
Fast Computation of 4-Fingered Force-Closure Grasps from Surface Points

Nattee Niparnan and Attawith Sudsang
Department of Computer Engineering,

Chulalongkorn University, Bangkok 10330, Thailand
{nattee,attawith}@cp.eng.chula.ac.th

Abstract— This paper addresses the problem of computing
frictional 4-fingered force-closure grasps of three dimensional
objects. The proposed approach searches for force-closure
grasps from a collection of sampled points on the object’s
surface. Unlike most other works, the approach is not limited
to the objects with a certain class of shapes. It can be applied
to an object in any shape since only the object’s surface points
and corresponding surface normals at the points are needed.
The efficiency of the approach arises from a heuristic for
search space pruning which is based on ability to efficiently
locate regions in three dimensional space where friction
cones intersect and a randomized test for checking force-
closure condition. The proposed approach is implemented and
preliminary results are presented.

I. I NTRODUCTION

Grasp planning plays an important role in grasping and
manipulation [1], [10]. Its objective is to find a desirable
grasping configuration by computing appropriate contact
positions for placing the fingers on the object’s surface.
Typically, the classical force-closure condition is consid-
ered in the computation to ensure that the object can be
held securely by the fingers [9], [8]. Most works in force-
closure grasp computation require fitting the shape of the
object to be grasped with a certain class of geometric
models so that the computation can be performed entirely
on a model. Since the information regarding the object’s
surface is crucial to grasp computation, it is natural to use
boundary based models in describing shapes. A boundary
based model of an object represents a surface enclosing the
object as a set of faces [7]. Majority of research in grasp
planning focuses on polyhedral models (whose all faces
are planar) with an aim in deriving efficient or analytical
formulation for characterizing force-closure grasps on a
given set of faces [11], [13], [6]. Several techniques have
been proposed and shown to be efficient in generating
good grasps (according to various criteria) provided that
all grasped faces are already selected. The problem of
choosing appropriate grasped faces is, however, rarely
studied [5]. A straightforward search of all combinations
of faces is usually applied, yielding an approach with
prohibitive time complexity that can handle, in practice,
only objects with small number of faces.

In general, many real objects cannot be represented
by a polyhedral model with small number of faces. A
standard technique widely used in geometric modeling to
represent a general shape (including curved objects) is to
describe the surface enclosing its volume using a large
number of small triangles. Unfortunately, as mentioned
earlier, most works in grasp planning were not designed to

handle large number of faces. Several papers demonstrated
efficiency of their approaches using only simple test objects
with small number of faces (usually fewer than 20). This
concern was taken into account in only few papers. In
[14], the problem of fixture design from a set of pre-
selected frictionless contact points was addressed. Using a
local greedy search with D-optimality criterion, the method
seek a force-closure set of 7 fixturing locations from the
given set of contact points. Operating on set of points
enabled the method to handle complex objects. Recently,
it was suggested in [2] that acceptable force-closure grasps
could be efficiently generated using a randomized selection
from a set of contact candidates. The paper also attempted
to convince that the resulting grasps achieve the quality
comparable with human generated grasps.

The agenda here is that grasp planning need an efficient
approach for dealing with real-world complex objects. This
paper presents a solution to the problem. More precisely,
assuming four hard fingers with frictional point contacts,
we address the problem of computing force-closure grasps
of arbitrary three dimensional objects. Although the ap-
proach shares the flavors of the techniques used in [14]
and [2], it has some different standpoints. Unlike both
papers, our objective is to efficiently compute as many
force-closure grasps as possible as opposed to a single
good grasp. Grasp quality is intimately task dependent,
so the users should be supplied with enough choices to
make a good decision. Moreover, obtaining a number of
grasps at once is directly helpful to certain tasks such as
manipulation or regrasp planning where several grasps are
usually considered. Conceptually, the proposed approach
searches for force-closure grasps from a collection of
sampled points on the object’s surface. It can be applied
to an object in any shape since only the surface points and
corresponding surface normals at the points are needed.
The efficiency of the approach arises from a heuristic for
search space pruning which is based on ability to efficiently
locate regions in three dimensional space where friction
cones intersect and a randomized test for checking force-
closure condition. Unlike the local method in [14], our
heuristic search captures more global information which
allows a variety of force-closure grasps to be generated.
We demonstrate in preliminary experimental results that the
approach is efficient. It is capable of computing hundreds
of force-closure grasps of complex objects with running
time below three seconds.

