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Nattee Niparnan and Attawith Sudsang
Department of Computer Engineering,
Chulalongkorn University, Bangkok 10330, Thailand
{nattee,attawith@cp.eng.chula.ac.th

Abstract— This paper addresses the problem of computing
frictional 4-fingered force-closure grasps of three dimensional
objects. The proposed approach searches for force-closure
grasps from a collection of sampled points on the object’s
surface. Unlike most other works, the approach is not limited
to the objects with a certain class of shapes. It can be applied
to an object in any shape since only the object’s surface points
and corresponding surface normals at the points are needed.
The efficiency of the approach arises from a heuristic for
search space pruning which is based on ability to efficiently
locate regions in three dimensional space where friction
cones intersect and a randomized test for checking force-
closure condition. The proposed approach is implemented and
preliminary results are presented.

handle large number of faces. Several papers demonstrated
efficiency of their approaches using only simple test objects
with small number of faces (usually fewer than 20). This
concern was taken into account in only few papers. In
[14], the problem of fixture design from a set of pre-
selected frictionless contact points was addressed. Using a
local greedy search with D-optimality criterion, the method
seek a force-closure set of 7 fixturing locations from the
given set of contact points. Operating on set of points
enabled the method to handle complex objects. Recently,
it was suggested in [2] that acceptable force-closure grasps
could be efficiently generated using a randomized selection

from a set of contact candidates. The paper also attempted
to convince that the resulting grasps achieve the quality
Grasp planning plays an important role in grasping andomparable with human generated grasps.
manipulation [1], [10]. Its objective is to find a desirable The agenda here is that grasp planning need an efficient
grasping configuration by computing appropriate contacipproach for dealing with real-world complex objects. This
positions for placing the fingers on the object's surfacepaper presents a solution to the problem. More precisely,
Typically, the classical force-closure condition is consid-assuming four hard fingers with frictional point contacts,
ered in the computation to ensure that the object can hege address the problem of computing force-closure grasps
held securely by the fingers [9], [8]. Most works in force-of arbitrary three dimensional objects. Although the ap-
closure grasp computation require fitting the shape of thproach shares the flavors of the techniques used in [14]
object to be grasped with a certain class of geometriand [2], it has some different standpoints. Unlike both
models so that the computation can be performed entirelyapers, our objective is to efficiently compute as many
on a model. Since the information regarding the object'$orce-closure grasps as possible as opposed to a single
surface is crucial to grasp computation, it is natural to usgood grasp. Grasp quality is intimately task dependent,
boundary based models in describing shapes. A boundasp the users should be supplied with enough choices to
based model of an object represents a surface enclosing timake a good decision. Moreover, obtaining a number of
object as a set of faces [7]. Majority of research in grasgrasps at once is directly helpful to certain tasks such as
planning focuses on polyhedral models (whose all facemanipulation or regrasp planning where several grasps are
are planar) with an aim in deriving efficient or analyticalusually considered. Conceptually, the proposed approach
formulation for characterizing force-closure grasps on a&earches for force-closure grasps from a collection of
given set of faces [11], [13], [6]. Several techniques haveampled points on the object’s surface. It can be applied
been proposed and shown to be efficient in generating an object in any shape since only the surface points and
good grasps (according to various criteria) provided thatorresponding surface normals at the points are needed.
all grasped faces are already selected. The problem ®he efficiency of the approach arises from a heuristic for
choosing appropriate grasped faces is, however, rarefearch space pruning which is based on ability to efficiently
studied [5]. A straightforward search of all combinationslocate regions in three dimensional space where friction
of faces is usually applied, yielding an approach withcones intersect and a randomized test for checking force-
prohibitive time complexity that can handle, in practice,closure condition. Unlike the local method in [14], our
only objects with small number of faces. heuristic search captures more global information which
In general, many real objects cannot be representalows a variety of force-closure grasps to be generated.
by a polyhedral model with small number of faces. AWe demonstrate in preliminary experimental results that the
standard technique widely used in geometric modeling tapproach is efficient. It is capable of computing hundreds
represent a general shape (including curved objects) is td force-closure grasps of complex objects with running
describe the surface enclosing its volume using a largieme below three seconds.
number of small triangles. Unfortunately, as mentioned The remainder of the paper begins with some necessary
earlier, most works in grasp planning were not designed tbackground on grasping in Section Il. The detail on how

