Graphs \& Trees (Lecture 2)

Today's Topics

- Graph Representation
- Graph Isomorphism
- Graph Connectivity / Paths

We can use:

- Adjacency Lists
- Adjacency Matrices
- Incidence Matrices

Representing Graphs

里

Adjacency Lists

- represent graphs with no multiple edges
- specify vertices that are adjacent to each vertex

Adjacency Lists

- For directed graph, specify terminal vertices of each vertex

Adjacency Matrices

$$
G=(V, E), V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}
$$

$$
A=\left[\mathrm{a}_{\mathrm{ij}}\right]
$$

$$
\mathrm{a}_{\mathrm{ij}}=\begin{aligned}
& \text { Number of edges } \\
& \text { corresponding to }\left\{v_{\mathrm{i}}, v_{\mathrm{j}}\right\}
\end{aligned}
$$

$$
\text { Undirected Graph } \mathrm{a}_{\mathrm{ij}}=\begin{aligned}
& \text { Number of edges } \\
& \text { corresponding to }\left(v_{\mathrm{i}}, v_{\mathrm{j}}\right)
\end{aligned}
$$

Adjacency Matrices

Adjacency Matrices

Incidence Matrices

$$
\begin{gathered}
\underbrace{G=(V, E), V=\left\{v_{1}, v_{2}, \ldots, v_{\mathrm{n}}\right\}, E=\left\{e_{1}, e_{2}, \ldots, e_{\mathrm{m}}\right\}}_{\text {Undirected Graph }} \\
M=\left[m_{\mathrm{ij}}\right]
\end{gathered}
$$

$$
m_{\mathrm{ij}}= \begin{cases}1 & \text { when } e_{\mathrm{j}} \text { is incident with } v_{\mathrm{i}} \\ 0 & \text { otherwise. }\end{cases}
$$

Incidence Matrices

Isomorphism of Graphs

$G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ are two simple graphs. G_{1} and G_{2} are isomorphic when:

There is a 1-to-1 and onto function f from V_{1} to V_{2} with the property that
$\forall \quad a$ and b are adjacent in $\mathrm{G} 1 \leftrightarrow$ $a, b \in V_{1} \quad f(a)$ and $f(b)$ are adjacent in $G 2$.
f is called an isomorphism.

Isomorphism of Graphs

Isomorphism of Graphs

- To show that two graphs are isomorphic

```
Find an isomorphism.
```

- To show that two graphs are NOT isomorphic

Argue that no isomorphism exists.

Graph Invariants

- A property preserved by isomorphism of graphs is called a graph invariant.
E.g.:Number of vertices
- Number of edgesDegrees of vertices Adjacency between vertices with specified degrees

Paths

- A path is a sequence of edges that begins with a vertex of a graph and travels from vertex to vertex along edges of the graph.
- The length of a path is the number of edges in that path.
- A path is a circuit if it begins and ends at the same vertex and the length is not 0 .
- A path is simple if it does not contain the same edge more than once.

Paths

$(\{a, b\},\{b, c\},\{c, d\},\{d, e\})$ is a simple path of length 4.

When there are no multiple paths, we can represent a path by the sequence of vertices it pass through.

$$
(\{a, b\},\{b, c\},\{c, d\},\{d, e\}) \|(a, b, c, d, e)
$$

Connectedness

An undirected graph is called connected \leftrightarrow There is a path between every pair of distinct vertices of the graph.
An directed graph is strongly connected \leftrightarrow There is a path from a to b and from b to a whenever a and b are distinct vertices in the graph.

An directed graph is weakly connected \leftrightarrow There is a path between every pair of distinct vertices of the graph. (Disregard the edge directions.)

Connected Components

- A connected component of a graph is maximal connected subgraph of that graph.

Cut Vertex / Cut Edge

- A vertex is called a cut vertex (or articulation point) if the removal of that vertex along with all edges incident with it produces a subgraph with more connected components.
- An edge whose removal produces a subgraph with more connected components is called a cut edge (or bridge).
-

Find all cut vertices and cut edges in G.

Paths and Isomorphism

- The existence of a simple circuit of a particular length is a graph invariant.
- Paths are sometimes useful in finding an isomorphism.

G

Show that a simple circuit of length 3 does not exist in G.

Counting Paths Between Vertices

How many paths of length 4 are there from a to d in the following graph?

Counting Paths Between Vertices

The number of paths of a certain length between two vertices in a graph can also be determined from the graph's adjacency matrix.

