Sweeping the Floor: Moving Multiple Objects with
Multiple Disc-Shaped Robots*

Attawith Sudsang

Department of Computer Engineering, Chulalongkorn University, Bangkok 10330, Thailand

attawith@cp.eng.chula.ac.th

Abstract

This paper addresses the problem of transporting multi-
ple objects in the plane with a team of disc-shaped robots.
Using geometric properties of the objects, we present a
method for computing positions of the robots that can
kinematically constrain the objects to lie in a subset of
the workspace. This computation is then used for deriv-
ing a motion plan of the robots for simultaneously pushing
the objects to a given region. The approach is demon-
strated in a simulation where a team of robots coopera-
tively sweep multiple objects that are scattered in a room
to one of its sides.

1 Introduction

Consider a rectangular room with multiple objects scat-
tered all over (Figure 1(a)). A representative of the goal
of this work is to find a way to move the objects to one
end of the room. Imagine if we could have a sufficiently
long stick, we would be able to sweep all the objects at
once by pushing the stick across the floor (Figure 1(b)).
What the stick does is providing a kinematic constraint
keeping the objects on one side of it. Of course, in the
case where the objects are large, it may not be easy or
practical to find a large stick and a robot powerful enough
to push. Our idea is then to distribute the manipulation by
replacing the stick with a team of disc-shaped robots (Fig-
ure 1(c)). Instead of the stick, the robots in a straight line
formation cooperatively push the objects as they simulta-
neously move forward (Figure 1(d)). For this scheme to
work, any gap between consecutive robots in the forma-
tion must not be too wide or some objects might be lost
through the gap during the sweep. This condition requires
us to solve two subproblems: (1) to compute how far a
pair of consecutive robots can lie apart from each other
while they still prevent the objects (with given geome-
tries) from going through the gap, and (2) to synchronize
the robots so that a specified interval of distance between
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consecutive robots be maintained during the entire sweep-
ing motion. Before going into further detail, let us discuss
some related works.
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Figure 1: Moving multiple objects (a)-(b) using a stick, and
(¢)-(d) with multiple disc-shaped robots

The main idea of our work is based on using multiple
robots, possibly together with the environment, to form
kinematic constraint that can capture' the given objects
in a bounded region of the workspace. By appropriately
moving the robots while maintaining a capturing forma-
tion, the objects can be moved to a desired region. We
do not need to know precisely where the objects are, but
still can accomplish a desired transporting task. In other
words, a capturing action provides a means with which
uncertainty in the object’s configuration can be handled.
This also allows us to construct a simple manipulation
plan without relying on the contact dynamics. Despite its
usefulness, the process of capturing objects has so far re-
ceived little attention in robotics. It was introduced in [14]

Lan object is captured when it is restricted to stay within a bounded
region of the workspace, i.e., there is no trajectory to bring the object to
infinity



the concept of Inescapable Configuration Space (ICS) re-
gion, i.e., on the idea of characterizing the regions of con-
figuration space in which the object is not immobilized
but is constrained to lie within a bounded region of the
free configuration space (see [12] for similar work in the
two-finger case). This concept is used in [13] as a basis
for computing a plan for manipulating polygonal objects
using three disc-shaped robots. Although the contact dy-
namics can be safely ignored, polygonal object model is
assumed and the resulting plans may contain many very
short steps because the ICS region is often very small
due to the computation that takes into account only three
chosen edges. The ICS is defined in the combined ob-
ject/robot configuration space while our capturing concept
is purely derived in the workspace of the object. This dif-
ference in foundation results in a much simpler capturing
condition than that of ICS and allows the entire boundary
of the object to be taken into account.

Our approach to transporting objects applies coopera-
tive pushing by a team of robots. In addition to the desire
to capture multiple objects, the motivation comes from the
difficulty in handling an object when it is too large to be
grasped by a single robot, or when the available robot is
not equipped with grasping capability. Influenced by [8],
pushing has been recognized as a useful process in ob-
ject manipulation [1, 7, 9]. The common approach of the
works rely on the Coulomb friction model and the quasi-
static assumption. Based on contact dynamics modeling
which is a priori unverifiable, the assumption limits mo-
tion of the pusher to be slow enough that inertial forces
can be ignored and requires that the contact between the
pusher and the object be maintained during the entire ma-
nipulation. Avoiding these shortcomings, our approach to
object manipulation bypasses the need for contact dynam-
ics modeling by taking advantage of the ability to kine-
matically prevent the object from escaping. This is ac-
complished by computing trajectories of the robots such
that the corresponding formation can always capture the
object (as if the object is transported in a moving cage).
The overall idea is similar to that of [13] except that our
approach can handle multiple objects, can apply to objects
other than polygons and extra robots may be easily added
to a manipulation task for improving the robustness.

