
Regrasp Planning for a 4-Fingered Hand Manipulating a Polygon

Attawith Sudsang and Thanathorn Phoka
Department of Computer Engineering,

Chulalongkorn University, Bangkok 10330, Thailand
{attawith,phoka}@cp.eng.chula.ac.th

Abstract— This paper proposes an approach for com-
puting a sequence of finger repositioning that allows a 4-
fingered hand to switch from one grasping configuration to
another while maintaining a force-closure grasp of a polygon
during the entire process. Assuming frictional point contacts,
the proposed approach is based on exploring a structure
called switching graph. The connectivity of this structure
captures ability to switch from one grasp to another and
allows regrasp planning to be formulated as a graph search.
The proposed approach has been implemented and some
preliminary results are presented.

I. I NTRODUCTION

When local motion of the fingers cannot bring the
manipulated object to a desired pose, the hand may
need to change its grasping configuration by repositioning
some fingers. This action is known as regrasping or
finger gaiting. In this paper, we consider the problem of
planning regrasping sequences of a polygon manipulated
by a hand equipped with four fingers. More precisely,
assuming hard fingers with frictional point contact, we
propose a technique for computing a sequence of fin-
ger repositioning that transforms an initial grasp into a
desired one while keeping the object in a force-closure
grasp during the entire process. The proposed approach
introduces a structure calledthe switching graph. The
connectivity of this structure captures ability to switch
from one set of grasps to another and allows regrasp
planning to be formulated as a graph search. Different
search strategies and policies may be applied in order
to generate a regrasping sequence that meets additional
requirement. This is important particularly for most robot
hands which typically have severe workspace limit on their
fingers.

Grasping and dexterous manipulation have been an
important research area in robotics since the beginning.
Recent reviews of the area can be found in [1], [7]. Use of
finger gaiting was proposed in [4] to achieve a new grasp
when some finger reaches its workspace limit. Planning
for regrasping sequences of a polygon was addressed
in [8] by using branch-and-bound search and nonlinear
programming to determine grasping configurations where
regrasps can occur. A general framework for planning
dextrous manipulation using rolling and finger gaiting was
proposed in [3]. The approach was applied to the case of
a 3-fingered robot hand manipulating a sphere.

II. BACKGROUND AND OVERVIEW

It is formally shown in [6] for two finger cases and
generalized to three finger cases in [9] that a sufficient
condition for force closure is non-marginal equilibrium
grasps, i.e., grasps such that the forces achieving equilib-
rium lie strictly inside the friction cones at the fingertips.
That is, grasps achieving equilibrium with non-zero forces
for some friction coefficient achieve force closure for any
strictly greater friction coefficient. Due to [6], the follow-
ing proposition characterizes two-finger equilibrium.

Proposition 1: A necessary and sufficient condition for
two points to form an equilibrium grasp with non-zero
contact forces is that the line joining both points lies
completely in the two double-sided friction cones at the
points.

The following two propositions are necessary for
our discussion. They characterize 3-finger force-closure
grasps. Their proofs can be found in [9].

Proposition 2: A necessary and sufficient condition for
three points to form an equilibrium grasp with three
parallel and non-zero contact forces is that there exist three
parallel lines in the corresponding double sided friction
cones and for three vectors parallel to these lines and
lying in the internal friction cones at the contact points,
the vector parallel to the middle line are in the opposite
direction from the other two.

Definition 1: Let Ci(i = 1, 2, 3) be the cones centered
on ui with half angleθ. We say that the three vectors
ui(i = 1, 2, 3) θ-positively span<2 when any triple of
vectorsvi ∈ Ci(i = 1, 2, 3) positively span<2.

In the following proposition and the remainder of the
paper, we will denote byθ the half angle of every friction
cone.

Proposition 3: A sufficient condition for three points
to form an equilibrium grasp with non-zero contact forces
is that: (Pa) there exist three lines in the corresponding
double-sided friction cones that intersect in a single point
and (Pc) the internal normals at the three contact points
θ-positively span<2.

