Mathematical Induction

2110200 Discrete Structures
Department of Computer Engineer

Faculty of ENGINEERING | Chulalongkorn University

Mathematical Induction

• A proof by induction that *P*(*n*) is true for every positive integer *n* consists of 2 steps:

BASIC STEP: Show that P(1) is true. **INDUCTIVE STEP:** Show that $P(k) \rightarrow P(k+1)$ is true for every positive integer k

2110200 Discrete Structures
Department of Computer Enginee

Faculty of ENGINEERING | Chulalongkorn University

• Example :

Prove that the sum of the first n odd positive integers is n^2 .

P(*n*):

Basic Step:

Inductive Step:

• Example:

Prove that $n < 2^n$ for all positive integers n.

P(*n*):

Basic Step:

Inductive Step:

• Example :

Prove that n^3 -n is divisible by 3 all positive integers n.

P(n):

Basic Step:

Inductive Step:

2110200 Discrete Structures Department of Computer Engineering Faculty of ENGINEERING | Chulalongkorn University

Mathematical Induction

• Sometimes we want to prove that P(n) is true for n = b, b+1, b+2, ... where b is an integer other than 1.

BASIC STEP: Show that *P*(*b*) is true.

INDUCTIVE STEP:

Show that $P(k) \rightarrow P(k+1)$ is true for every positive integer k

2110200 Discrete Structures
Department of Computer Engineerin

Faculty of ENGINEERING | Chulalongkorn University

Example:

Prove that
$$H_{2^n} \ge 1 + \frac{n}{2}$$
 $H_j = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{j}$

whenever n is a nonnegative integer.

P(*n*):

Basic Step:

Inductive Step:

Proving Mathematical Induction

• The well-ordering property:

Every nonempty set of nonnegative integers has a least element.

Proving Mathematical Induction

- Show that P(n) must be true for all positive integers when P(1) and $P(k) \rightarrow P(k+1)$ are true.
- Assume that P(n) is not true for at least a positive integer. Then, the set S for which P(n) is false is nonempty.
- S has the least element, called m. $(m \ne 1)$
- Since m-1 < m, then $m-1 \notin S$ (or P(m-1) is true)
- But $P(m-1) \rightarrow P(m)$ is true. So, P(m) must be true.
- This contradicts the choice of m.

2110200 Discrete Structures
Department of Computer Enginee

Faculty of ENGINEERING | Chulalongkorn University

Example:

Show that if n is an integer greater than 1, then n can be written as the product of primes.

P(*n*):

Basic Step:

Inductive Step:

Strong Induction

- A proof by induction that *P*(*n*) is true for every positive integer *n* consists of 2 steps:
- · Use a different induction step.

BASIC STEP: Show that P(1) is true.

INDUCTIVE STEP:

Show that $[P(1) \land P(2) \land ... \land P(k)] \rightarrow P(k+1)$ is true for every positive integer k

2110200 Discrete Structures
Department of Computer Engineerin

Faculty of ENGINEERING | Chulalongkorn University

Example:

Prove that every amount of postage of 12 cents or more can be formed using just 4-cent and 5-cent stamps.