function cannot be "one-to-many".

- $\forall a \in A, f(a)$ must be assigned to some b.

Adding and Multiplying Functions

- Example (Rosen):
- f_{1}, f_{2} are functions from \boldsymbol{R} to $R . f_{1}(x)=x^{2}, f_{2}(x)=x-$ x^{2}. What are the functions $f_{1}+f_{2}$ and $f_{1} f_{2}$?

$$
\begin{gathered}
\left(f_{1}+f_{2}\right)(x)=f_{1}(x)+f_{2}(x)=x^{2}+x-x^{2}=x \\
\left(f_{1} f_{2}\right)(x)=f_{1}(x) f_{2}(x)=x^{2}\left(x-x^{2}\right)=x^{3}-x^{4}
\end{gathered}
$$

One-to-one Functions

A function f is one-to-one or injective

$\leftrightarrow \forall x \forall y(f(x)=f(y) \rightarrow x=y)$
Examples (Rosen)
Determine whether these functions are one-to-one.
$f_{1}(x)=x^{2}$ from the set of integers to the set of integers Since $f(1)=f(-1)=1, f_{1}(x)$ is not one-to-one.
$f_{2}(x)=x+1$
$x+1 \neq y+1$ when $x \neq y$, then $f_{2}(x)$ is one-to-one.

Onto Functions

$$
\text { A function } \mathrm{f} \text { is onto or surjective }
$$

$$
\leftrightarrow \forall y \exists x(f(x)=y)
$$

Examples (Rosen)
Determine whether these functions are onto.
$f_{1}(x)=x^{2}$ from the set of integers to the set of integers

$$
\text { No, since there is no integer } x \text { that } f_{1}(x)=-1
$$

$f_{2}(x)=x+1$
Yes, for every $f_{2}(x)=y$, there is an integer $x=y-1$

Conditions Guaranteeing One-to-one

- Strictly increasing function:

$$
\forall x \forall y((x<y) \rightarrow(f(x)<f(y)))
$$

- Strictly decreasing function:

$$
\forall x \forall y((x<y) \rightarrow(f(x)>f(y)))
$$

where the universe of discourse $=$ domain of f

$$
\begin{aligned}
& \text { Strictly increasing function } \\
& \text { or } \rightarrow \text { one-to-one } \\
& \text { Strictly decreasing function }
\end{aligned}
$$

One-to-one Correspondence

- One-to-one AND Onto
- Also called "bijection"

Examples

$\underset{\text { 1-to-1, not onto }}{\text { a }}$

not a function

Inverse Functions

- Let f be a one-to-one correspondent function from A to B.
- $f^{1}(b)$ assigns to b, belonging to B, the unique element a, belonging to A, such that $f(a)=b$.

$$
f^{1}(b)=a \leftrightarrow f(a)=b
$$

A function that is NOT one-to-one correspondent is NOT invertible.

Composite Functions

- $(f \bullet g)(a)=f(g(a))$
- $f \bullet g$ cannot be defined unless the range of g is a subset of the domain of f.
- If f is a one-to-one correspondent function from A to B

$$
\begin{array}{ll}
(f-1 \bullet f)(a)=a, & a \in A \\
\left(f \bullet f^{-1}\right)(b)=b, & b \in B
\end{array}
$$

Some Important Functions

- Floor function \rfloor

$$
\lfloor x\rfloor=\text { the largest integer } \leq x
$$

- Ceiling function $\lceil 7$

$$
\lceil x\rceil=\text { the smallest integer } \geq x
$$

Examples

- Example (Rosen):
- Each byte is made up of 8 bits. How many bytes are required to encoded 100 bits of data?

$$
\lceil 100 / 8\rceil=\lceil 12.5\rceil=13 \text { bytes }
$$

Factorial Function

- $f(n)=n!$ is the product of the first n positive integers, so that

$$
\begin{aligned}
& f(n)=1 \cdot 2 \cdot \ldots \cdot(n-1) \cdot n \\
& \quad \text { and } f(0)=0!=1
\end{aligned}
$$

Sets: Key Terms

- Proposition
- Inverse
- Truth value
- Converse
- Negation
- Logical Operator
- Contrapositive
- Compound proposition
- Biconditional
- Tautology
- Contradiction
- Truth table
- Disjunction
- Conjunction
- Exclusive or
- Contingency
- Consistency
- Logical
- Implication

