
Decision Tree Pruning Using Backpropagation Neural

Networks

BOONSERM KIJSIRIKUL1 and KONGSAK CHONGKASEMWONGSE2

Department of Computer Engineering, Chulalongkorn University,

Phathumwan, Bangkok, 10330, Thailand

email: boonserm1, g41kck2@mind.cp.eng.chula.ac.th

Abstract

Neural networks have been widely applied to various

tasks, such as handwritten character recognition, au-

tonomous robot driving, determining the consensus

base in DNA sequences. In this paper, we describe

the use of backpropagation neural networks for pruning

decision trees. Decision tree pruning is indispensable

for making the over�tting trees more accurate in clas-

sifying unseen data. In decision trees, the over�tting

can occur when the size of the tree is too large com-

pared to the number of training data. Many methods

for decision tree pruning have been proposed, and all

of them remove some nodes from the tree to reduce its

size. However, some removed nodes may have a sig-

ni�cance level or some contribution in classifying new

data. Therefore, instead of absolutely removing nodes,

our proposed method employs a backpropagation neu-

ral network to give weights to nodes according to their

signi�cance. Experimental results on twenty domains

demonstrate that our method outperforms error-based

pruning.

1 Introduction

Neural networks have been widely applied to various

tasks, such as handwritten character recognition [4],

autonomous robot driving [8], determining the consen-

sus base in DNA sequences [1]. In this paper, we de-

scribe the use of backpropagation neural networks for

preventing over�tting in decision tree learning. Over�t-

ting is a widely observed phenomenon that often occurs

when hypotheses are as complex as the training data

and when the data contains noise. In decision trees,

the over�tting phenomenon can occur when the size of

the tree is too large compared to the number of train-

ing data. It has been shown that the over�tting trees

do not perform well on new data. There are two broad

classes of techniques for preventing the over�tting, i.e.

(1) approaches that stop growing the tree earlier, be-

fore it reaches the point where it perfectly classi�es

the training data, and (2) approaches that allow the

tree to over�t the data, and then post-prune the tree.

Between these approaches, the second approaches of

pruning trees have been found to be more successful in

practice [7].

Many methods for decision tree pruning have been pro-

posed, including cost-complexity pruning [3], reduced

error pruning and pessimistic pruning [9], error-based

pruning [10], MDL-based pruning [5], pruning with

misclassi�cation costs [2], etc. While these methods

can di�er in several ways, they share the same basic

technique of completely removing some nodes from the

tree to reduce its size. However, some removed nodes

may have a signi�cance level or some contribution in

classifying new data. Thus these methods are unable

to make use of these kind of nodes.

This paper presents a novel method for decision tree

pruning, called soft-pruning. Instead of absolutely

removing nodes, our proposed method gives weights

to nodes according to their signi�cance. The signi�-

cance level or the weight of a node is determined by

a backpropagation neural network. We run experi-

ments on twenty domains, in the UCI repository of

machine learning databases [6], to compare our method

with error-based pruning that is one of the most ef-

fective method for tree pruning and is employed by

a well-known decision tree learner C4.5 [10]. The re-

sults demonstrate that our method performs signi�-

cantly better on �ve domains, worse on one domain

and equally well on the rest.

The paper is organized as follows. Section 2 brie
y de-

scribes the method of C4.5 for inducing and pruning

decision trees. Section 3 presents our method for soft-

pruning decision trees. Section 4 describes the experi-

ments and reports the results of soft-pruning compared

to those of C4.5's pruned and unpruned trees. Finally,

the conclusion is given in Section 5.



Outlook

sunny over cast rain

true false

Play

WindyHumidity

≤ 75 > 75

Play Don’t Play

true false

PlayDon’t Play

Windy

≤ 81 > 81

PlayDon’t Play

Temp

Figure 1: An example of a decision tree.

2 Decision Tree Induction & Error-Based

Pruning

In this paper, we employ the method of C4.5 for induc-

ing decision trees. The obtained trees are then pruned

by our method that will be described later in Section 3.

In this section, we �rst brie
y explain the method of

C4.5 for inducing and pruning decision trees (see [10]

for details).