Recently, there have been a few works addressing the
problem of manipulating multiple objects. An example is
the distributed manipulation of multiple objects in small
scale using a vibrating plate shown in [11]. Another in-
teresting example is given in [3] where boxes are manip-
ulated by wrapping ropes around them. This work shows
a way to take advantage of the capturing constraint auto-
matically provided by the wrapping protocol of a rope.

The remainder of the paper is organized as follows. We
begin by considering a basic kinematic constraint that can

be created by two robots. In particular, we present in Sec-
tion 2 a sufficient condition guaranteeing that two pointed
robots can form a gap for which the given object can-
not pass through without colliding with the robots. Then
in Section 3, this condition is used for arranging multi-
ple robots in a capturing formation guaranteeing that the
given set of objects surrounded in the formation are con-
strained in a bounded region of the workspace. Transport-
ing multiple objects then roughly amounts to computing
how to move the capturing formation to a desired region.
We present the results from some simulation experiments
in Section 4 and finally the conclusion in Section 5.

2 Impassable Gap

In this section, we present some background on a suf-
ficient condition for capturing an object. The following
content is mainly after our previous work in [?].

Two robots form an impassable gap for a given object
if there exists no trajectory of the object that can bring it
through the gap without colliding with the robots. Lemma
1, which is the main foundation of the work in this paper,
states that two pointed robots form an impassable gap for
a convex object when the distance between the robots is
smaller than the widrh of the object (formally defined in
Section 2.1). Then in Section 2.2, we extend LLemma 1 to
derive Lemma 2 which describes a sufficient condition for
two pointed robots to form an impassable gap for a given
nonconvex object.

2.1 Impasse for a Convex Object

Let us consider a convex object 5.

Definition 1 For a fixed orientation of B, the parallel en-
velop £(8) is defined to be a pair of the closest parallel
lines such that the angle between the lines and the x-axis
is 0 and the region bounded by the two lines contains the
convex object B (see Figure 2). Also, let dg : S* — R
be a function mapping an angle 6 to the shortest distance
between the two parallel lines of the envelop £(8).

We follow [4] to call d¢ as the diameter function. In that
paper, the diameter function is used for computing the
squeeze function for orientation planning of polygons us-
ing a frictionless gripper without sensors. The paper also
presents an O(n) algorithm for computing the diameter
function of n-gon figures.

The following definition formally define the width of a
convex object.

Definition 2 The width of B, denoted hereafter by W, is
the minimum of the diameter function dg () for all angles
g eSt
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Figure 2: (a) Parallel lines Ly and Lo touch the convex B and
form the parallel envelop £(8) with dg(6) = d. and (b) the
corresponding function dg in 6.

The following lemma is the key foundation of the work
presented here. Let us imagine two rooms separated by
an infinitely long straight wall with one open door. The
lemma essentially states that a convex object cannot go
from one room to the other if the door is narrower than the
width of the object. The open door form a gap; imagining
that two pointed robots are placed at the boundary of the
gap (P, and P in Figure 3), the lemma allows us to con-
clude that the two pointed robots form an impassable gap
when the distance between the robots is smaller than the
width of the convex object. A proof of the lemma can be
found in [?]. The proof relies heavily on convexity of the
object. It traces the two inward normals at the two inter-
section points between the object’s boundary and a fixed
vertical line as the object moves from one side of the line
to the other. The proof shows that no matter which tra-
jectory is chosen, the object always, at a certain moment,
intersects the vertical line in a segment that is not smaller
than the width of the object.

Lemma 1 Let G be a vertical line with a gap of length
d. If d < W, no trajectory can bring the convex object
B from being entirely in one half plane completely to the
other without colliding with G (the two half planes are
separated by the line supporting G, see Figure 3(a)).

Figure 3: the object is confined in the left half plane by a gaped
wall.

2.2 TImpasse for a Nonconvex Object

The discussion up to this point has been concerned only
with convex objects. In the following lemma, we give a
sufficient condition for two robots to form an impassable
gap for a nonconvex object. This lemma straightforwardly
extends Lemma 1 using an intuitive fact that when part of
a rigid object cannot go through a gap, neither the whole
object can.

Lemma 2 Let A be a nonconvex rigid object with a con-
vex subset B. Two pointed robots form an impassable gap
for A when the distance between them is smaller than W
where W denotes the width of B. (Figure 4).
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Figure 4: (a) a nonconvex object, (b) the object is captured
when its convex subset (shaded region) is captured.

