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Abstract: An object is captured when it is restricted to
stay within a bounded region of the workspace. In this
paper, we present a sufficient condition for a team of disc-
shaped robots to capture a two dimensional rigid object
in the plane by enclosing it in a capturing formation. This
condition is defined in terms of the robots’ positions and
a certain geometric property of the object. We do not as-
sume any particular geometry, therefore the condition im-
mediately holds for all object shapes. We also sketch an
application of the capturing formation to the problem of
object manipulation.

1 Introduction

An object is captured when it is restricted to stay within a
bounded region of the workspace, i.e., there exists no tra-
jectory to bring the object to infinity. In this paper, we are
interested in constraining (not necessarily immobilizing)
arigid two-dimensional object to stay within the midst of
a team of robots. In particular, we present a sufficient con-
dition for a team of disc-shaped robots to capture a given
object in the plane by enclosing it in a cycle formation'.
This capturing condition is defined in terms of the distance
between consecutive robots in the cycle and a certain ge-
ometric property derived from the boundary of the object.
The condition does not assume any particular geometry,
therefore it immediately holds for all shapes of the object.

A capturing action generally applies to a set of the ob-
ject’s configurations rather than a single one. It provides
a means with which uncertainty in the object’s configura-
tion can be handled.2 However, the problem of capturing
objects has so far received little attention in robotics. It
was introduced in [11] the concept of Inescapable Con-
figuration Space (ICS) region, i.e., on the idea of charac-
terizing the regions of configuration space in which the
object is not immobilized but is constrained to lie within
a bounded region of the free configuration space (see [9]

Larrangement of robots in a simple loop.

2For example, to ensure a successful grasp it is desirable to cap-
ture the object before grasping especially when all the contacts may not
be made simultaneously during the grasp execution (because the object
may move away from the initial configuration for which the grasp is
computed).

for similar work in the two-finger case). This concept is
used in [10] as a basis for computing a plan for manipulat-
ing polygonal objects using three disc-shaped robots. Al-
though the contact dynamics can be safely ignored, polyg-
onal object model is assumed and the resulting plans may
contain many very short steps because the ICS region is
often very small due to the computation that takes into ac-
count only three chosen edges. The ICS is defined in the
combined object/robot configuration space while our cap-
turing concept is purely derived in the workspace of the
object. This results in a much simpler capturing condi-
tion than that of ICS and allows the entire boundary of the
object to be taken into account.

As a secondary purpose of the paper, we show how to
apply the concept of capturing formation to the problem
of nonprehensible object manipulation. We apply cooper-
ative pushing by a team of robots. The motivation comes
from the difficulty in handling an object when it is too
large to be grasped by a single robot, or when the available
robot is not equipped with grasping capability. Influenced
by [6], pushing has been recognized as a useful process
in object manipulation [1, 5, 7]. The common approach
of the works rely on the Coulomb friction model and the
quasi-static assumption. Based on contact dynamics mod-
eling which is a priori unverifiable, the assumption limits
motion of the pusher to be slow enough that inertial forces
can be ignored and requires that the contact between the
pusher and the object be maintained during the entire ma-
nipulation. Avoiding these shortcomings, our approach to
object manipulation bypasses the need for contact dynam-
ics modeling by taking advantage of the ability to kine-
matically prevent the object from escaping. This is ac-
complished by computing trajectories of the robots such
that the corresponding formation can always capture the
object (as if the object is transported in a moving cage).
The overall idea is similar to that of [10] except that our
approach, as mentioned earlier, can apply to objects other
than polygons and extra robots may be easily added to a
manipulation task for improving the robustness.

The rest of the paper is organized as follows. In section
2, we will present a sufficient condition of the capturing
formation for convex objects. The condition is proven in



Lemma 2 using heavily convexity of the captured objects.
In Section 3, Lemma 2 is extended to construct a sufficient
condition for capturing nonconvex objects. We will also
sketch how a capturing formation can be generated. Then
in Section 4 we discuss how capturing formation may be
used as a framework for object manipulation. We com-
plete the paper with conclusion in Section 5.

2 Capturing Formation

A team of robots form a capturing formation for an ob-
ject when the object is restricted by the formation to stay
within a bounded region of the workspace. The objective
of this section is to present a sufficient condition of a cap-
turing formation for a given convex object. This condition
will be extended to handle nonconvex objects in the next
section. We show in Lemma 2 that a convex object can
be captured by enclosing it in a cycle formation of robots
such that the distance between every pair of consecutive
robots in the cycle is smaller than the width of the convex
object. We will formally define the width and then prove
Lemma 1 which is the main foundation of the work in this
paper.