I. INTRODUCTION



the search for force-closure grasps is performed is given Although there are three types of non-coplanar 4-
in Section lll. We describe our implementation and preserfingered force-closure grasps, the work in this paper is

some preliminary results in Section 1V, and then concludénterested in computing concurrent force-closure grasps
the paper with conclusion and future works in Section V.only. Proposition 1, derived directly from the above dis-
cussion, will therefore state only the condition involving

Il. BACKGROUND concurrent grasps. Despite the omission of the other two

In this section, we give some necessary background d¥PeS: results given in Section IV show that the proposed
grasping. In particular, the condition given in PropositionapproaCh successfully finds a large number of force-closure

1 provides the most important foundation to the derivatiord"@SPS-

of our search method for finding force-closure grasps. Proposition 1: A necessary and sufficient condition for
A hard finger in contact with some object at a pointfour non-coplanar points to form a concurrent force-closure

= exerts a forcef with momentz x f with respect to 9r@SP is that: (P1) there exist four lines in the corresponding

the origin (but it cannot exert a pure torque). Force an@ouble-sided friction cones that intersect in a single point,
moment are combined into a six dimensional zero-pitclﬁ‘”d (P2) the vectors pgrallel to Fhese four lines and pointing
wrenchw = (£, x f). Under Coulomb friction, the set Inward the grasped object positively Spaf.

of wrenches that can be applied by the finger is: 1. FORCECLOSURE GRASP SEARCH

W={(fixxf): feF} Our objective is to find as many 4-fingered frictional
. force-closure grasps as possible while constraining that
where ' denotes the friction cone at. _ all contacts must be selected from a set of given surface
A d-finger grasp is def|'ned geometrically by the pOSItlor‘boints. Since the intended number of surface points is well
xi(i = 1,...d) of the fingers on the boundary of the o 200, a straightforward brute-force test of all com-
grasped object. WeGCan associate with each grasp the $@hations for force-closure condition will definitely yield
of wrencheslV” C R” that can be exerted by the fingers. ,nacceptable performance. Very large search space calls
If we denote bylV; the wrench set associated with tHe ¢, 5, aggressive pruning technique and an informed search

finger, we have strategy that effectively incorporates the knowledge of the
d force-closure condition. These features are the foundation

W={> w;:w; € W;fori=1,..,d}. of our approach.
i=1 The input of our proposed approach consists of a set

We say that a grasp achieviesce closurevhen any exter- of points on the surface of the grasped object and cor-
rsesponding inward normals at these surface points. At

nal wrench can be balanced by wrenches at the fingertips; :
i.e. when the corresponding wrench §Etis equal to}®. present, the surface points are randomly sampled from a

Because zero wrench is containedinfor a force-closure model_ of the _object (we are currer_1tly investigating _several
grasp, it is then clear that force closure implies equilibriumSampllng policies that may help improve the efficiency).

