Graphs \& Trees (Lecture 3)

Today's Topics

- Euler Paths \& Circuits
- Hamilton Paths \& Circuits

Euler Circuits

An Euler circuit in a graph is a simple circuit containing every edges of that graph.

An Euler circuit =

Euler Paths

An Euler path in a graph is a simple path

 containing every edges of that graph.

An Euler path $=$ has an Euler circuit \leftrightarrow each of its vertices has even degree.

Proof:
Necessary condition
G has an Euler Circuit \rightarrow each of its vertices must have even degree.

- Sufficient condition

Each of the vertices in G has even degree $\rightarrow G$ has an Euler Circuit.

Finding an Euler Circuit

Conditions for Euler Paths

A connected multigraph with at least two vertices has an Euler path \leftrightarrow it has exactly 2 vertices with odd degree.

Finding an Euler Path

Hamilton Paths and Circuits

> A Hamilton path in a graph is a simple path that passes through every vertex of the graph exactly once.

For $G=(V, E)$ and $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$, the simple circuit $v_{1}, v_{2}, \ldots, v_{n}, v_{0}$ is a Hamilton circuit if $v_{1}, v_{2}, \ldots, v_{n}$ is a Hamilton path.

Iconian Puzzle

Conditions for Hamilton Circuits

- No 'necessary \& sufficient' conditions exist.
- Certain properties can be used to show that no Hamilton circuits exist. E.g. degree one vertex.
- Both edges incident of a vertex of degree two must be part of any Hamilton circuit.
- While constructing a Hamilton circuit, if a vertex has already passes through, all remaining edges of that vertex can be removed from consideration.

Some Sufficient Conditions

If G is a simple graph with n vertices ($n \geq 3$) such that the degree of every vertex in G is at least $n / 2$, then G has a Hamilton circuit.

If G is a simple graph with n vertices ($n \geq 3$) such that $\operatorname{deg}(u)+\operatorname{deg}(v) \geq n$ for every pair of non-adjacent vertices u and v in G, then G has a Hamilton circuit.