The remainder of the paper begins with some necessary
background on grasping in Section II. The detail on how

the search for force-closure grasps is performed is given
in Section III. We describe our implementation and present
some preliminary results in Section IV, and then conclude
the paper with conclusion and future works in Section V.

II. BACKGROUND

In this section, we give some necessary background on
grasping. In particular, the condition given in Proposition
1 provides the most important foundation to the derivation
of our search method for finding force-closure grasps.

A hard finger in contact with some object at a point
x exerts a forcef with momentx × f with respect to
the origin (but it cannot exert a pure torque). Force and
moment are combined into a six dimensional zero-pitch
wrenchw = (f ,x× f). Under Coulomb friction, the set
of wrenches that can be applied by the finger is:

W = {(f ,x× f) : f ∈ F},
whereF denotes the friction cone atx.

A d-finger grasp is defined geometrically by the position
xi(i = 1, ..., d) of the fingers on the boundary of the
grasped object. We can associate with each grasp the set
of wrenchesW ⊂ <6 that can be exerted by the fingers.
If we denote byWi the wrench set associated with theith

finger, we have

W = {
d∑

i=1

wi : wi ∈Wi for i = 1, ..., d}.

We say that a grasp achievesforce closurewhen any exter-
nal wrench can be balanced by wrenches at the fingertips,
i.e. when the corresponding wrench setW is equal to<6.
Because zero wrench is contained inW for a force-closure
grasp, it is then clear that force closure implies equilibrium.
Interestingly, it is shown in [13] that the converse of this
statement is also true for non-marginal equilibrium, i.e.
grasps such that the forces achieving equilibrium lie strictly
inside the friction cones at the fingertips. In other word,
grasps achieving equilibrium with non-zero forces for some
friction coefficient achieve force closure for any strictly
greater friction coefficient.

A zero-pitch wrenchw = (f ,x × f) for the force
f can be thought of as the line of action of this force
and can be written in Plücker coordinates. Equilibrium
therefore implies that the lines (represented as Plücker
vectors) associated with the contact forces are linearly
dependent. As mentioned in [13], Grassman geometry [3],
which characterizes the varieties of various dimensions
formed by sets of dependent lines, can be applied to
yield a necessary and sufficient condition for non-planar
equilibrium, namely, the contact forces mustpositively
span1 <3 and their lines of action all intersect in a point
(concurrent grasps), lie in two flat pencils having a line in
common (pencil grasps), or form a regulus (regulus grasps).

1A set of vectors positively spans some space when any vector in the
space can be written as a linear combination of the vectors in the set with
positive coefficients

Although there are three types of non-coplanar 4-
fingered force-closure grasps, the work in this paper is
interested in computing concurrent force-closure grasps
only. Proposition 1, derived directly from the above dis-
cussion, will therefore state only the condition involving
concurrent grasps. Despite the omission of the other two
types, results given in Section IV show that the proposed
approach successfully finds a large number of force-closure
grasps.

Proposition 1: A necessary and sufficient condition for
four non-coplanar points to form a concurrent force-closure
grasp is that: (P1) there exist four lines in the corresponding
double-sided friction cones that intersect in a single point,
and (P2) the vectors parallel to these four lines and pointing
inward the grasped object positively span<3.

III. F ORCE-CLOSUREGRASPSEARCH

Our objective is to find as many 4-fingered frictional
force-closure grasps as possible while constraining that
all contacts must be selected from a set of given surface
points. Since the intended number of surface points is well
over 200, a straightforward brute-force test of all com-
binations for force-closure condition will definitely yield
unacceptable performance. Very large search space calls
for an aggressive pruning technique and an informed search
strategy that effectively incorporates the knowledge of the
force-closure condition. These features are the foundation
of our approach.