Before the switching graph concept can be discussed,
it is needed to understand how a regrasp can be achieved
as a sequence of finger repositioning. In this section, we
start by following an example of a finger repositioning
sequence that transforms one grasp into another. The
regrasp planning problem is then redefined in terms of



the notion introduced in the example and the switching
graph concept is proposed as a solution to the problem.

To illustrate how regrasping can be accomplished as a
series of finger repositioning, let us show a short example
with four disc-shaped fingers manipulating a polygonal
object in the plane. Consider a three-finger force-closure
grasp of the object by finger 1, 2 and 3 in Fig. 1(a).
When finger 4 is placed at the position shown in Fig.
1(b), it forms another three-finger force closure grasp with
fingers 1 and 2. This allows finger 3 to be lifted off the
object while maintaining that the object is still in a force-
closure grasp (Fig. 1(c)). By replacing one finger with
another, the hand switches from one grasp to another. This
finger swapping sequence will be calledfinger switching.
Now, finger 3 is free to be placed where another finger
switching can continue. However, in certain circumstance,
a finger switching cannot be executed immediately after a
previous switching: repositioning of some fingers may be
necessary. For example, in Fig. 1(c), if we want two-finger
force-closure grasp on edgesEa andEb, it is clear that
this grasp cannot be achieved regardless of where the free
finger 3 is placed on edgeEb. To enable a switching to
the desired grasp, finger 2 is locally moved to the right
(Fig. 1(d)). Note that finger 2 has to be in contact with
the object and, together with fingers 1 and 4, maintain a
force-closure grasp during the entire finger motion (this
may be accomplished by finger sliding or finger rolling;
more detail in Section III-C). Once finger 2 is aligned
appropriately, it is possible to find a position to place
finger 3 onEb to form a two-finger force-closure grasp
(Fig. 1(e)), freeing fingers 1 and 4 for the next switching.
This kind of finger repositioning needed to allow the next
finger switching to continue will be calledfinger aligning.

Our approach to in-hand manipulation amounts to com-
puting a sequence of appropriate finger switching and
finger aligning. To achieve this, we introduce a structure
called switching graph. Each vertex of the graph repre-
sents a set of force-closure grasps. For every pair of grasps
from the same vertex, there always exists a finger aligning
between the grasps. Two vertices are adjacent if there
exists a finger switching between a grasp from one vertex
and another grasp from the other. This property allows
regrasp planning to be formulated as a graph search.

As illustrated in the above example, at least one free
finger is needed when switching from one force-closure
grasp to another. With four fingers in total, we therefore
need to consider only grasps of two-finger and three-finger
force-closure. For three-finger force-closure grasps, our
approach consider (1)parallel grasps: force-closure grasps
satisfying Proposition 2, and (2)concurrent grasps: force-
closure grasps satisfying Proposition 3. In the following
section, considering only concurrent grasps, we explain
how a switching graph can be constructed and explored
in order to generate a sequence of finger repositioning to
transform an initial grasp into a desired one. In Section IV,

we sketch how to extend the approach to handle parallel
and two-finger force-closure grasps.

(f)

E

aE

bE

aE

bE

aE

Eb

Ea

1
3

2(a)

1
3

4

2(b)

1
4

2(c)

1
4

2(d)

1
3

4

2

3

2(e)

b

Fig. 1. A sample regrasping sequence (see text)

III. SWITCHING GRAPH FORCONCURRENTGRASPS

The switching graph concept is based on the idea that a
set of concurrent grasps can be represented by a point in
the plane. This representation will be explained in detail in
Section III-A. We will also show how contiguous points
representing concurrent grasps can be grouped together
to form a cell. A vertex of a switching graph represents
a set of grasps by establishing an association with a
cell. The way we form a cell allows us to compute (1)
a finger aligning between two grasps within the same
cell and (2) a finger switching between a grasp in one
cell and another grasp in another cell (associated with a
neighboring vertex). This computation will be discussed
in Section III-D.