Logic: Key Terms

2110200 Discrete Structures Department of Computer Engineering

- Cardinality
- Set
- Power set
- Element
- Union
- Member
- Intersection
- Empty/Null set
- Difference
- Universal set
- Complement
- Venn diagram
- Set equality
- Subset
- Proper subset
- Finite set
- Symmetric difference
- Membership table
- Infinite set

Functions: Key Terms

- Function
- Inverse
- Domain
- Composition
- Codomain
- Floor function
- Image
- Ceiling function
- Pre-image
- Factorial
- Range
- Onto / Surjection
- One-to-one / Injection
- One-to-one correspondence / bijection

Relations

- A (binary) relation form A to B is a subset of $A x B$
- A relation on the set A is a relation from A to A
- A function from A to B is a relation from A to B
- Examples:
$R_{1}=\{(1,1),(1,2),(2,1),(2,3)\}$
$R_{2}=\{(a, b) \mid a=b$ or $a=-b\}$
a and b are integers

Properties of Relations

- R on the set A is reflexive $\leftrightarrow \forall a((a, a) \in R)$

Example: Consider relations on $\{1,2,3,4\}$

$$
R \text { must contain }(1,1),(2,2),(3,3),(4,4)
$$

$R 1=\{(1,1),(1,2),(1,3),(2,2),(3,3),(4,1),(4,4)\}$

Symmetric and Antisymmetric

- R on a set A is symmetric

$$
\leftrightarrow \forall a \forall b((a, b) \in R \rightarrow(b, a) \in R)
$$

- R on a set A is antisymmetric

$$
\leftrightarrow \forall a \forall b(((a, b) \in R \wedge(b, a) \in R) \rightarrow(a=b))
$$

- These two are NOT opposite.

Symmetric and Antisymmetric

- Symmetric $\leftrightarrow \forall \mathrm{a} \forall \mathrm{b}((\mathrm{a}, \mathrm{b}) \in \mathrm{R} \rightarrow(\mathrm{b}, \mathrm{a}) \in \mathrm{R})$
- Antisym $\leftrightarrow \forall a \forall b(((a, b) \in R \wedge(b, a) \in R) \rightarrow(a=b))$

Example:

$R_{1}=\{(1,1),(1,2),(2,1)\}$
$R_{2}=\{(1,1),(1,2)\}$
$R_{3}=\{(a, b) \mid a=b\}$ (on Int.)
$R_{4}=\{(2,1)\}$
$R_{5}=\{(a, b) \mid a+b \leq 3\}$ (on Int.)

Transitive Relations

- R on a set A is transitive
$\leftrightarrow \forall a \forall b \forall c(((a, b) \in R \wedge(b, c) \in R) \rightarrow(a, c) \in R)$
$R_{1}=\{(1,2),(2,3),(1,3),(1,4)\}$
$R_{2}=\{(1,1),(1,2),(1,3),(2,4)\}$
$R_{3}=\{(a, b) \mid a<b\}$

Combining Relations

- Since a relation is a set, we can apply all set operators to relations.
- Example (Rosen)

$$
\begin{aligned}
& \mathrm{R}_{1}=\{(1,1),(2,2),(3,3)\}, \\
& \mathrm{R}_{2}=\{(1,1),(1,2),(1,3),(1,4)\} \\
& \\
& \mathrm{R}_{1} \cap \mathrm{R}_{2}=\{(1,1)\} \\
& \mathrm{R}_{1}-\mathrm{R}_{2}=\{(2,2),(3,3)\}
\end{aligned}
$$

Composite Relations

- R is a relation from A to B
- S is a relation from B to C
- $\operatorname{SoR}=\{(a, c) \mid a \in A, c \in C$, and there exists $b \in B$ such that $(a, b) \in R$ and $(b, c) \in S\}$

Composite Relations

- Example (Rosen):
R is a relation from $\{1,2,3\}$ to $\{1,2,3,4\}$ with $R=\{(1,1),(1,4),(2,3),(3,1),(3,4)\}$ and S is a relation from $\{1,2,3,4\}$ to $\{0,1,2\}$ with
$S=\{(1,0),(2,0),(3,1),(3,2),(4,1)\}$.
What is the composite of R and S ?
So $R=\{(1,0),(1,1),(2,1),(2,2),(3,0),(3,1)\}$