The input of our proposed approach consists of a set
of points on the surface of the grasped object and cor-
responding inward normals at these surface points. At
present, the surface points are randomly sampled from a
model of the object (we are currently investigating several
sampling policies that may help improve the efficiency).
The proposed approach is developed around a technique
for pruning the search space. The underlying idea is based
on condition P1 of Proposition 1 which implies that for
four contact points to form a 4-fingered concurrent grasp
it is necessary that the four friction cones at the points
intersect. By considering only combinations that satisfy
this condition, large portion of the search space can be
ignored since for most general shapes, 4 friction cones at
4 arbitrary points rarely intersect.

Now that we have decided to use friction cone intersec-
tion as the pruning condition, an efficient method is needed
for computing which combinations of four surface points
will yield intersecting friction cones. Clearly, computing
exact intersection is too time consuming to be practical. We
therefore propose to use intersection in discretized space:
The 3D object’s space is discretized into a regular 3D
grid of cubic pixels2 (see an example in Figure 1(a)), axes
of all friction cones are then drawn on the grid space in
a bitmap fashion, and the desired intersection is guided
by the pixels drawn over by at least four axis lines. It
should be noted here that friction cones’ axes are used
in the computation instead of the whole friction cones

2The termvoxel is sometimes preferred

themselves. This is because we want to take advantage
of an efficient raster based line drawing algorithm simulta-
neously with the effect of discretization in approximating
cones’ volume. Intuitive justification behind this heuristic
technique is that when axes of a set of friction cones
intersect a cube, it is more likely for this cube than the
others to contain the intersection of the set of friction cones.
This effect is illustrated in Fig. 1(b) where we can see
more intersections of friction cones in the lower left cell
than the others. As we will see in the next section, this
heuristic enables the algorithm to focus the search in the
region where condition P1 of Proposition 1 is likely to
be satisfied. Note that although our problem is in a 3D
setting, intrinsic 2D illustrations will appear to help clarify
discussion throughout the rest of this section. This can be
done mainly because of great similarity between 2D and
3D concurrent grasps. The similarity is confirmed by a 2D
version of Proposition 1 for 2D force-closure grasps given
in [12].

(a) (b)

Fig. 1. (a) Cartesian partitioning of a cube into3 × 3 × 3 identical
cubes, (b) Arrangement of friction cones at the given sampled points

Conceptually, the proposed approach is a search that is
performed along the hierarchy of discretizing resolutions.
It starts from the coarsest resolution where the sets of
surface points whose friction cones likely to intersect are
identified using the pruning method based on intersection
in discretized space mentioned above. For each of these
sets, a randomized test is applied to generate force-closure
grasps. Then, only on each of these sets, the same search
process repeats in a recursive fashion to discover more
force-closure grasps at a finer discretizing resolution. This
recursion is performed to a specified depth. A pseudo code
in the following section describes the approach in detail.

A. Algorithm

In this section, we give a pseudo code of the approach
outlined above and discuss how it works in detail. For clar-
ity, let S be the set of all given surface points in the object’s
space. For any points ∈ S, let us denote byn(s) the
corresponding inward normal ats, by l(s) the line passing
through s with direction n(s), and by f(s) the double
sided friction cone ats with half angleθ and axisl(s).
In the following pseudo code, the input of the procedure
fc grasp search consists of the setT ⊆ S containing
the surface points where the search is performed, an
isothetic cube3 C in the object’s space, and a recursive

3A cube with its sides parallel to the axes

depth variabled. In the following, let us list a pseudo code
of the procedurefc grasp search and explain its algo-
rithm. Note that computing force closure grasps amounts
to executing the commandfc grasp search (S,C∗, 1)
whereC∗ is an initial isothetic cube containing all surface
points inS.

fc grasp search (T,C, d)
1: if d > D then return
2: Let the cubesCj , j = 1, ..,m3 be them×m×m

partitioning of the cubeC using cartesian grids
of the same spacing

3: Let Tj = {s| s ∈ T and l(s) intersectsCj}
4: for all Tj with |Tj | ≥ 4
5: if vectors inL = {n(s)| s ∈ Tj} positively span<3 then{
6: for i = 1 to K {
7: Randomly pick a pointp in the cellCj
8: M = {s| s ∈ Tj andp is contained in the conef(s)}
9: find equilibrium grasps(M,p)
10: }
11: fc graspsearch(Tj , Cj , d+ 1)
12: }