Interestingly, it is shown in [13] that the converse of this]:rhe pro.post?]d approsch IS de_l\_/ﬁlopeg elquunqda tgcfgmqus

statement is also true for non-marginal equilibrium, i.e o prurg:_g Iealsea;rcp spac.t;:.. fu';]. er: Ymgl.' ea:hlst ?se

grasps such that the forces achieving equilibrium lie strictl N condition = of Froposition - which implies that Tor
our contact points to form a 4-fingered concurrent grasp

inside the friction cones at the fingertips. In other Word,t ; that the frict t th int
grasps achieving equilibrium with non-zero forces for somé 'S necessary that the four friction cones at the points

friction coefficient achieve force closure for any strictly'twerseaa.tl.gy c:)n5|der|n§t1_ onlyf (t:r? mblnatu?]ns that Sat'ng
greater friction coefficient. is condition, large portion of the search space can be

A zero-pitch wrenchw — (f,x x f) for the force ignored since for most general shapes, 4 friction cones at

f can be thought of as the line of action of this force4 arbitrary points rarely n tersect. - .

and can be written in Rtker coordinates. Equilibrium Now that we have decided to use friction cone intersec-
tion as the pruning condition, an efficient method is needed

therefore implies that the lines (represented aschr i hich binati £ f ¢ int
vectors) associated with the contact forces are linearl r computing which combinations of four surtace points
ill yield intersecting friction cones. Clearly, computing

dependent. As mentioned in [13], Grassman geometry [3], ) o ; : :
xact intersection is too time consuming to be practical. We

which characterizes the varieties of various dimension . T .
formed by sets of dependent lines, can be applied erefore propose to use intersection in discretized space:
' he 3D object’'s space is discretized into a regular 3D

yield a necessary and sufficient condition for non-planar . N A
equilibrium, namely, the contact forces musbsitively grid of cubic pixel$ (see an example in Figure 1(a)), axes

spart ®3 and their lines of action all intersect in a point of t?ltl fr'Ct'?n r(]:_ones a;et';]her(lj dr_aV\:jn .o:] the ?“d §pac§d|nd
(concurrent grasps), lie in two flat pencils having a line i g bitmap fashion, an € desired Intersection 1s guide

; the pixels drawn over by at least four axis lines. It
common (pencil grasps), or form a regulus (regulus grasps y L
(P grasps) g (reg grasp hould be noted here that friction cones’ axes are used

1A set of vectors positively spans some space when any vector in tHE the computation instead of the whole friction cones

space can be written as a linear combination of the vectors in the set with
positive coefficients 2The termvoxelis sometimes preferred



themselves. This is because we want to take advantagepth variablei. In the following, let us list a pseudo code
of an efficient raster based line drawing algorithm simultaef the procedurdc _grasp _search and explain its algo-
neously with the effect of discretization in approximatingrithm. Note that computing force closure grasps amounts
cones’ volume. Intuitive justification behind this heuristicto executing the commanét _grasp _search (S,C*,1)
technique is that when axes of a set of friction conesvhereC* is an initial isothetic cube containing all surface
intersect a cube, it is more likely for this cube than thepoints in S.
oth_ers to conta?n the inter;ectipn of the set of friction conese _grasp _search (7, ¢, d)
This effect is illustrated in Fig. 1(b) where we can seel: if d > D then return ,
more intersections of friction cones in the lower left cell2: Let the cubes”;, j = 1,..,m® be them x m x m

. . . . partitioning of the cub&” using cartesian grids
than the others. As we will see in the next section, this ¢ ihe same spacing
heuristic enables the algorithm to focus the search in the Let7; = {s|s € T andi(s) intersectsC; }

region where condition P1 of Proposition 1 is likely to4: for all 7; with [7;] > 4 N
. if vectors inL = {n(s)| s € T;} positively spariR3 then {

be satisfied. Note that although our problem is in a 303 fori=1toK{

setting, intrinsic 2D illustrations will appear to help clarify 7: Randomly pick a poinp in the cellC;

discussion throughout the rest of this section. This can b& M = {s| s € T; andp is contained in the cong(s)}
done mainly because of great similarity between 2D ang find equilibrium.grasp¢ 1M, p)

3D concurrent grasps. The similarity is confirmed by a 2Di1: fcgraspsearciiT;, C;,d + 1)

version of Proposition 1 for 2D force-closure grasps giverd2: }

in [12].