Let us consider a convex object 53 and assume that it has
a C''—continuous® boundary (this assumption is only for
the convenience in proving Lemma 1; without loss of gen-
erality, we will later show that it can be safely removed).

Definition 1 For a fixed orientation of B, the parallel en-
velop E(0) is defined to be a pair of the closest parallel
lines such that the angle between the lines and the x-axis
is 0 and the region bounded by the two lines contains the
convex object B (see Figure 1). Also, let dg : S* — R
be a function mapping an angle 0 to the shortest distance
between the two parallel lines of the envelop E(0).
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Figure 1: (a) Parallel lines L; and Lo touch the convex 3 and
form the parallel envelop £(0) with de(6) = d, and (b) the
corresponding function dg in 6.

We follow [3] to call dg as the diameter function. In that
paper, the diameter function is used for computing the
squeeze function for orientation planning of polygons us-
ing a frictionless gripper without sensors. The paper also
presents an O(n) algorithm for computing the diameter
function of n-gon figures.

3A parametric curve r(t) is C'*-continuous (or k-smooth) if all
derivatives of the curve exists up to the kth order.

The following definition formally define the width of a
convex object.

Definition 2 The width of B, denoted hereafter by W, is
the minimum of the diameter function dg () for all angles
6 e S

The following lemma is the key foundation of the work
presented here. Let us imagine two rooms separated by
an infinitely long straight wall with one open door. The
lemma essentially states that a convex object cannot go
from one room to the other if the door is narrower than
the width of the object. The proof of the lemma relies
heavily on convexity of the object. It traces the two in-
ward normals at the two intersection points between the
object’s boundary and a fixed vertical line as the object
moves from one side of the line to the other. The proof
shows that no matter which trajectory is chosen, the ob-
ject always, at a certain moment, intersects the vertical
line in a segment that is not smaller than the width of the
object.

Lemma 1 Let G be a vertical line with a gap of length
d. If d < W, no trajectory can bring the convex object
B from being entirely in one half plane completely to the
other without colliding with G (the two half planes are
separated by the line supporting G, see Figure 5(a)).

PROOF: Let L be a fixed vertical line and e = (0,1)7 be
a unit vector pointing upward (Figure 2). By convexity, a
convex body intersects line L in a line segment (or a point
when they only touch). This line segment is bounded by
two endpoints: the upper endpoint p,, and the lower end-
point p;. Because an inward normal must point toward
the half plane containing the convex body (and, of course,
the intersection line segment), it is clear that

n,-e<0 and n;-e>0,

ey

where n,, and n; are, respectively, the inward normals of

the convex body’s boundary at the upper and lower end-

points (Figure 2(b)).
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Figure 2: The convex 13 moves from the left to the right half
plane in three steps (see text).

Let v, and o be the angles between n,, and n; with the
x-axis. Now let us consider the inward normals n,, and n;
as B moves from being entirely in the left half plane com-
pletely to the right half plane. Regardless of the trajectory



taken, it is obvious that successful passage must contain
the following three sequential steps: (1) B is entirely in
the left half plane and touches line L from the left(Figure
2(a)), (2) B intersects L in a line segment (Figure 2(b)),
and (3) B has just completely moved into the right half
plane and touches L from the right (Figure 2(c)). In step
one, we have a; = «, = w. From Inequalities 1, o
varies in the range [0, 7| during step two, and it reaches
0 in step three. Likewise, «, varies in the range [r, 27]
during step two, and it reaches 27 in step three. We can
see that 0 < a,, — oy < 27 and the difference o, — o
goes from 0 in step one to 27 in step three. Therefore, by
continuity, at a certain moment, it holds that ov,, — oy = 7
which corresponds to having two parallel tangents at the
endpoints p,, and p; (Figure 3).

Figure 3: At a certain moment, the tangents at the endpoints p,,
and p, must become parallel.

