Mathematical Induction

Mathematical Induction

- A proof by induction that $P(n)$ is true for every positive integer n consists of 2 steps:

BASIC STEP: Show that $P(1)$ is true. INDUCTIVE STEP:
Show that $P(k) \rightarrow P(k+1)$ is true for every positive integer k

- Example :

Prove that the sum of the first n odd positive integers is n^{2}.
$P(n)$:
Basic Step:
Inductive Step:

- Example:

Prove that $n<2^{n}$ for all positive integers n.
$P(n)$:
Basic Step:
Inductive Step:

- Example :

Prove that $n^{3}-n$ is divisible by 3 all positive integers n.
$P(n)$:
Basic Step:
Inductive Step.

Mathematical Induction

- Sometimes we want to prove that $P(n)$ is true for $n=b, b+1, b+2, \ldots$ where b is an integer other than 1.

BASIC STEP: Show that $P(b)$ is true.
INDUCTIVE STEP:
Show that $P(k) \rightarrow P(k+1)$ is true for every positive integer k

Proving Mathematical Induction

- The well-ordering property:

> Every nonempty set of nonnegative integers has a least element.

Proving Mathematical Induction

- Show that $P(n)$ must be true for all positive integers when $P(1)$ and $P(k) \rightarrow P(k+1)$ are true.
- Assume that $P(n)$ is not true for at least a positive integer. Then, the set S for which $P(n)$ is false is nonempty.
- S has the least element, called m. $(m \neq 1)$
- Since $m-1<m$, then $m-1 \notin S$ (or $P(m-1)$ is true)
- But $P(m-1) \rightarrow P(m)$ is true. So, $P(m)$ must be true.
- This contradicts the choice of m.

2110200 Discrete Structures
Department of Computer Engineering Faculty of ENGINEERING | Chulalongkorn University

- Example:

Show that if n is an integer greater than 1 , then n can be written as the product of primes.
$P(n)$:
Basic Step:
Inductive Step:

Strong Induction

- A proof by induction that $P(n)$ is true for every positive integer n consists of 2 steps:
- Use a different induction step.

BASIC STEP: Show that $P(1)$ is true.
INDUCTIVE STEP:
Show that $[P(1) \wedge P(2) \wedge \ldots \wedge P(k)] \rightarrow P(k+1)$ is true for every positive integer k

- Example:

Prove that every amount of postage of 12 cents or more can be formed using just 4-cent and 5cent stamps.