The above code begins in line 1 by checking whether
the current search exceeds the depth limit. Line 2 defines
Cj , j = 1, ...,m3 to be m3 identical cubes obtained
from partitioning the cubeC using m × m × m grid
of the same spacing. These cubesCj ’s determine the
discretization mentioned earlier. Line 3 computes the sets
Tj , j = 1, ...,m3 where eachTj contains all surface points
in T whose corresponding axes of friction cones intersect
Cj . This computation can be done using an algorithm
for drawing lines in 3D bitmap. The detail is given in
Section III-D. The main part of the search is the loop
in lines 4-12. This loop considers onlyTj with at least
four members (line 4), i.e., correspondingCj is drawn
over by at least four axes of friction cones. This decision
is a pruning heuristic that allows the search to operate
on typically smaller setsTj ’s instead of the setT . For
eachTj considered, in line 5, the inward normals of all
members ofTj are tested whether they positively span
<3. If they do not, the correspondingTj is skipped from
further processing. The detail on how a set of vectors is
checked for positively spanning<3 is given in Section III-
B. It should be noted that a set of surface points whose
normals do not positively span<3 may sometimes form a
force closure grasp, but the resulting grasps are usually not
desirable due to their poor ability to resist forces in certain
directions. A 2D version of this scenario is illustrated in
Fig. 2. Fig. 2(a) shows three surface points with their
friction cones and a pointp in the intersection of the three
cones (shaded region). As we can see in Fig. 2(b), the three
inward normals (the cones’ axes) do not positively span
<2, but there exists, as shown in Fig. 2(c), an equilibrium
with line of forces intersecting atp and positively spanning
<2. Despite achieving force-closure, given the maximum
magnitude of forces each finger can exert, this grasp is very
weak in resisting forces in horizontal directions.

For each setTj that passes the positively spanning test,
the algorithm continues to the code in lines 6-11. This
portion of the code is responsible for two tasks: (1) to
randomly test and generate force-closure grasps at the

p
p

(a) (b) (c)

Fig. 2. Three sampled points with inward normals not positively spanning
<2 but yield a force-closure grasp: (a) three friction cones at the points,
(b) the three inward normals, and (c) an equilibrium grasp indicating
force-closure.

current level of discretization, and (2) to invoke a recursive
search onTj using finer discretization ofCj . The first task
is handled by theK iterations in lines 6-10. The following
paragraph describes its detail.

Each of theK iterations in lines 7-9 aims at finding com-
binations of surface points inTj that yield non-marginal
equilibria satisfying Proposition 1. The first part (lines 7-8)
identifies setM , a subset ofTj with intersecting friction
cones (so that intersecting lines according to condition P1
of Proposition 1 can be found). To avoid the complexity
from applying a direct approach based on computing
intersection of cones, a randomized method is used in
approximating the setM . The method is based on a simple
fact that the existence of a point that is contained in every
cone in a given set implies that all the cones in the set
intersect. This translates exactly to the code in lines 7-
8. Note that checking whether a point is contained in a
cone can be easily done by comparing the half angle of
the cone with the angle between the cone’s axis and the
line between the point and the cone’s vertex. Once the set
M is obtained, the second part of the iteration assumes
that the randomly selected pointp is the intersection of
the four lines of contact forces. This assumption is then
used for listing all combinations of four surface points in
M that fulfill condition P2 of Proposition 1 (line 7). These
combinations thus form force-closure grasps by satisfying
both P1 and P2 conditions of Proposition 1. The detail on
how the combinations are enumerated is given in Section
III-C.

The only remaining detail is about the code in line 11.
This code invokes a recursive searchfc grasp search on
Tj using the cubeCj , allowing the search to be performed
at a finer discretizing resolution ofCj . Varying resolution
of discretization is needed in discovering as many force-
closure grasps as possible. This is because some grasps
can be detected only with a sufficiently large pixel cube.
An analogous 2D illustration in Figure 3 demonstrates this
situation. We can see that choosing a square smaller than
the squareC will not be able to cover the three normals
and will result in a failure to detect the grasp formed by
the three corresponding points. This issue affects how the
size of the initial cube is set. Setting the size too small
may result in missing opportunity to detect some grasps.