With an appropriate rotation and proper angle «, the
two parallel tangents form the parallel envelop £(«). Be-
cause |p, — p;| > de(w) and dg(a) > W, we have
|p, — p;| > W. This means that at this moment, the
object B must intersect line L in a line segment that is not
smaller than W. In other words, assuming that G is sup-
ported by L, if the gap of G is smaller than WV, the convex
object B cannot successfully move from the left half plane
to the right half plane without colliding with G. m

Note that Lemma 1 still holds without the assumption
that the boundary of 3 be C'-continuous. This is because
even when the boundary of B is only C’-continuous, as
illustrated in Figure 4, it is clear that we can always find a
convex subset B’ C B with a C!-continuous boundary (3’
can also be chosen to be an arbitrarily close approximation
of B). In this case, because Lemma 1 certainly applies for
B, it can be deduced from rigidity of B that B cannot
cross from one half plane to the other. In other words,
Lemma 1 requires only that B has a closed boundary.

A wall with a gap that is narrow enough can constrain
an object in one room from moving completely to the
other. The following definition defines a term for refer-
ring to the room (the half plane) in which the object is
confined. This definition is used in Lemma 2, which ex-
tends Lemma 1 to provide a sufficient condition for a cy-
cle formation of the robots to be able to capture the con-
vex object B. From now on, we denote by 5(q) the plane
region occupied by B when it is at the configuration q.
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Figure 4: (a) a convex object with a boundary that is not C*-
continuous, with (b) its convex subset (drawn in a thick curve)
with a C'-continuous boundary, and (c) another subset with C*-
continuous boundary that more closely approximates the origi-
nal convex object.

Definition 3 For a configuration q of B, consider two
pointed robots located at p, and p, such that |p;py| < W
and B(q) NG = (), where G = L — p1p; + {p1, P>}
denotes a straight wall with an opening gap from p;, to
Py and L denotes an infinite line supporting p,, p, and
the wall G. We define H' (p,, D, q) to be the half plane
(separated by L) that the object B that is initially at the
configuration q is confined and restricted by the wall from
moving completely to the other half plane (Figure 5(a)).

Capturing an object requires more restrictive constraint
than that provided by a gaped wall mentioned earlier.
Capturing constraint must prevent the object from moving
to infinity in any direction. The following lemma gives a
sufficient condition for a team of pointed robots to impose
such constraint on the convex object B.

Lemma 2 Consider a cycle formation of n > 3 pointed
robots surrounding the object B which is at a configura-
tion q. Let p;,v = 1,2, ..., n be the positions of the robots
in the cycle in counterclockwise order and let next(i) =
i1+ 1if i <n,
1 otherwise
sive to robot 1. If\pipnext(m < W fori=1,2,...,n and
H = ﬂi:l,?,...,n H+(pi’pnext(i)vq) 7& (D) the ObjeCt B
cannot escape from the formation.

denote the index of the robot succes-

PROOF: Assume oppositely that the object can escape.
Because H # (), by Definition 3, for the object B to es-
cape to infinity, it has to pass through one of the n open-
ings (each of which is formed by a pair of robots at p, and
Prext(i)»? € {1,2,...,n}). Such successful passage con-
tradicts Lemma 1 because |p; Pyt (s)| < W. The lemma
is therefore proved. m

3 Capturing an Object

The discussion up to this point has been concerned only
with convex objects. In the following lemma, we give
a sufficient condition for capturing a nonconvex object.
This lemma straightforwardly extends Lemma 2 using an
intuitive fact that when part of a rigid object is captured,
the whole object is captured as well.
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Figure 5: (a) the object is confined in the left half plane by a
gapped wall, and (b) the object is captured in a cycle formation
of the robots.

Lemma 3 Let A be a nonconvex rigid object with a con-
vex subset B. Consider a cycle formation of pointed
robots that do not intersect with the object A. If the for-
mation satisfies Lemma 2 with the convex subset B, then
the formation captures the object A (Figure 6).
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Figure 6: (a) a nonconvex object, (b) the object is captured
when its convex subset (shaded region) is captured.

So far we have assumed dimensionless pointed robots.
For two disc-shaped robots with the same nonnegative
radius r, it is easy to see that the shortest distance be-
tween the robots when their centers are far apart by dis-
tance d is equal to d — 2r. Taking this into account, to
handle disc-shaped robots with a common radius » > 0,
we generalize Lemma 2 by replacing W with W + 2r.
Accordingly, the involved condition has to be rewritten as
|PiPrext(s)] < W + 2r where p; denotes the position of
the robot’s center. This ensures that for every pair of con-
secutive robots in the cycle, there exists a pair of points
(one for each robot) such that the distance between the
two points is less than W (see Figure 7). As explained
in the proof of Lemma 2, this condition forbids the object
from escaping.

