Recurrence Relations

- Readings:

Recurrence Relations
Rosen section 7.1-7.2

21102000 Discrete Structures
Department of Computer Engineering Faculty of ENGINEERING | Chulalongkorn University

Recurrence Relations

- Example

Determine whether $a_{n}=3 n$, for every nonnegative integer n, is a solution of

$$
a_{n}=2 a_{n-1}-a_{n-2} ; \quad n=2,3, \ldots
$$

Recurrence Relations

- A recurrence relation for the sequence $\left\{a_{n}\right\}$ is an equation that expresses a_{n} in terms of one or more of the previous terms, $a_{0}, a_{1}, \ldots, a_{n-1}$.

$$
\begin{aligned}
& a_{n}=5 a_{n-1} \\
& b_{n}=b_{n-1}-2 b_{n-2}+100 \\
& c_{n}=c_{n-3}+c_{n-4}+\log (n)+e^{n}
\end{aligned}
$$

- A sequence is called a solution of a recurrence relation if its terms satisfy the recurrence relation.

Initial Conditions

The initial conditions specify the terms that precede the first term where the recurrence relation takes effect.

$$
a_{n}=2 a_{n-1}-a_{n-2} ; \quad n=2,3, \ldots
$$

Initial Conditions

In order to find a unique solution for every non-negative integers to:

$$
b_{n}=b_{n-2}+b_{n-4} ; \quad n=4,5, \ldots
$$

how many terms of b_{n} needed to be given in the initial conditions?

Modeling with Recurrence Relations

To find solutions for doing a task of a size n

Find a way to:
Construct the solution at the size n from the solution of the same tasks at smaller sizes.

Example: The Tower of Hanoi

Rules:
Move a disk at a time from one peg to another.
Never place a disk on a smaller disk.
The goal is to have all disk on the $2^{\text {nd }}$ peg in order of size.

Find H_{n}, the number of moves needed to solve the problem with n disks.

Example:

A man running up a staircase of n stairs. Each step he takes can cover either 1 or 2 stairs. How many different ways for him to ascend this staircase?

Solving Recurrence Relations

- A linear homogeneous recurrence relation can be solved in a systematic way.

Some Solutions

Show that:

$$
a_{n}=k_{1} r^{n}
$$

where:
K_{1} can be any real number and,
we can choose the value of r to be anything.
is a solution of:

$$
a_{n}=c_{1} a_{n-1}+c_{1} a_{n-2}+\ldots+c_{k} a_{n-k}
$$

Some Solutions

Show that:

$$
a_{n}=k_{1} r_{1}^{n}+k_{2} r_{2}^{n}+\ldots+k_{k} r_{k}^{n}
$$

where:
K_{i} can be any real number,
each r_{i} is a root of $r^{k}=c_{1} r^{k-1}+c_{2} r^{k-2}+\ldots+c_{k}$ and there are k distinct r_{i}^{\prime} 's.
is a solution of:

$$
a_{n}=c_{1} a_{n-1}+c_{1} a_{n-2}+\ldots+c_{k} a_{n-k}
$$

So far, we have found that ...

$a_{n}=c_{1} a_{n-1}+c_{1} a_{n-2}+\ldots+c_{k} a_{n-k}$
has " a " solution in the form of
$a_{n}=K_{1} r_{1}^{n}+K_{2} r_{2}^{n}+\ldots+K_{k} r_{k}^{n}$
where all r_{i} 's are the distinct roots of $r^{k}=c_{1} r^{k-1}+c_{2} r^{k-2}+\ldots+c_{k}$
Characteristic Equation
? Do all solutions have to be in this form?
Prove later!

Find the solution of

$$
\begin{aligned}
& a_{n}=-5 a_{n-1}-6 a_{n-2} \quad n=2,3,4, \ldots \\
& \text { if } a_{0}=3, a_{1}=7
\end{aligned}
$$

Unique Solution

$$
\left.\begin{array}{ll}
a_{n}=k_{1} r_{1}^{n}+k_{2} r_{2}^{n}+\ldots+k_{k} r_{k}^{n} \cdots & \begin{array}{l}
\text { Without fixing the } \\
\text { constants, } \\
\text { they are not unique }
\end{array} \\
\text { E.g. } a_{n}=k_{1}(2)^{n}+k_{2}(3)^{n} & \ddots
\end{array}\right)
$$

Next Step

- Prove that all solutions must be in the form we have just shown in this lecture.
- What if the characteristic equation of the k order have less than k distinct roots?
- How to solve a linear non-homogeneous recurrence relation?