The above code begins in line 1 by checking whether
R\ /s the current search exceeds the depth limit. Line 2 defines
>< C;,j = 1,..,m> to be m® identical cubes obtained

from partitioning the cubeC using m x m x m grid
of the same spacing. These cub€$'s determine the
discretization mentioned earlier. Line 3 computes the sets
7/ y \ Tj,j = 1,..,m® where eacll; contains all surface points
/ o in T"whose corresponding axes of friction cones intersect
(@) (b) \ C;. This computation can be done using an algorithm
Fig. 1. (a) Cartesian partitioning of a cube irox 3 x 3 identical Of drawing lines in 3D bitmap. The detail is given in
cubes, (b) Arrangement of friction cones at the given sampled points Section [lI-D. The main part of the search is the loop
in lines 4-12. This loop considers only; with at least
Conceptually, the proposed approach is a search thatfieur members (line 4), i.e., correspondirg; is drawn
performed along the hierarchy of discretizing resolutionsover by at least four axes of friction cones. This decision
It starts from the coarsest resolution where the sets @ a pruning heuristic that allows the search to operate
surface points whose friction cones likely to intersect ar@n typically smaller setd;’s instead of the sefl’. For
identified using the pruning method based on intersectiogachT); considered, in line 5, the inward normals of all
in discretized space mentioned above. For each of thesgembers of; are tested whether they positively span
sets, a randomized test is applied to generate force-closuRg. If they do not, the correspondirif; is skipped from
grasps. Then, only on each of these sets, the same seafgatther processing. The detail on how a set of vectors is
process repeats in a recursive fashion to discover morhecked for positively spanniri® is given in Section Il
force-closure grasps at a finer discretizing resolution. ThiB. It should be noted that a set of surface points whose
recursion is performed to a specified depth. A pseudo cod®rmals do not positively spat® may sometimes form a
in the following section describes the approach in detail.force closure grasp, but the resulting grasps are usually not
desirable due to their poor ability to resist forces in certain
A. Algorithm directions. A 2D version of this scenario is illustrated in

In this section, we give a pseudo code of the approachig. 2. Fig. 2(a) shows three surface points with their
outlined above and discuss how it works in detail. For clarfriction cones and a point in the intersection of the three
ity, let S be the set of all given surface points in the object'scones (shaded region). As we can see in Fig. 2(b), the three
space. For any point € S, let us denote byn(s) the inward normals (the cones’ axes) do not positively span
corresponding inward normal at by I(s) the line passing %”, but there exists, as shown in Fig. 2(c), an equilibrium
through s with direction n(s), and by f(s) the double With line of forces intersecting gt and positively spanning
sided friction cone ak with half angled and axisi(s). *. Despite achieving force-closure, given the maximum
In the following pseudo code, the input of the procedurénagnitude of forces each finger can exert, this grasp is very
fc _grasp _search consists of the sef' C S containing Weak in resisting forces in horizontal directions.
the surface points where the search is performed, an For each sef; that passes the positively spanning test,

isothetic cub® C in the Object’s space, and a recursivethe algorithm continues to the code in lines 6-11. This
portion of the code is responsible for two tasks: (1) to

3A cube with its sides parallel to the axes randomly test and generate force-closure grasps at the




In the implementation, the initial cube is usually defined
/ to be much larger than the object. This does not affect the
performance due to efficiency of the pruning in the first
P level. We are in the process of investigating the relationship
between the cube’s size and resulting grasps in order to
derive a strategy for appropriately selecting the initial size
% and discretizing factom.
(b)

@ (©)

Fig. 2. Three sampled points with inward normals not positively spanning
R? but yield a force-closure grasp: (a) three friction cones at the points,
(b) the three inward normals, and (c) an equilibrium grasp indicating
force-closure.

current level of discretization, and (2) to invoke a recursive

.SearCh orr; using f'_ner @scrgﬂzgﬂon af’;. The first ta_Sk Fig. 3. A squareC' (shaded region) just large enough to cover the three
is handled by thes iterations in lines 6-10. The following normals (thick lines)

paragraph describes its detail.