A. Representing Concurrent Grasps

A grasp is geometrically defined by the positions of
the fingers on the object boundary. Assuming polygonal
object model, a three-finger grasp can be defined by
specifying the distance of each contact point from the
origin of the corresponding grasped edge. This amounts
to using three parameters to uniquely define a grasp (with
the three grasped edges already chosen). However, using
Proposition 3, we can define a set of concurrent grasps
with only two parameters. In the following, we explain
how this can be done.

Let us consider Fig. 2(a) whereEi, i = a, b, c (a 6=
b 6= c) are the three shown edges whose internal normals
θ-positively span the plane. Consider also a pointx0

such that each of the three inverted friction cones1 at x0

intersects the corresponding edge in a non-empty segment.
Let us denote the intersection segment on edgeEi by E′i
and consider a grasp defined byxi ∈ E′i, i = a, b, c (Fig.
2(b)). Obviously from the construction, the three double-
sided friction cones atxi, i = a, b, c intersect in a region
containingx0 (regardless of wherexi is chosen inE′i)
and in turn, according to Proposition 3, the three contact
pointsxi, i = a, b, c form a concurrent grasp (Fig. 2(b)).

1an inverted friction cone w.r.t an edge is a friction cone projecting
toward the edge with its axis parallel to the normal of the edge



Therefore,x0 can be used for defining a set of concurrent
grasps formed by all possible triplesxi ∈ E′i, i = a, b, c.
Equivalently, we obtain the following proposition (a three-
dimensional version of this proposition can be found in
[11]).

Proposition 4: A sufficient condition for three fingers
to form a concurrent grasp is that the internal normals
of the three grasped edgesθ-positively span the plane and
there exists a pointx0 such that the inverted friction cones
at this point intersect the three grasped edges.

Note that each pointx0 satisfying Proposition 4 yields
three independent contact regionswhere fingers can be
placed independently while achieving concurrent grasp:
these regions are simply the intersection of the inverted
cones inx0 with the contact edges (Fig. 2(b)).

bE

aE

cE bE

aE

x0

E’a

E’b

bE’
E’c

cE’

aE’x a

x c

xb

(c)

E

(a) (b)

c

a,b,cF
0x

Fig. 2. Construction of a focus cell: (a) inverted friction
cones, (b) independent contact regions, (c) focus cell from the
intersection of the union of cones

We are now ready to discuss how a vertex in the
switching graph represents a set of grasps. A vertex of the
switching graph represents a set of concurrent grasps by
having an association with a set of all pointsx0 satisfying
Proposition 4 for a given triple of edges. Since an inverted
friction cone atx0 intersect the corresponding edge when
x0 lies in the polygon defined by the union of all double-
sided friction cones at every point on the edge (Fig. 2(c)),
the set of allx0 satisfying Proposition 4 can be obtained
from the intersection of the three polygons each of which
is the union of all double-sided friction cones on each
edge. In the following definition, we give a name for the
intersection polygon for future references.

Definition 2: The polygon defining the set of all points
x0 satisfying Proposition 4 for a given set of three edges
Ei, Ej andEk wherei 6= j 6= k will be called the focus
cell for the edges and will be denoted byFi,j,k

With the above definition, we can say that a vertex in
the switching graph represents a set of concurrent grasps
on edgeEi, Ej and Ek by having an association with
Fi,j,k, the focus cell for the triple of edges.

B. Finger Switching

Let us consider two focus cellsFa,b,c andFa,b,d such
that Fa,b,c ∩ Fa,b,d 6= ∅ (Fig. 3). Let q be a point in
Fa,b,c ∩ Fa,b,d. Clearly, q defines two sets of concurrent
grasps: one for triple of edgesEa, Eb, Ec and the other for
triple of edgesEa, Eb, Ed. Let us suppose that the fingers
1,2 and 3 are respectively on edgesEa, Eb andEc and
forming one of the concurrent grasps defined byq. It is
easy to see that the hand can switch to another concurrent

grasp on edgesEa, Eb andEd by placing finger 4 on any
point in the intersection between edgeEd and its inverted
friction cone atq (Fig. 3(c)) . Once finger 4 is onEd,
finger 3 can leave edgeEc resulting in a switching from a
concurrent grasp onEa, Eb, Ec by fingers 1,2,3 to another
concurrent grasp onEa, Eb, Ed by fingers 1,2,4. This
finger repositioning sequence enables us to plan finger
switching by identifying intersection between two focus
cells for which their triples of grasped edges are different
from each other by only one edge.