In the implementation, the initial cube is usually defined
to be much larger than the object. This does not affect the
performance due to efficiency of the pruning in the first
level. We are in the process of investigating the relationship
between the cube’s size and resulting grasps in order to
derive a strategy for appropriately selecting the initial size
and discretizing factorm.

C

Fig. 3. A squareC (shaded region) just large enough to cover the three
normals (thick lines)

B. Positively Spanning<3 Test

A set of vectors fails to positively span<3 when they
lie in the same half space bounded by a plane through
the origin. This is because any vector in the other half
space cannot be written as a positive linear combination of
the set of vectors. To determine whether a set of vectors
positively span<3, let us consider a set of points whose
coordinates are given by the vectors in the set and compute
the convex hull of these points and the origin. If the origin
is in the boundary of the resulting convex hull, it is clear
from convexity that all the input points are in one half space
bounded by a plane through the origin, which means that
the given set of vectors do not positively span<3. Note
that computing a convex hull of three dimensional point set
takesO(n log(n)) wheren is the number of input points
[4].

C. Enumerating Equilibrium Combinations

Given a pointp and a setM containing sampled points
whose double-sided friction cones contain the pointp, we
want to find all combinations of four points fromM that
satisfy condition P2 of Proposition 1 assuming that the four
lines mentioned in the proposition intersect at the pointp.

For a sampled points in M , let us denote byv(s)
the unit vector parallel to the line joiningp and s, and
pointing inward the grasped object (in the direction of
the inward normal ats, i.e. v(s) · n(s) ≥ 0). Also, let
M ′ = {v(s)| s ∈ M}. With the definition, it is clear that
our problem amounts to finding all combinations of four
unit vectors in the setM ′ that can positively span<3. Our
technique for generating such combinations is based on the
fact that when three vectors are given, the fourth one must
lie strictly inside the trihedron formed by the inverses of the
three given vectors in order that the four vectors positively
span<3 (otherwise, they would be in the same half space).

It is also important that every combination of four unit
vectors is listed without any repetition. This is essentially
the problem of generating allk-subsets (i.e. subsets withk

members) of a given set withn members. A simple solution
for this problem is to assign a totally ordered relation to
all members of the set and list everyk-subset in the form
of a k-tuple for which each element (except the last one)
precedes the next one according to the assigned order.
Applying this method to our problem, each unit vector
is reparameterized using an ordered pair of two angles
(α, β) whereα ∈ [0, 2π] is the angle between thex-axis
and the projection of the vector on thex-y plane, and
β ∈ [0, π] is the angle between thez-axis and the vector.
With this parameterization, a sorted order can be imposed
by defining that a vectorva = (αa, βa) precedes a normal
vb = (αb, βb) whenβa < βb, or whenαa < αb in the case
that βa = βb.

x

n

β

α

z

y

Fig. 4. Parameterization of a unit normal vector

Because a unit vector can be thought of as a point on the
unit sphere, and a trihedron formed by three unit vectors
intersects the unit sphere in a triangular region (bounded
by three sections of great circles), all unit vectors contained
in the trihedron are therefore those vectors corresponding
to the points lying inside this triangular region. If we can
somehow map the surface of the sphere onto the plane, a
range searching algorithm can be applied to find the desired
vectors.

In fact, we have already mentioned one such mapping.
Recall that we parameterize every unit vector using an
ordered pair of angles(α, β). This allows each unit vector
to be mapped to a point in theα-β plane. The triangular
region on the sphere mentioned above will be mapped to a
planar region bounded by three vertices and three curved
edges (Fig. 5). Each edge of the triangular region on the
sphere may contain the highest or the lowest point of the
corresponding great circle. By considering the mapping of
these points and the three vertices of the region, it is easy
to show that the smallest isothetic box covering the planar
region can be drawn by considering only the range of the
coordinates of all these points. With this bounding box, we
can then apply an orthogonal range searching algorithm
[4] to find all the points contained in the box (note that
before applying the range searching, the bounding box
may need to be clipped to ensure that the angleβ of a
fourth vector is greater than that of the third one). For each
point obtained, its corresponding vector is checked with the
three previously chosen vectors to tell whether they can
positively span<3. By using range trees [4] to perform
orthogonal range searching, the overall enumeration runs
in O(n3 log2 n) wheren denotes the number of vectors in
M ′.

