Recurrence Relations (continue)

- Readings:

Recurrence Relations
Rosen section 7.1-7.2

Proof of the Necessary Condition

Solutions to Linear Homogeneous Recurrence Relations

Sufficient Condition

Any sequences in the form: $a_{n}=k_{1} r_{1}^{n}+k_{2} r_{2}^{n}+\ldots+k_{k} r_{k}^{n}$
is a solution to: $\quad a_{n}=c_{1} a_{n-1}+c_{1} a_{n-2}+\ldots+c_{k} a_{n-k}$

```
Necessary Condition
All solutions to: }\quad\mp@subsup{a}{n}{}=\mp@subsup{c}{1}{}\mp@subsup{a}{n-1}{}+\mp@subsup{c}{1}{}\mp@subsup{a}{n-2}{}+\ldots+\mp@subsup{c}{k}{}\mp@subsup{a}{n-k}{
must be in the form: }\quad\mp@subsup{a}{n}{}=\mp@subsup{k}{1}{}\mp@subsup{r}{1}{n}+\mp@subsup{k}{2}{}\mp@subsup{r}{2}{n}+\ldots+\mp@subsup{k}{k}{}\mp@subsup{r}{k}{n
```

when the characteristic equation of the recurrence relation

$$
r^{k}=c_{1} r^{k-1}+c_{2} r^{k-2}+\ldots+c_{k}
$$

has k distinct roots which are $r_{1}, r_{2}, \ldots, r_{k}$

```
2110200 Discrete Structures 
```

Faculiy of EN GINEERING | Chulalongkom University

Solving: Linear Homogeneous Recurrence Relations

- Example:

What is the solution of the recurrence relation:

$$
a_{n}=6 a_{n-1}-11 a_{n-2}+6 a_{n-3}
$$

with $a_{0}=2, a_{1}=5$ and $a_{2}=15$?

Repeated Roots

- Suppose the characteristic equation has t distinct roots $r_{1}, r_{2}, \ldots, r_{t}$ with multiplicities $m_{1}, m_{2}, \ldots, m_{t}$.
- Solution:

$$
\begin{aligned}
a_{n}= & \left(\alpha_{1,0}+\alpha_{1,1} n+\ldots+\alpha_{1, m 1-1} n^{m 1-1}\right) r_{1}{ }^{n} \\
& +\left(\alpha_{2,0}+\alpha_{2,1} n+\ldots+\alpha_{2, m 2-1} n^{m 2-1}\right) r_{2}^{n} \\
& +\ldots \ldots \\
& +\left(\alpha_{t, 0}+\alpha_{t, 1} n+\ldots+\alpha_{t, m t-1} n^{m t-1}\right) r_{t}^{n}
\end{aligned}
$$

Solving: Linear Nonhomogeneous Recurrence Relations

Particular Solutions

- Key:

1 - Solve for a solution of the associated homogeneous part.
2 - Find a particular solution.
3 - Sum the solutions in 1 and 2

- There is no general method for finding the particular solution for every $F(n)$
- There are general techniques for some $F(n)$ such as polynomials and powers of constants.
- Example:

Find the solutions of $a_{n}=3 a_{n-1}+2 n$ with $a_{1}=3$

$$
F(n)=\left(b_{t} n^{t}+b_{t-1} n^{t-1}+\ldots+b_{1} n+b_{0}\right) s^{n}
$$

where $b_{0}, b_{1}, \ldots, b_{t}$ and s are real numbers.
When s is not a root of the characteristic equation:
The particular solution is of the form:

$$
\left(p_{t} n^{t}+p_{t-1} n^{t-1}+\ldots+p_{1} n+p_{0}\right) s^{n}
$$

When \boldsymbol{s} is a root of multiplicity \boldsymbol{m} :
The particular solution is of the form:

$$
n^{m}\left(p_{t} n^{t}+p_{t-1} n^{t-1}+\ldots+p_{1} n+p_{0}\right) s^{n}
$$

- Example:

Find the solutions of $a_{n}=5 a_{n-1}-6 a_{n-2}+7^{n}$

- Example:

What form does a particular solution of

$$
a_{n}=6 a_{n-1}-9 a_{n-2}+F(n)
$$

have when:
$F(n)=3 n, F(n)=n 3^{n}, F(n)=n^{2} 2^{n}, F(n)=\left(n^{2}+1\right) 3^{n} ?$
Summary Linear Recurr.Rel. w/ Const. Coeff $a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\ldots+c_{k} a_{n-k}+F(n)$

Find the homogeneous solution
Consider only the homogeneous part

$$
a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\ldots+c_{k} a_{n-k}
$$

Write characteristic equation

$a_{n}{ }^{h}=\left(\alpha_{1,0}+\alpha_{1,1} n+\ldots+\alpha_{1, m 1-1} n^{m 1-1}\right) r_{1}{ }^{n}$ $+\left(\alpha_{2,0}+\alpha_{2,1} n+\ldots+\alpha_{2, m 2-1} n^{m 2-1}\right) r_{2}{ }^{n}$

$+\left(\alpha_{t, 0}+\alpha_{t, 1} n+\ldots+\alpha_{t, m t-1} n^{m t-1}\right) r_{t}^{n}$

General form of all solutions
$a_{n}=a_{n}{ }^{h}+a_{n}{ }^{p}$ The unique solution

- Example:

Find the solution of $a_{n}=\sum_{k=1}^{n} k$