4

3

2

(c)(b)(a)

U

1
bE

aE

dE
cE

bE

aE

dE

bE
aE

cE

F

a,b,cF

a,b,c

F

a,b,dF

a,b,d

qq q

Fig. 3. (a) Fa,b,c, (b) Fa,b,d, (c) their intersection

C. Finger Aligning

A finger switching cannot occur between two grasps
whose corresponding focus cells do not overlap. For
instance, let us consider Fig. 4(a). Obviously, because
Fa,b,c ∩ Fb,d,e = ∅, it is not possible to switch directly
from a grasp on edgesEa, Eb, Ec to another grasp on
edgesEb, Ed, Ee using finger switching discussed in the
previous section. However, suppose the current grasp on
Ea, Eb, Ec is defined byq1, a finger switching can be
performed to switch to another grasp on edgeEa, Eb, Ed
(i.e., q1 is in bothFa,b,c andFa,b,d) and somehow if the
hand can adjust the finger to change from the grasp defined
by q1 to a grasp defined byq2 (which could be any point
in Fa,b,d ∩ Fb,d,e), another finger switching atq2 can be
applied to switch to a grasp on edgeEb, Ed, Ee as desired.

(a)

b,d,e

2
q

1q

F

F

F

a,b,d

a,b,c

(b)

E’d d

E’a E’’a

E’’

Fa,b,d

q

q

bbE’ E’’

1

2

Fig. 4. (a) moving between non-overlapping focus cells, (b)
moving locally within a focus cell

In fact, changing grasping configuration within the same
focus cell is the process we referred to as finger aligning.
This process can be accomplished by taking advantage of
the idea that force closure can be maintained during finger
sliding, finger rolling (see [3], [2] on how to apply rolling
in dexterous manipulation), or finger switching within an
independent contact region. To illustrate, let us consider
Fig. 4(b) showing configuration pointsq1 and q2 in the
same focus cellFa,b,d. The inverted friction cones atq1

intersect the three grasped edges in the three independent
contact regionsE′a, E′b andE′c and likewise the inverted



friction cones atq2 intersect the three grasped edges in
E′′a , E′′b andE′′d . Suppose that the three fingers are atxa ∈
E′a,xb ∈ E′b andxc ∈ E′c. This can be represented byq1.
To move fromq1 to q2, we move the three fingers from
xi to x′i ∈ E′i ∩ E′′i (i = a, b, c). It is sufficient to ensure
force closure during the fingers’ motion by maintaining
that the fingers are in the independent contact regions of
q1 during the entire process. This can be done by rolling
or sliding the fingers along the grasped edges fromxi
to x′i(i = a, b, c). Instead of rolling or sliding, it is also
possible to apply finger switching within each independent
contact region by placing a free finger atx′i and lifting
off the finger atxi. Because there is only one free finger
during a concurrent grasp, this kind of finger switching
can be performed in one independent region at a time.

By continuity, for any point in a focus cell, there exists
a neighborhood for which the three independent contact
regions of the point intersect the three independent contact
regions of every point in the neighborhood. That is, there
always exists a finger repositioning sequence to move
between any pair of configuration points in the same focus
cell.

D. Computing Switching Graph

To construct a switching graph, all of its vertices and
edges need to be found. For concurrent grasps, to identify
all vertices of a switching graph, we compute all focus
cells and to identify all edges, we compute all pairs of
overlapping focus cells with two common grasped edges.

Computing all focus cells requires identifying all triple
of edges having concurrent grasps satisfying Proposition
4. Instead of enumeratively checking all triples, the num-
ber of candidate triples can be significantly reduced by
considering only those triples whose internal normalsθ-
positively span the plane. Let us present an algorithm for
generating these candidate triples and then discuss how it
works.