Each of theK iterations in lines 7-9 aims at finding com-
binations of surface points iff; that yield non-marginal
equilibria satisfying Proposition 1. The first part (lines 7-8) A set of vectors fails to positively spaR® when they
identifies setM, a subset off; with intersecting friction lie in the same half space bounded by a plane through
cones (so that intersecting lines according to condition Pthe origin. This is because any vector in the other half
of Proposition 1 can be found). To avoid the complexityspace cannot be written as a positive linear combination of
from applying a direct approach based on computinghe set of vectors. To determine whether a set of vectors
intersection of cones, a randomized method is used ipositively spani?, let us consider a set of points whose
approximating the set/. The method is based on a simplecoordinates are given by the vectors in the set and compute
fact that the existence of a point that is contained in everthe convex hull of these points and the origin. If the origin
cone in a given set implies that all the cones in the sds in the boundary of the resulting convex hull, it is clear
intersect. This translates exactly to the code in lines 7from convexity that all the input points are in one half space
8. Note that checking whether a point is contained in dounded by a plane through the origin, which means that
cone can be easily done by comparing the half angle dhe given set of vectors do not positively sp&i. Note
the cone with the angle between the cone’s axis and thtbat computing a convex hull of three dimensional point set
line between the point and the cone’s vertex. Once the stkesO(nlog(n)) wheren is the number of input points
M is obtained, the second part of the iteration assumdd].
that the randomly selected poipt is the intersection of
the four lines of contact forces. This assumption is thef¢- Enumerating Equilibrium Combinations
used for listing all combinations of four surface points in  Given a pointp and a setM containing sampled points
M that fulfill condition P2 of Proposition 1 (line 7). These whose double-sided friction cones contain the pgintve
combinations thus form force-closure grasps by satisfyingsant to find all combinations of four points from/ that
both P1 and P2 conditions of Proposition 1. The detail ogatisfy condition P2 of Proposition 1 assuming that the four
how the combinations are enumerated is given in Sectioines mentioned in the proposition intersect at the ppint
n-cC. For a sampled poing in M, let us denote byv(s)

The only remaining detail is about the code in line 11the unit vector parallel to the line joining and s, and
This code invokes a recursive seafchgrasp _search on  pointing inward the grasped object (in the direction of
T; using the cub&’;, allowing the search to be performed the inward normal ats, i.e. v(s) - n(s) > 0). Also, let
at a finer discretizing resolution @f;. Varying resolution M’ = {v(s)| s € M}. With the definition, it is clear that
of discretization is needed in discovering as many forcesur problem amounts to finding all combinations of four
closure grasps as possible. This is because some graspst vectors in the set/’ that can positively spaiit®. Our
can be detected only with a sufficiently large pixel cubetechnique for generating such combinations is based on the
An analogous 2D illustration in Figure 3 demonstrates thigact that when three vectors are given, the fourth one must
situation. We can see that choosing a square smaller théa strictly inside the trihedron formed by the inverses of the
the squareC will not be able to cover the three normalsthree given vectors in order that the four vectors positively
and will result in a failure to detect the grasp formed byspanR?® (otherwise, they would be in the same half space).
the three corresponding points. This issue affects how the It is also important that every combination of four unit
size of the initial cube is set. Setting the size too smalvectors is listed without any repetition. This is essentially
may result in missing opportunity to detect some graspshe problem of generating altsubsets (i.e. subsets with

