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Recurrence RelationsRecurrence Relations
• Readings:

Recurrence Relations
Rosen section 7.1-7.2
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Recurrence RelationsRecurrence Relations
• A recurrence relation for the sequence {an} is 

an equation that expresses an in terms of one or 
more of the previous terms, a0,a1,…,an-1.

• A sequence is called a solution of a recurrence 
relation if its terms satisfy the recurrence relation.

an = 5an-1

bn = bn-1-2 bn-2+100

cn = cn-3+ cn-4+log(n)+en
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Recurrence RelationsRecurrence Relations
• Example

Determine whether an=3n, for every nonnegative 
integer n, is a solution of

an = 2an-1-an-2 ;    n = 2, 3, …
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Initial ConditionsInitial Conditions
The initial conditions specify the terms that precede the first term
where the recurrence relation takes effect.

an = 2an-1-an-2 ;    n = 2, 3, …

0 3 6 9 12 ……

1 2 3 4 5 ……

n = 0 1 2 3 4 …… an=3n
for non-negative int.
a0 = 0, a1 = 3

an=n+1
for non-negative int.
a0 = 1, a1 = 2

defined by the recurrence relation

initial conditions

Solution # 1

Solution # 2



2110200 Discrete Structures
Department of Computer Engineering Faculty of ENGINEERING | Chulalongkorn University

Initial ConditionsInitial Conditions
In order to find a unique solution for every non-negative integers to:

bn = bn-2+bn-4 ;    n = 4, 5, …
how many terms of bn needed to be given in the initial conditions?

b2 b3 b4 b5 b6

n = 2 3 4 5 6

……

defined by the recurrence relation

initial conditions

b7

7

b0 b1

0 1
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Modeling with Recurrence Modeling with Recurrence 
RelationsRelations

To find solutions for doing a task of a size n

Find a way to:
Construct the solution at the size n from the 
solution of the same tasks at smaller sizes.
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Example: The Tower of HanoiExample: The Tower of Hanoi
Rules:
Move a disk at a time from one peg to another.
Never place a disk on a smaller disk.
The goal is to have all disk on the 2nd peg in 
order of size.

Find Hn, the number of moves needed to solve 
the problem with n disks.
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Example:
A man running up a staircase of n stairs. Each step 

he takes can cover either 1 or 2 stairs. How 
many different ways for him to ascend this 
staircase?
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Linear Recurrence RelationsLinear Recurrence Relations
with Constant Coefficientswith Constant Coefficients

an = c1an-1 + c2an-2 + … + ckan-k

where c1, c2, …, ck are real numbers 
and ck ≠ 0

an = c1an-1 + c2an-2 + … + ckan-k + F(n)

Homogeneous

Non-homogeneous

Degree = k
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Linear Homogeneous Linear Homogeneous 
Recurrence Rel.Recurrence Rel.

• an=an-1+a2
n-2

• Hn = 2Hn-1+1

• Bn = nBn-1

• fn = fn-1 + fn-2

2110200 Discrete Structures
Department of Computer Engineering Faculty of ENGINEERING | Chulalongkorn University

Solving Recurrence RelationsSolving Recurrence Relations
• A linear homogeneous recurrence relation can 

be solved in a systematic way.
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Some SolutionsSome Solutions
n

n rKa 1=
Show that:

knknnn acacaca −−− +++= ...2111

where:
K1 can be any real number and,
we can choose the value of r to be anything.

is a solution of:
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Some SolutionsSome Solutions

n
kk

nn
n rKrKrKa +++= ...2211

Show that:

knknnn acacaca −−− +++= ...2111

where:
Ki can be any real number,
each ri is a root of 
and there are k distinct ri’s.

k
kkk crcrcr +++= −− ...2

2
1

1

is a solution of:
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So far, we have found that ...So far, we have found that ...
knknnn acacaca −−− +++= ...2111

n
kk

nn
n rKrKrKa +++= ...2211

has “a” solution in the form of

k
kkk crcrcr +++= −− ...2

2
1

1where all ri’s are the distinct roots of

Do all solutions have to be in this form??
Characteristic Equation

Prove later!
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Unique SolutionUnique Solution
n
kk

nn
n rKrKrKa +++= ...2211

E.g.:

Without fixing the 
constants,
they are not unique.

nn
na )3(1)2(2 +=

nn
n KKa )3()2( 21 +=

nn
na )3(2)2(1 +=

nn
na )3(3)2(3 +=

173 7 …

223 8 …

396 15 …

Must fix the 
initial 
conditions
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Find the solution of 

21 65 −− −−= nnn aaa ,...4,3,2=n
if 7,3 10 == aa
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Next StepNext Step
• Prove that all solutions must be in the form we 

have just shown in this lecture.
• What if the characteristic equation of the k order 

have less than k distinct roots?
• How to solve a linear non-homogeneous 

recurrence relation? 