In the proposed algorithm, required information about
an edge is maintained in a structureEdgeStruct. An
instance ofEdgeStruct for an edge contains two fields
which are (1) id: the number uniquely identifying the
edge, and (2)normalAngle: the angle between the internal
normal of the edge and the x-axis written in radian in
the range from 0 to2π. The input of the algorithm is an
arrayallEdge[1..n] containingEdgeStruct instances for
all edges of the polygon. The algorithm begins by sorting
allEdge in an increasing order of the fieldnormalAngle
then constructs an arrayupper[1..m1] containing all
EdgeStruct instances such that the fieldnormalAngle
is in the range[0, π) and an arraylower[1..m2] containing
all EdgeStruct instances in arrayallEdge that are not in
arrayupper. The algorithm sortsupper in the increasing
order ofnormalAngle and sortslower in the decreasing
order ofnormalAngle (this takesO(n) time sinceupper
andlower are constructed fromallEdge which is already

sorted). Then the algorithm proceeds as described in the
following pseudocode.

1: for i = 1 to m1 do
2: α = upper[i].normalAngle
3: j = 1
4: while j ≤ m2 and lower[j].normalAngle ≥ α+ π + 2θ do
5: β = lower[j].normalAngle
6: for eachk such that

allEdge[k].normalAngle ≥ β − π + 2θ and
allEdge[k].normalAngle ≤ α+ π − 2θ do

7: generate candidate triple of edges:
{upper[i].id, lower[j].id, allEdge[k].id}

8: j = j + 1

This algorithm is based on the idea that selecting one
normal restricts how the next one can be selected. The
algorithm selects the first normal from the upper half of
the unit circle (line 1) and the second normal from the
lower one (line 4). This is due to the fact that three vectors
cannot be in the same half of the unit circle when theyθ-
positively span the plane. According to Definition 1, once
the first normal is selected, it is needed that the angle
between the first and the second normals is smaller than
π−2θ. This amounts to choosing the second normal in the
lower circle and outside the cone with half angle2θ and
centered on the vector opposite to the first normal (Fig.
5(b)). This results in two regions where the second normal
may be chosen (regions A and B in Fig. 5(b)). However,
the region starting at smaller angle (region B) need not be
considered because selecting the second normal from this
region would lead to generating triples that were already
generated in previous iterations (i.e., generating the third
normal that was already considered as the first or second
normals in previous iterations). Once the first and second
normals are determined, Definition 1 is used again to
specify the range of angles where the third normal can
be selected (line 6 and region C in Fig. 5(c)). Note that
although the upper bound running time of this algorithm is
O(n3), it is in practice output sensitive and efficient. This
claim is supported by experimental results in Section V
that the number of the candidate triples generated from
the presented algorithm varies closely with the number of
focus cells found for polygons with varying number of
edges.

j

i

(c)(b)(a)
2θ2

Clower
θ θ2

2π

2θ
2θ

θ

0
π
upper

2

B A

i

j

Fig. 5. Generating candidate triples (see text)

Once all focus cells are found, every pair of focus cells
having two common edges are checked for intersection.
If the intersection is not empty, an edge is created in the
graph for linking the two vertices that represent the two
focus cells.

To plan a finger repositioning sequence from an initial
to a target concurrent grasp, two focus cells containing the



two grasps are identified. A graph search is then performed
to find a path joining the two vertices representing the
two focus cells. Additional constraint, such as finger
kinematics, may be incorporated as a search policy to find
a sequence that meets additional requirement. Once a path
is found2, for each pair of consecutive focus cells in the
path, a point in the intersection is chosen to determine a
concurrent grasp where a finger switching occurs. Again,
the point can be selected such that the resulting grasps
optimize some criteria. After these grasps are computed,
finger aligning can be planned to complete the sequence.
An advantage of this approach is that a path in the graph
represents a set of regrasping sequences, not just one. This
allows selecting sequences based on additional constraint
or any fine tuning on the sequences to be performed more
efficiently than an approach that returns one sequence at
a time.

