

Proof:

Necessary condition

G has an Euler Circuit \rightarrow each of its vertices must have even degree.

Sufficient condition

Each of the vertices in *G* has even degree \rightarrow *G* has an Euler Circuit.

Department of Computer Engineering, Chulalongkorn University

Discrete Structures

Department of Computer Engineering, Chulalongkorn University

Discrete Structures

٢

Finding an Euler Circuit

Conditions for Euler Paths

A connected multigraph with at least two vertices has an Euler path \leftrightarrow it has exactly 2 vertices with odd degree.

Department of Computer Engineering, Chulalongkorn University

Discrete Structures

Department of Computer Engineering, Chulalongkorn University

Discrete Structures

٥

Finding an Euler Path

Hamilton Paths and Circuits

A **Hamilton path** in a graph is a *simple* path that passes through *every vertex* of the graph *exactly once*.

For G=(V,E) and $V = \{v_1, v_2, ..., v_n\}$, the simple circuit $v_1, v_2, ..., v_n, v_0$ is a **Hamilton circuit** if $v_1, v_2, ..., v_n$ is a Hamilton path.

Department of Computer Engineering, Chulalongkorn University

Discrete Structures

Department of Computer Engineering, Chulalongkorn University

Discrete Structures

٥

Iconian Puzzle

Conditions for Hamilton Circuits

- No 'necessary & sufficient' conditions exist.
- Certain properties can be used to show that no Hamilton circuits exist. E.g. degree one vertex.
- Both edges incident of a vertex of degree two must be part of any Hamilton circuit.
- While constructing a Hamilton circuit, if a vertex has already passes through, all remaining edges of that vertex can be removed from consideration.

Some Sufficient Conditions

If *G* is a simple graph with *n* vertices ($n \ge 3$) such that the degree of every vertex in *G* is at least n/2, then *G* has a Hamilton circuit.

If G is a simple graph with n vertices $(n \ge 3)$ such that $deg(u)+deg(v) \ge n$ for every pair of non-adjacent vertices u and v in G, then G has a Hamilton circuit.

Department of Computer Engineering, Chulalongkorn University

Discrete Structures

٢

Department of Computer Engineering, Chulalongkorn University

Discrete Structures