B. Positively Spanningt® Test



members) of a given set withmembers. A simple solution

for this problem is to assign a totally ordered relation to
all members of the set and list evetysubset in the form

of a k-tuple for which each element (except the last one)
precedes the next one according to the assigned order.
Applying this method to our problem, each unit vector
is reparameterized using an ordered pair of two angles
(o, B) wherea € [0,27] is the angle between the-axis

and the projection of the vector on they plane, and from the spherical to the cartesian coordinates. In particu-
f € [0, 7] is the angle between theaxis and the vector. |ar when the triangular region on the sphere intersects the
With this parameterization, a sorted order can be imposegl: defined byy = 0 (Fig. 6) , two bounding boxes are to
by defining that a vectop, = (a, J.) precedes a normal pe constructed to reflect that the ares= 0 anda = 2

vy = (ap, By) Whenj, < 3y, or whena, < ay in the case  gincide.

that Ba = Pp-

Fig. 5. Mapping from the spherical to cartesian coordinates

Fig. 6. Two bounding boxes are needed when the triangular region cross
over the arca = 0
Fig. 4. Parameterization of a unit normal vector
) ] Another case is when the triangular region covers the
Because a unit vector can be thought of as a point on thg gt pole” (bottommost point) of the sphere. When this
unit sphere, and a trihedron formed by three unit vectorgec s the vectors corresponding to the three vertices of
intersects the unit sphere in a triangular region (boundegle triangular region have their normal projection on the
by three sections of great circles), all unit vectors containeg_y plane positively spanning the plane. This should be

in the trihedron are therefore those vectors corresponding qied by constructing a bounding box covering the entire
to the points lying inside this triangular region. If we Canrange ofa (from 0 to 2r).

somehow map the surface of the sphere onto the plane, a

range searching algorithm can be applied to find the desird® Intersecting Cubes and Lines

vectors. To compute which cubic cells in a regular cartesian
In fact, we have already mentioned one such mappingartitioning is penetrated by a given straight line, we refer

Recall that we parameterize every unit vector using afm a well known solution of the same problem in two

ordered pair of angle&x, 3). This allows each unit vector dimensions. In particular, in computer graphics, when a

to be mapped to a point in the-3 plane. The triangular Jine need to be drawn on a raster display, a line drawing

region on the sphere mentioned above will be mapped toggimitive is called to determine which pixels in a rectan-

planar region bounded by three vertices and three curvefljlar tessellation have to be turned on (see Fig. 7).
edges (Fig. 5). Each edge of the triangular region on the

sphere may contain the highest or the lowest point of the 5
corresponding great circle. By considering the mapping of 4 L
these points and the three vertices of the region, it is easy 3 L
to show that the smallest isothetic box covering the planar 2 - el
region can be drawn by considering only the range of the ! 7
0 -~

coordinates of all these points. With this bounding box, we

can then apply an orthogonal range searching algorithm cr 2 A e T8 e

[4] to find all the points contained in the box (note that Fig. 7. Pixels drawn using Bresenham’s line algorithm
before applying the range searching, the bounding box
may need to be clipped to ensure that the anglef a Bresenham’s line algorithm [7] is one of the most

fourth vector is greater than that of the third one). For eachfficient algorithms for drawing lines in computer graphics.
point obtained, its corresponding vector is checked with thi scan converts a line by sampling the line at unit intervals
three previously chosen vectors to tell whether they caim one coordinate and determine corresponding integer
positively spanft3. By using range trees [4] to perform values nearest the line path for the other coordinate. Our
orthogonal range searching, the overall enumeration rurapproach is therefore to generalize Bresenham’s algorithm
in O(n®log? n) wheren denotes the number of vectors in for drawing line in three dimensions. This can be done
M. straightforwardly by adding an outer loop together with
In constructing the bounding box described above, it igsorresponding counter variables to accommodate additional
important to take into account the nature of the mappingcanning coordinate. It is important to note that the original



Bresenham’s line algorithm does not turn on all pixels
penetrated by the line path. It decides to turn on only
the pixel that contains more portion of the line at the
considered scanning coordinate (e.g. pixel (1,1) in Fig. 7
is not turned on although it is in the line path). To suit our
need, all penetrated pixels can be marked by modifying
the algorithm to ignore this decision. Our modified line
drawing algorithm has the same time complexity as the

(b)

original Bresenham’s, that i©(n) wheren denotes the
number of pixels drawn. Its detail, however, cannot be
described here due to space limitation.
IV. IMPLEMENTATION AND RESULTS
Like most heuristic based techniques, the true efficiency (©) (d)

is best described from real implementation. We have de-
veloped a program for computing 4-finger force-closure
grasps from surface points using the algorithm described
in the paper. The program is written in C++ and all run
times are measured on a PC with a 2.4 GHz CPU.