IV. PARALLEL AND TWO-FINGER FORCE-CLOSURE

GRASPS

In the most general form, besides concurrent grasps,
sets of two-finger force-closure and parallel grasps are also
represented by some vertices of the switching graph. In
this section, we sketch how the basic ideas presented so
far can be extended to include the additional two types of
grasps.

As illustrated in the sample finger repositioning se-
quence in Section II, it is possible to apply finger switch-
ing to switch between a concurrent and a two-finger
force closure grasp. In fact, with minor modification, the
principle for planning finger switching between two con-
current grasps can be applied to planning finger switching
between a concurrent and a two-finger force-closure grasp.
The main difference is how a focus cell associated with
a set of two-finger force-closure grasps is constructed.
The construction is directly based on Proposition 1. To
understand the process, consider Fig. 6(a) showing a grasp
at xa on Ea and xb on Eb. For the grasp to be force-
closure, according to Proposition 1, the line segmentL
joining xa and xb must lie within the friction cones at
the contact points (Ca andCb). An equivalent condition
is that the orientation of the segmentL must be within
the double sided coneC∩ where C∩ is obtained from
the intersection of double-sided friction conesCa and
Cb drawn at the same point (Fig. 6(b)). Following [6],
this allows independent contact regions to be found as
the intersection between the double-sided coneC∩ at a
point x0 and the two grasped edges (Fig. 6(c)). The
corresponding focus cell is, in turn the set all points
x0 with non-empty independent contact regions. Like the
concurrent case, the focus cell can be constructed from the
intersection of the two polygon each of which is the union
of the coneC∩ at all points on each edge (Fig. 6(d)).

2of course, it may not be found if the two focus cells belong to
different connected components of the graph

(b)

a,b

(a)

F

(d)(c)
C

a

b

Ca

Cb

C

C C

x

Ea

Eb

aE

bE bE’

aE’

L 0

Fig. 6. Two-finger force-closure focus cell construction. (see
text)

For a parallel grasp satisfying Proposition 2, the three
double-sided friction cones of the three grasped edges,
when being drawn at the same point, must intersect in
a nonempty region (i.e., so that three parallel lines in
the cones exist). This prevents any finger switching for
a parallel grasp to result in a concurrent grasp because
there is still a pair of edges whose internal normals forbid
the three internal normals fromθ-positively spanning the
plane no matter which edge is chosen to participate in
the finger switching. It is, however, possible for a finger
switching to transform the grasp into a two-finger force-
closure grasp. This information allows us to draw the
diagram in Fig. 7 showing the overall structure of a
switching graph characterizing types of grasps a finger
switching can transform a certain type of grasps into.

Concurrent
grasps
Parallel

grasps
2−finger

grasps

Fig. 7. Switching diagram

By considering each friction cone as a range of an-
gles, we can apply a variation of the range intersection
algorithm from computational geometry [10] to efficiently
compute all triples of edges for which their double-sided
friction cones intersect. Every candidate triple is then
checked whether there exists a parallel grasp satisfying
Proposition 2. A vertex will be created for a triple for
which a parallel grasp exists. To create edges in the graph,
each vertex for parallel grasps is checked whether there
exists a finger switching with other vertices for parallel
grasps on other triples that share two grasped edges, or
with vertices for two-finger grasps that share one grasped
edge. Once a finger switching is found, it is kept with the
corresponding edge of the graph so that a finger switching
sequence can be recalled during a graph search when
repositioning sequence is computed (at this point, we do
not have a satisfying idea to represent a set of parallel
grasps as a cell like we did for the other two types of
grasps). The detail of this construction is a work-out from
Propositions 2 and 1. It requires significantly more space
to explain in detail, so it is omitted here.

V. I MPLEMENTATION AND RESULTS

We have implemented the regrasp planning for con-
current grasps based on the switching graph concept



described in Section III. We are currently in the process
of including the planning for parallel and two-finger
force-closure grasps sketched in Section IV. The program
is written in C++ using LEDA library [5]. To achieve
accuracy, rational numbers supported by LEDA are used
in geometric computation. All run times are measured on
a PC with a 1 GHz CPU.