Figure 7: Capturing the object using three robots with a com-
mon radius r and the shortest distance between consecutive
robots d; ; < W.

At this point, we have accomplished the main objective
of the paper. That is, we have presented a sufficient condi-

tion for a team of disc-shaped robots to capture an object
in the plane. In the remainder of this section, we will
sketch how a capturing formation could be computed. We
plan to propose an efficient algorithm for this problem in
our future paper.

We will assume pointed robots and limit our discus-
sion to the case of an object whose boundary is explicitly
given. Our approach is derived directly from Lemma 3.
It consists of two steps: (1) find a convex subset of the
given object and compute the width of the subset, and (2)
compute the robots’ positions satisfying Lemma 2 with
the convex subset found in step one.

Finding a Convex Subset

First we find an inner polygonal approximation of the ob-
ject. An inner polygonal approximation of a given fig-
ure is a polygon that is completely inside, and approxi-
mates the figure. The inner polygonal approximation can
be found using a variation in two dimension of the poly-
gonization technique in [4]. Clearly the resulting polygon
is a subset of the given object.

Next, we compute a convex subset of the polygon. Any
subset of this polygon is obviously a subset of the given
object as well. To find a convex subset of the polygon, we
resort to a computational geometry technique for convex
partitioning [8]. Convex partitioning problem asks how
a polygon can be partitioned into a small number of con-
vex pieces (Figure 8(b)). An algorithm giving the smallest
number of partitions is presented in [2]. Using this heuris-
tic makes sense because having fewer partitions usually
implies larger partitions with larger width value. For each
partition obtained, its width can be computed by apply-
ing the algorithm for computing the diameter function of
a polygon in [3].
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Figure 8: (a) inner polygonal approximation of the curve object
shown in Figure 6(a), and (b) its convex partition.

Computing the Robots’ Positions

With a given convex subset of the object and its width, we
can follow Lemma 3 to generate positions of the robots
that can capture the object. What arrangement of robots
is preferred depends on target application of the resulting
capturing formation. Here we will show few examples.
An obvious arrangement is to place the robots on a cir-
cle enclosing the given object while ensuring that the dis-
tance between every pair of consecutive robots is smaller
than the width of the convex subset (Figure 9(b)). A



smaller enclosing circle is preferred because it results in
fewer robots needed. A simple way to find an enclosing
circle is to compute a polygon bounding the object (Figure
9(a)) and use the algorithm in [12] to compute the smallest
circle enclosing the bounding polygon. Many robots may
be needed to cover the entire enclosing circle but selecting
the position of each robot is trivial because the circle does
not intersect with the object.

$SRORR

Figure 9: (a) a polygon bounding the object, (b)-(d) various
arrangement of robots in a capturing formation (see text).

Another arrangement is to place the robots on a circle
enclosing the convex subset. The positions must avoid
intersecting with the object and again the distance be-
tween every pair of consecutive robots must be smaller
than the width of the convex subset (Figure 9(c)). Fig-
ure 9(d) shows another arrangement in which the robots
are placed along the boundary of the bounding polygon
that encloses the convex subset. This type of arrangement
requires fewer robots than the others while allowing less
freedom of the object’s motion in the capture.

4 Manipulating an Object

In this section, we sketch a simple approach that applies
capturing formation to the problem of object manipula-
tion. This is only to show a sample application of captur-
ing formation. We are currently working on developing
an efficient algorithm for this problem with implementa-
tion using mobile robots and plan to present our result in
the near future.

We will explain the notion of independent capturing
discs and sketch how a manipulation plan can be gener-
ated using this workspace-based capturing concept. Due
to space limitation, we discuss only the case of pointed
robots transporting a convex polygonal object (can be ex-
tended to handle more general cases by applying the ideas
presented in previous sections).

4.1 Independent Capturing Discs

Let us consider a convex polygon B with the width W.
Assume that we are given a capturing formation of the
polygon using n pointed robots, each of which is placed
on a circle enclosing the polygon at position p;,7 €
{1,2,..,n} (Figure 10(a)). Let us construct a cycle of n
discs with a common radius r, namely Q;,7 = 1,2, .., n,
that surround the polygon by having disc 2; touch the cir-
cle at p,. It is easy to see that when two discs of a com-

mon radius r have their centers far apart by distance less
than W — 2r, the distance between any pair of points (one
from each disc) must be less than W (capturing condi-
tion). Based on this condition, we can compute, e.g., us-
ing a numerical method, the largest value of the common
radius r at which the distance between any pair of points
from every pair of consecutive discs in the cycle is less
than W (Figure 10). We therefore obtain n discs such that
a capturing formation can be generated by placing each
robot anywhere in each disc. We refer to these discs as
Independent Capturing Discs or in short as ICDs and a
capturing formation generated as such is said to belong to
the corresponding ICDs.
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Figure 10: (a) a formation of 4 robots capturing a hexagon, (b)
ICDs (drawn as shaded discs) constructed from this formation,
and (c) larger ICDs with two additional robots.