To form an impassable gap according to Lemma 2 for a
nonconvex object, a convex subset of the object is needed.
In the following, we describe how a convex subset could
be obtained. Note here that the lemma holds for any con-
vex subset but it is desirable to have a subset with larger
width (to maximize the distance between the robots).

To find a convex subset of an object, first we find an
inner polygonal approximation of the object. An inner
polygonal approximation of a given figure is a polygon
that is completely inside, and approximates the figure.
The inner polygonal approximation can be found using
a variation in two dimension of the polygonization tech-
nique in [6]. Clearly the resulting polygon is a subset of
the given object. Next, we compute a convex subset of the
polygon. Any subset of this polygon is obviously a subset
of the given object as well. To find a convex subset of the
polygon, we resort to a computational geometry technique
for convex partitioning [10]. Convex partitioning problem
asks how a polygon can be partitioned into a small number
of convex pieces (Figure 5(b)). An algorithm giving the
smallest number of partitions is presented in [2]. Using
this heuristic makes sense because having fewer partitions
usually implies larger partitions with larger width value.
For each partition obtained, its width can be computed by
applying the algorithm for computing the diameter func-
tion of a polygon in [4].
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Figure 5: (a) inner polygonal approximation of the curve object
shown in Figure 4(a), and (b) its convex partition.

So far we have assumed dimensionless pointed robots.
For two disc-shaped robots with the same nonnegative ra-
dius 7, it is easy to see that the shortest distance between
the robots when their centers are far apart by distance d is
equal to d — 2r. Taking this into account, to handle disc-
shaped robots with a common radius r > 0, we generalize
Lemma 2 by replacing W with W + 2. This ensures that
there exists a pair of points (one for each robot) such that
the distance between the two points is less than W. With
this consideration, without loss of generality, from now
on, we will assume pointed robots.

3 Sweeping the Floor

We are now ready to apply the ideas discussed thus far
to deal with the problem that is introduced at the begin-
ning. Let us consider a rectangle R with one open end
and whose sides are parallel to the = and y axes (Figure
6). Let GG be a line segment parallel to the y-axis and pass-
ing through the rectangle. The segment GG clearly divides
the plane into two regions: bounded and unbounded. Let
us call the bounded region by H and unbounded region
by H.

Figure 6: Regions H and H created by G and R

Suppose that there are n objects B;,7 = 1...n lying
completely in the region H and let W* = min{W;}, 1 <
i < n where W; denotes the width of the widest impass-
able gap according to Lemma 2 for the object B;. By
Lemma 2, it is clear that if we place pointed robots along
G by arranging that all gaps are narrower than W*, we
can guarantee that no object can pass through G to lie
completely in the region H (Figure 7(a)).
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Figure 7: Moving objects using multiple robots attached to
the line segment G (a) at the initial configuration, and (b) as
G moves to the right

Let us attach the robots to the line segment G and con-
sider the motion of the robots as GG is translated to the
right (Figure 7(b)). It is easy to see that the robots will
simultaneously move to the right and the width of ev-
ery gap remains unchanged during the entire motion of
the robots. This means that if all the gaps are narrower
than W* before the motion, the objects will not be able
to pass through G during the entire motion and they will
be pushed into the shrunk bounded region H when the
robots stop. In short, to move the objects to the right, si-
multaneously move the robots to the right. Because the
evolving kinematic constraint created by the robots and
the wall performs the manipulation, a simple transporting
strategy is obtained. With this simplicity, there are, how-
ever, two critical issues: (1) what precision of the robot
synchronization is needed?, and (2) how far can the robots
continue to push?

Regarding the first issue, it is one of the main advan-
tages of our approach that some deviation from perfect
control and synchronization can be tolerated and this tol-
erance can be increased by adding extra robots. More pre-
cisely, the robots do not need to maintain fixed positions
with respect to one another during the motion; they need
to maintain only that the width of every gap is smaller
than a specified value. By adding extra robots, we can
distribute the robots more densely on the formation. This
allows each robot to be able to independently move in a
wider region relative to the others while still maintain that
its associated gap is narrower than the specified width.
This idea is illustrated in an example shown in Figure 8. In
this example, the objects to be moved are three discs with
the same diameter; we can then set the value of W* to the
common diameter. In Figure 8(a), only three robots are
used and they are arranged evenly on G having the width
of each gap equal to W*. It is easy to see that to move
the robots to the right while ensuring that the constraint
on the gap’s width is satisfied, the robots have to be per-
fectly synchronized so that they remain fixed with respect
to each other. With two extra robots (Figure 8(b)), re-
quirement on synchronization is relaxed; each robot may



move independently in a neighborhood (drawn as circle
around the robot) while satisfying the gap’s width con-
straint guaranteeing no object can escape.
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Figure 8: Robots shown as solid dot cooperatively moving three
discs. Tolerance to error in synchronization and control can be
improved by adding extra robots (a) no error in synchronization
can be tolerated, and (b) each robot can lie independently in its
neighborhood while still guarantee that the objects cannot es-
cape

