

Proof by Contradiction

ีการบอกว่า ─ร เป็นเท็จเสมอ ก็คือการบอกว่า S เป็นจริงเสมอ

Proof by Contradiction

10200 Discrete Structures

Department of Computer Engineering

- Suppose we want to prove a statement s
- Start by assuming s is true.
- Show that –, **s** implies a contradiction. (–, $\boldsymbol{s} \rightarrow \boldsymbol{F}$)
- Then, \neg **s** must be false (or **s** must be true).

Proof by Contradiction

• Example:

Show that at least 10 of any 64 days chosen must fall on the same day of the week.

2110200 Discrete Structures Department of Computer Engineering

Faculty of ENGINEERING | Chulalongkorn University

Proof $p \rightarrow q$ by Contradiction

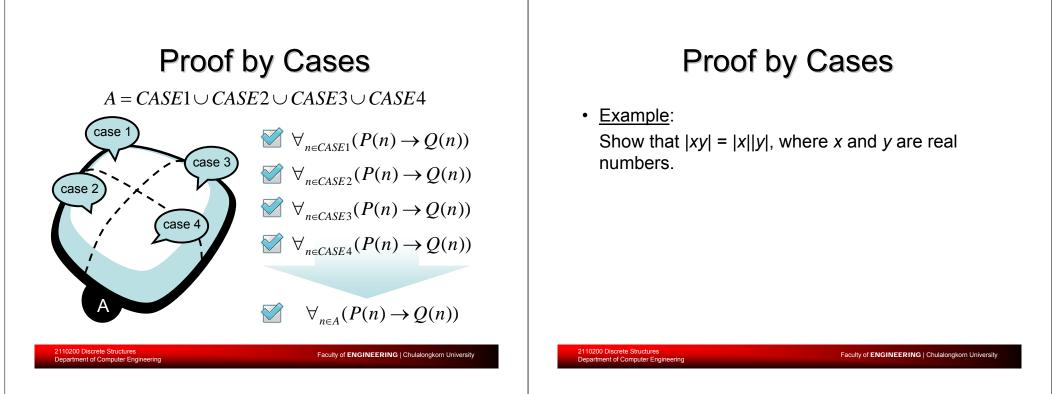
- Proof by Contradiction
 - Start by assuming $\neg (p \rightarrow q)$ is true.
 - That means $p \land \neg q$ is true. (since $\neg (p \rightarrow q) \equiv \neg (\neg p \lor q) \equiv p \land \neg q$)
 - Show that $p \land \neg q$ is a contradiction
 - Then, $\neg (p \rightarrow q)$ must be false (or $(p \rightarrow q)$ must be true).

Proving $p \rightarrow q$

• Example:

Prove that "If *n* is an integer and n^3+5 is odd, then *n* is even". Using <u>a proof by contradiction</u>.

Faculty of ENGINEERING | Chulalongkorn University



Proof of p↔q

- Since (p↔q) ↔ (p→q) ∧ (q→p), then prove both p→q and q→p
- Equivalent propositions (p₁ ↔ p₂ ↔ ... ↔ p_n) are proven by *proving* p₁→p₂, p₂→p₃, ..., p_n→p₁

Equivalent Propositions

• Example

Show that these statements are equivalent: p_1 : *n* is an even integer. p_2 : *n* -1 is an odd integer. p_3 : *n*² is an even integer.

Proof of Proposition Involving Quantifiers

- Existence proofs: A proof of $\exists x P(x)$
- Constructive existence proof:
 - Find an element c such that P(c) is true.
- Non-constructive existence proof:
 - Do not find an element *c* such that P(*c*) is true, but use some other ways.

Existence Proofs

• Example :

Show that $\exists x \exists y (x^y \text{ is rational.})$ where x and y are irrational.

2110200 Discrete Structures Department of Computer Engineering Faculty of ENGINEERING | Chulalongkorn University

Proof of Proposition Involving Quantifiers

• <u>Uniqueness proofs</u>: showing that there is a unique element x such that P(x).

1) *Existence*:

10200 Discrete Structures

Department of Computer Engineering

Show that $\exists x P(x)$

2) Uniqueness:

Show that if $y \neq x$, P(y) is false.

• is the same as proving:

 $\exists x(\mathsf{P}(x) \land \forall y(y \neq x \rightarrow \neg \mathsf{P}(y)))$

Uniqueness Proofs

• Example:

Show every integer has a unique additive inverse. (If p is an integer, there exists a unique integer q such that p+q = 0.)

Faculty of ENGINEERING | Chulalongkorn University

Counterexamples

- Show that $\forall x P(x)$ is false.
- Example:

"Every positive integer is the sum of the squares of three integers" ?

2110200 Discrete Structures Department of Computer Engineering Faculty of ENGINEERING | Chulalongkorn University