Some test polygons with varying number of edges are
shown in Fig. 8. Table I shows the results for these
polygons with half friction cone angle of 10 degrees.
The result includes the number of candidate triples, the
number of focus cells actually found and the running
time. We can see that the number of candidate triples
generated by the algorithm varies with the number of
focus cells actually found. In fact, for all polygons we
have so far tested, the number of candidates never exceeds
three times the number of focus cells. Comparing with the
number of all triples from straightforward enumeration,
this result somewhat convinces that the pruning algorithm
described in Section III-D is efficient. Fig. 9(a)-(i) show
snapshots of a sequence of finger repositioning generated
from the program to transform initial grasp in Fig. 9(a)
into the target grasp in Fig. 9(i). The shaded areas in
the figure are the intersection region of the three friction
cones at the contact points that form a force-closure grasp.
The program takes less than 0.01 second to compute the
sequence. Note that the switching graph of this polygon
contains all 43 focus cells in one maximally connected
component. This means that there exists a repositioning
sequence for any pair of concurrent grasps.

(a)

(f)(e)(d)

(c)(b)

Fig. 8. Test polygons

TABLE I

RESULTS FOR TEST POLYGONS SHOWN INFIG. 8

figure #edge #candidates #focus cells time(sec)
8(a) 15 61 43 0.83
8(b) 20 121 77 1.65
8(c) 25 250 185 4.74
8(d) 30 577 407 13.39
8(e) 35 853 550 20.14
8(f) 40 1074 736 29.32

VI. CONCLUSIONS ANDFUTURE WORKS

We have presented a technique for regrasp planning
of a polygon by a 4-fingered dexterous hand based on

(i)

(a) (b) (c)

(d) (e) (f)

(g) (h)

Fig. 9. Snapshots of a generated regrasping sequence

the concept of the switching graph and demonstrated an
efficient implementation of the proposed approach. For our
future works, we are interested in integrating constraint,
such as finger kinematics and reachability, into our graph
search so that a more practical sequence of regrasps can
be obtained. We plan to address the regrasp planning for
curve objects. In particular, taking advantage of existing
research on computing antipodal grasps for variety of ob-
jects, we are interested in considering regrasping sequence
using only antipodal and parallel grasps. Finally, we want
to extend our approach to three dimensional case.

VII. REFERENCES
[1] A. Bicchi and V. Kumar. Robotic grasping and contact: A review.

In IEEE Int. Conf. on Robotics and Automation, 2000.
[2] A. Bicchi and A. Marigo. Rolling contacts and dexterous manip-

ulation. In IEEE Int. Conf. on Robotics and Automation, 2000.
[3] L. Han and J.C. Trinkle. Dextrous manipulation by rolling and

finger gaiting. InIEEE Int. Conf. on Robotics and Automation,
1998.

[4] J.W. Hong, G. Lafferriere, B. Mishra, and X.L. Tang. Fine
manipulation with multifinger hand. InIEEE Int. Conf. on Robotics
and Automation, 1990.

[5] Kurt Mehlhorn and Stefan Naher.Leda: A Platform for Combi-
natorial and Geometric Computing. Cambridge University Press,
2000.

[6] V-D. Nguyen. Constructing force-closure grasps.International
Journal of Robotics Research, 7(3):3–16, June 1988.

[7] A. Okamura, N. Smaby, and M. Cutkosky. An overview of
dexterous manipulation. InIEEE Int. Conf. on Robotics and
Automation, 2000.

[8] T. Omata and K. Nagata. Planning reorientation of an object
with a multifingered hand. InIEEE Int. Conf. on Robotics and
Automation, 1994.

[9] J. Ponce and B. Faverjon. On computing three-finger force-closure
grasps of polygonal objects.IEEE Transactions on Robotics and
Automation, 11(6):868–881, December 1995.

[10] F.P. Preparata and M.I. Shamos.Computational Geometry - An
Introduction. Springer-Verlag, 1985.

[11] A. Sudsang and J. Ponce. New techniques for computing four-
finger force-closure grasps of polyhedral objects. InIEEE Int.
Conf. on Robotics and Automation, 1995.