In the experiment, the half angle of friction cones is

Fig. 8. A torus

TABLE |

AVERAGE RESULTS FROM20 RUNS USING THE TORUS INFIG. 8

. S . #points || 1st sol (s)| total time(s) | #sol
set to 10 degrees, the recursion is limited to 4 levels (i.e., 200 0205 500 290
D = 4), discretizing factomn is set to 10, and the number 800 0.341 7.09 | 975
of points randomly selected in each cubic cell is set to 8 1200 0.472 14.40 | 1870
- _ o - 1600 0.615 23.06 | 3000
(i.e., K = 8). Limited space allows only two test objects =000 5715 585 4323

to be demonstrated here: a torus (Fig. 8) and a duck doll
(Fig. 9). Surface points are generated from 3D models.
In each of the following figures, four illustrations are
given. lllustration (a) shows 1200 sampled surface point;

dealing with objects with huge number of tiny faces,

in the initial cube, illustration (b) shows the intersection?yplcal ap_proache_s for grasp planning based on intensive
%omputatlon for finding grasps on selected faces become

points of contact forces that yield force-closure grasps, and " jesirable. Grasp planning need a new approach to

illustrations (c)-(d) show two examples of force-closure, ;
i . . -~ “handle real-world complex objects. We have presented a
grasping configurations found by the program. Experiment_, . . .
. .~ solution to this problem. In particular, we have presented

results are shown in Table | and Table Il correspondingly. ; L .
an approach for computing frictional 4-fingered concurrent

The results shown are average values over 20 runs. In Ca ice-closure grasps of arbitrary 3D objects using surface
table, time to generate the first solution, total run time, ang’ grasp y ) 9

the number of distinct force-closure grasps found are Iiste@omts' The efficiency of the approach is confirmed by the

for varying number of surface points: 400, 800, 1200, 160 esults from a preliminary implementation. Application (.)f
and 2000, e approach includes the problem of autonomous real-time

For the case of the torus, we can see that the intersecti(géaSpmg of unmodeled objects using range data. Of course,

. ; r f irin rate an fficient amount of
points of contact forces (Fig. 8(b)) concentrate around thg © process ot acquiring accurate a d sufficie amount o

. . . ata has to be carefully considered. Issues remained to be
axis of symmetry. This reflects the fact that inward normals : . . O

. , investigated include appropriate partitioning scheme and
of four non-coplanar points on the torus’s surface can : . h
) . . : .~ “random point selection policy.
intersect only at a point on the main axis. The scattering is
the effect of friction cones. For the duck doll (Fig. 9(b)),
there are dense region in the stomach and the head of the
duck. Some intersection points are outside the object dugl] A. Bicchi and V. Kumar. Robotic grasping and contact: A review.
; ; ; i In IEEE Int. Conf. on Robotics and Automatja&000.

to thet effect of concavny.. N.Iore dlspers_e pgttern !n this [2] Ch. Borst, M. Fischer, and G. Hirzinger. Grasping the dice by dicing
case is due to greater variation of the direction of inward the grasp. INEEE/RSJ Int. Conf. on Intelligent Robots and Systems
normals. 2003.

We can see that the total run times in both cases for
400 sampled points are below 3 seconds. With this amount TABLE Il

of time, a number of force-closure grasps are alreadyayerace RESULTS FROM20 RUNS USING THE DUCK DOLL INFIG. 9
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