The second issue is crucial to the execution as we want
to know how far we can command the robots to push. In
practice, the robots could be stopped from moving further
by the effect of jamming. Here we consider two classes of
jamming. The first one, hard jamming, is when it is kine-
matically impossible for the robots to continue pushing.
The robots and the objects interlock in such a way that the
robots totally immobilize the objects and any motion of
the robots in the intended direction would result in pen-
etration. Figure 9(a) shows an example of hard jamming
where the robots cannot continue pushing to the right. The
second one, soft jamming, is when an object cannot be
pushed further because it is in an equilibrium even though
there exists a collision free trajectory for the object. An
example of soft jamming is shown in Figure 9(b). In this
illustration, the forces at the contact points P and () of the
object B cancel each other resulting in an equilibrium. We
can see that in this case the equilibrium is independent of
how hard the robot pushes; the wall will be able to react
with an exact opposite force because the friction cone at
P covers () and likewise the friction cone at () covers P.
However, this does not mean that the object will always
be stuck when it is at this particular configuration. The
object may escape from this equilibrium by the dynamic
effects such as impact and inertial forces.

In general, accurately predicting when hard jamming
will occur is difficult; it requires simulating contact dy-
namics which is in a priori unverifiable. For soft jamming,
the situation is less restricted as there are ways to avoid or
reduce the possibility of soft jamming. A typical approach
is to reduce the friction between the objects and the robots
and the friction between the objects and the wall. The fric-
tion between the objects and the supporting floor is not to
be concerned because it can be overcome by the robots
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Figure 9: Two types of jamming: (a) hard jamming, and (b)
soft jamming

pushing harder as it has a constant maximum magnitude
(e.g., assuming the weight of the objects is fixed). In con-
clusion, due to the effect of jamming, it is difficult to tell
in advance whether the robots will be able to push to a
commanded distance. We need to rely on an online de-
tection of jamming so a modified plan can be constructed.
This issue is crucial to experiments with real robots and
currently under our investigation.

In the case discussed so far, the wall of R is also needed
to provide part of the capturing constraint. In fact, as-
suming that the initial configurations of the objects are
given, without relying on the environment, the robots can
form a cycle surrounding the objects to completely pro-
vide a capturing formation, again, by maintaining that the
distance between consecutive robots is smaller than W*
(Figure 10(a)) . To move the objects to a new region, we
command the robots to move accordingly while making
sure that the distance contraint is satisfied during the en-
tire motion. An advantage of this approach is that it is less
likely to suffer from jamming than when the wall is in-
volved. Nevertheless, it might seem that a large number of
robots is needed; this is the price to pay for the simplicity
in the manipulation planning. However, in general, some
robots might not be necessary as the objects tend to shift
to the capturing side opposite to the velocity direction of
the moving formation. This is illustrated in Figure 10(b).
This observation might be used as a heuristic for reducing
the number of robots needed in the manipulation.
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Figure 10: (a) A capturing cycle formation around the objects,
where (b) some robots is not needed as the formation moves
forward in the direction v



4 Simulation Results

We have implemented the algorithm for computing the
width of an impassable gap for a given object. The pro-
gram is written in the C++ programming language and
runs on an 800 MHz PC. The current implementation can
handle only polygonal objects. The program takes less
than one second on each of the test polygons with over 30
vertices. For simulating the behavior of the objects when
being pushed, we use MATLLAB and Working Model 2D
(see [5] about the use of the software for simulating rigid
body motion) . In Figure 11, we show snapshots from a
simulation run as the robots move to the right. The masses
of the robots are set to be sufficiently large that the plan
trajectory of the robots are not affected by collision with
the objects.
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Figure 11: (a)-(d) snapshots from a simulation as the robots
move to the right.

5 Conclusion and Future Works

We have presented a sufficient condition for two disc-
shaped robots to form an impassable gap for a given ob-
ject. This condition has been used in planning formation
of multiple robots in transporting multiple objects with
known geometries and initial configurations. Results from
simulation experiments have been presented.

Future works include physical implementation using
real robots. We are currently completing jam detection to
be used in the implementation as discussed in Section 3. Tt
is clear that when dealing with elongated objects, accord-
ing to our approach, large number of robots are needed.
We plan to explore how the number could be minimize or
how planning strategy should be modified to specifically
handle the presence of elongated objects. Other works in-
clude investigation of transportation planning with limited
number of robots, and transportation planning for multi-
ple 3D objects floating in space.
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