In contrast with the concept of MICaDs in [10], our
ICDs are not limited for three robots. By adding ex-
tra robots and appropriately arranging the corresponding
ICDs, it is easy to see that we generally can increase the
size of ICDs allowing greater freedom of the capturing
formation (Figure 10(c)). This is due to the pairwise na-
ture of the distance constraint on consecutive robots in the
formation.

4.2 Moving Cage

Each robot can move simultaneously and independently in
each of the ICDs while ensuring that the enclosed object
cannot escape. This property allows us to directly apply
the motion planning in an obstacle-free workspace given
in [10] by replacing their MICaDs with our ICDs. In the
rest of this section, we summarize the main idea of this
technique. In the following sketch, we say “a capturing
formation for a configuration ¢” to refer to a capturing
formation that can capture the object that is at the config-
uration q. We also say “ICDs for a configuration g” to
refer to a set of ICDs of which all capturing formations
can capture the object that is at the configuration gq.

Overlapping ICDs

For n robots and a configuration g of B, clearly if n is
sufficiently large, we can compute a set of ICDs 2 =
{Q;},i = 1,2,...,n associated with this configuration
(e.g., using the method presented in the previous section).
It is obvious that a set of ICDs for another configuration



can be immediately obtained by applying to ICDs (2 the
rigid transformation that maps q to this configuration (be-
cause the distance between any pair of points is preserved
under a rigid transformation therefore the capturing abil-
ity remains intact). Now let us consider a set of ICDs
O ={Q},i=1,2,..,n for a configuration ¢’ that is ob-
tained by applying to €2 the rigid transformation that maps
g to q'. Assume further that Q; N Q) # 0,4 = 1,2,...,n
(we can always find ¢’ in the neighborhood of g such that
this is true, see [10] for a proof of this statement). Now
consider the following plan: (1) Move robot i to anywhere
in disc ; (i = 1,2,...,n), and (2) Move robot i along
any trajectory within disc {2; to anywhere in the region
Q,NQ, (0 =1,2,...,n). In step one the robots move to
a capturing formation for the configuration q. By confin-
ing the motion of the robots in ICDs (2, the object cannot
escape during the entire motion in step two and when this
step is completed, the robots will form a capturing forma-
tion for the configuration ¢q’.

Manipulation Plan

By connectedness of the object configuration space, we
can compute a sequence of overlapping ICDs starting
from ICDs for an initial configuration and ending at ICDs
for a target configuration. With this sequence, step two in
the above plan can be repeatedly executed to move robots
from an overlap to the next one in the sequence. The
robots will reach a capturing formation for the target con-
figuration and because the robots are commanded to be in
ICDs at all times, the object is prevented from escaping
during the entire manipulation as if it is transported in a
moving cage.

Limitation

The manipulation plan described above does not require
the robots to maintain a fixed formation, i.e., they have
some freedom to move with respect to one another in the
ICDs. This allows manipulation to be accomplished with-
out precise synchronization of the robots. However, as
mentioned in [10], the success of the manipulation as-
sumes that jamming does not occur. Also note that this
manipulation does not guarantee to bring the object ex-
actly to the target configuration. It takes the object from
the initial configuration to a configuration in a neighbor-
hood of the target configuration. This manipulation is
therefore useful when precisely reaching a final config-
uration is not a critical issue, e.g., when an object need to
be moved from an initial configuration to any configura-
tion in a specified region of the workspace.

5 Conclusion

We have presented in this paper a sufficient condition for
a team of disc-shaped robots to capture an object in the

plane. We have also proposed to use capturing formation
as a basis for object manipulation.

A convex partitioning technique from computational
geometry is used for computing a convex subset in Sec-
tion 3. This approach does not guarantee that a convex
subset with the largest width will always be found. We
plan to present a more effective approach in a future pa-
per. We are also interested in finding a method for com-
puting maximal ICDs and a strategy to produce a jam-free
manipulation plan.
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