In constructing the bounding box described above, it is
important to take into account the nature of the mapping

Fig. 5. Mapping from the spherical to cartesian coordinates

from the spherical to the cartesian coordinates. In particu-
lar, when the triangular region on the sphere intersects the
arc defined byα = 0 (Fig. 6) , two bounding boxes are to
be constructed to reflect that the arcsα = 0 andα = 2π
coincide.

α = 0

Fig. 6. Two bounding boxes are needed when the triangular region cross
over the arcα = 0

Another case is when the triangular region covers the
“south pole” (bottommost point) of the sphere. When this
occurs, the vectors corresponding to the three vertices of
the triangular region have their normal projection on the
x-y plane positively spanning the plane. This should be
handled by constructing a bounding box covering the entire
range ofα (from 0 to 2π).

D. Intersecting Cubes and Lines

To compute which cubic cells in a regular cartesian
partitioning is penetrated by a given straight line, we refer
to a well known solution of the same problem in two
dimensions. In particular, in computer graphics, when a
line need to be drawn on a raster display, a line drawing
primitive is called to determine which pixels in a rectan-
gular tessellation have to be turned on (see Fig. 7).

5

4

3

2

1

0

109876543210

Fig. 7. Pixels drawn using Bresenham’s line algorithm

Bresenham’s line algorithm [7] is one of the most
efficient algorithms for drawing lines in computer graphics.
It scan converts a line by sampling the line at unit intervals
in one coordinate and determine corresponding integer
values nearest the line path for the other coordinate. Our
approach is therefore to generalize Bresenham’s algorithm
for drawing line in three dimensions. This can be done
straightforwardly by adding an outer loop together with
corresponding counter variables to accommodate additional
scanning coordinate. It is important to note that the original

Bresenham’s line algorithm does not turn on all pixels
penetrated by the line path. It decides to turn on only
the pixel that contains more portion of the line at the
considered scanning coordinate (e.g. pixel (1,1) in Fig. 7
is not turned on although it is in the line path). To suit our
need, all penetrated pixels can be marked by modifying
the algorithm to ignore this decision. Our modified line
drawing algorithm has the same time complexity as the
original Bresenham’s, that isO(n) wheren denotes the
number of pixels drawn. Its detail, however, cannot be
described here due to space limitation.

IV. I MPLEMENTATION AND RESULTS

Like most heuristic based techniques, the true efficiency
is best described from real implementation. We have de-
veloped a program for computing 4-finger force-closure
grasps from surface points using the algorithm described
in the paper. The program is written in C++ and all run
times are measured on a PC with a 2.4 GHz CPU.

In the experiment, the half angle of friction cones is
set to 10 degrees, the recursion is limited to 4 levels (i.e.,
D = 4), discretizing factorm is set to 10, and the number
of points randomly selected in each cubic cell is set to 8
(i.e., K = 8). Limited space allows only two test objects
to be demonstrated here: a torus (Fig. 8) and a duck doll
(Fig. 9). Surface points are generated from 3D models.
In each of the following figures, four illustrations are
given. Illustration (a) shows 1200 sampled surface points
in the initial cube, illustration (b) shows the intersection
points of contact forces that yield force-closure grasps, and
illustrations (c)-(d) show two examples of force-closure
grasping configurations found by the program. Experiment
results are shown in Table I and Table II correspondingly.
The results shown are average values over 20 runs. In each
table, time to generate the first solution, total run time, and
the number of distinct force-closure grasps found are listed
for varying number of surface points: 400, 800, 1200, 1600
and 2000.

For the case of the torus, we can see that the intersection
points of contact forces (Fig. 8(b)) concentrate around the
axis of symmetry. This reflects the fact that inward normals
of four non-coplanar points on the torus’s surface can
intersect only at a point on the main axis. The scattering is
the effect of friction cones. For the duck doll (Fig. 9(b)),
there are dense region in the stomach and the head of the
duck. Some intersection points are outside the object due
to the effect of concavity. More disperse pattern in this
case is due to greater variation of the direction of inward
normals.

We can see that the total run times in both cases for
400 sampled points are below 3 seconds. With this amount
of time, a number of force-closure grasps are already
generated. It should also be noted that the first force-closure
grasps in each case arrives much sooner.

V. CONCLUSION AND FUTURE WORKS

It is not unusual for an accurate representation of an
object to require a model with thousands of faces. When

Fig. 8. A torus

TABLE I

AVERAGE RESULTS FROM20 RUNS USING THE TORUS INFIG. 8

#points 1st sol (s) total time(s) #sol
400 0.225 2.00 290
800 0.341 7.09 975

1200 0.472 14.40 1870
1600 0.615 23.06 3000
2000 0.743 32.82 4322

dealing with objects with huge number of tiny faces,
typical approaches for grasp planning based on intensive
computation for finding grasps on selected faces become
less desirable. Grasp planning need a new approach to
handle real-world complex objects. We have presented a
solution to this problem. In particular, we have presented
an approach for computing frictional 4-fingered concurrent
force-closure grasps of arbitrary 3D objects using surface
points. The efficiency of the approach is confirmed by the
results from a preliminary implementation. Application of
the approach includes the problem of autonomous real-time
grasping of unmodeled objects using range data. Of course,
the process of acquiring accurate and sufficient amount of
data has to be carefully considered. Issues remained to be
investigated include appropriate partitioning scheme and
random point selection policy.

REFERENCES

[1] A. Bicchi and V. Kumar. Robotic grasping and contact: A review.
In IEEE Int. Conf. on Robotics and Automation, 2000.

[2] Ch. Borst, M. Fischer, and G. Hirzinger. Grasping the dice by dicing
the grasp. InIEEE/RSJ Int. Conf. on Intelligent Robots and Systems,
2003.

TABLE II

AVERAGE RESULTS FROM20 RUNS USING THE DUCK DOLL IN FIG. 9

#points 1st sol (s) total time(s) #sol
400 0.261 2.65 145
800 0.385 9.46 522

1200 0.583 17.79 951
1600 0.833 39.65 1450
2000 1.146 46.49 1903

Fig. 9. A duck doll

[3] A. Dandurand. The rigidity of compound spatial grid.Structural
Topology, 10, 1984.

[4] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf.
Computational Geometry: Algorithms and Applications. Springer,
1997.

[5] D. Ding, Y. Liu, M. Y. Wang, and S. Wang. Automatic selection
of fixturing surfaces and fixturig points for polyhedral workpieces.
IEEE Transactions on Robotics and Automation, 17(6), 2001.

[6] D. Ding, Y. Liu, and S. Wang. Computation of 3-d form-closure
grasps. IEEE Transactions on Robotics and Automation, 17(4),
2001.

[7] F.S. Hill. Computer Graphics Using Open GL. Prentice Hall, 2001.
[8] X. Markenscoff, L. Ni, and C.H. Papadimitriou. The geometry of

grasping. International Journal of Robotics Research, 9(1):61–74,
February 1990.

[9] V-D. Nguyen. Constructing force-closure grasps.International
Journal of Robotics Research, 7(3):3–16, June 1988.

[10] A. Okamura, N. Smaby, and M. Cutkosky. An overview of dexterous
manipulation. InIEEE Int. Conf. on Robotics and Automation, 2000.

[11] T. Omata. Finger position computation for 3-dimensional equilib-
rium grasps. InIEEE Int. Conf. on Robotics and Automation, 1993.

[12] J. Ponce and B. Faverjon. On computing three-finger force-closure
grasps of polygonal objects.IEEE Transactions on Robotics and
Automation, 11(6):868–881, December 1995.

[13] J. Ponce, S. Sullivan, A. Sudsang, J-D. Boissonnat, and J-P. Merlet.
On computing four-finger equilibrium and force-closure grasps of
polyhedral objects. International Journal of Robotics Research,
16(1):11–35, February 1997.

[14] M. Y. Wang. An optimum design for 3-d fixtures sysnthesis in a
point set domain.IEEE Transactions on Robotics and Automation,
16(6), 2000.