A decision tree is a structure that contains leaf nodes

and decision nodes. A leaf node indicates a class of

examples, and a decision node speci�es some test to be

carried out on a single attribute value, with one branch

and subtree for each possible outcome of the test. Fig-

ure 1 shows an example of a decision tree for the con-

cept PlayTennis. In this example, there are seven leaf

nodes, each of which belongs to one of two classes of ex-

amples, i.e. Play and Don't Play. There are �ve test

nodes in this tree which are Outlook, Humidity, Windy,

Windy and Temp. This tree is generated from training

examples shown in Table 1 (table adapted from [10]).

To construct a tree, C4.5 employs the recursive parti-

tioning method that continues to add a test node into

the tree. If all examples in a branch belong to the same

class, the subtree becomes a leaf node with the class as

label. Otherwise, a test is chosen which separates the

examples into at least two partitions according to the

outcome of the test. This process continues until each

subset in the partition contains examples of a single

class. C4.5 uses the gain ratio criterion [10] to select

the best test node at each non-leaf node.

To prune the tree, C4.5 employs the error-based prun-

ing algorithm [10]. The algorithm is a kind of post-

pruning algorithm; it allows the tree to over�t the ex-

amples and then post-prune the tree. The algorithm

Table 1: Training examples for the concept PlayTennis.

Outlook Temp(oF) Humidity(%) Windy? Class

sunny 75 70 true Play

sunny 80 90 true Don't Play

sunny 85 85 false Don't Play

sunny 72 95 false Don't Play

sunny 69 70 false Play

overcast 72 90 true Play

overcast 83 78 false Play

overcast 64 65 true Play

overcast 81 75 false Don't Play

rain 71 80 true Don't Play

rain 65 70 true Don't Play

rain 75 80 false Play

rain 68 80 false Play

rain 70 96 false Play

starts from the bottom of the tree and examines each

non-leaf subtree. If replacement of this subtree with a

leaf would lead to a lower estimated error, then prune

the tree. The algorithm estimates the error of a leaf by

computing a statistical con�dence interval of the resub-

stitution error (error on the training set for the leaf)

assuming an independent binomial model and selecting

the upper bound of the con�dence interval. The esti-

mated error for a subtree is the sum of the errors for the

leaf nodes underneath it. Because leaf nodes have fewer

examples than their parents, their con�dence interval

is wider, possibly leading to larger estimated errors,

hence they may be pruned [2]. For the tree in Fig-

ure 1, the process of C4.5's pruning gives a simpli�ed

tree shown in Figure 2.

Outlook

sunny over cast rain

PlayHumidity

≤ 75 > 75

Play Don’t Play

true false

PlayDon’t Play

Windy

Figure 2: An example of a pruned tree.

3 Soft-Pruning

This section presents our method of soft-pruning deci-

sion trees. The method is composed of three steps, i.e.

(1) converting a tree to rules, (2) constructing a neural

network from the rules, and (3) training the network.

To illustrate our method, consider a decision tree in

Figure 1 which classi�es data into two classes, i.e. Play



and Don't Play.

Given a decision tree, we �rst construct a set of rules by

generating a rule for each leaf node in the tree. Each at-

tribute test (e.g. Outlook=sunny) along the path from

the root to the leaf becomes a rule antecedent and the

classi�cation at the leaf becomes the rule consequent.

From the above tree, we obtain the rules shown in Ta-

ble 2.

Table 2: A set of rules obtained from the decision tree in

Figure 1.

(1) IF (Outlook=sunny) ^ (Humidity�75) THEN Play

(2) IF (Outlook=sunny) ^ (Humidity>75) THEN Don't Play

(3) IF (Outlook=overcast) ^ (Windy=true) THEN Play

(4) IF (Outlook=overcast) ^ (Windy=false)^ (Temp�81)

THEN Don't Play

(5) IF (Outlook=overcast) ^ (Windy=false)^ (Temp>81)

THEN Play

(6) IF (Outlook=rain) ^ (Windy=true) THEN Don't Play

(7) IF (Outlook=rain) ^ (Windy=false) THEN Play

The reason for converting the decision tree to a rule set

before pruning is that converting to rules allows distin-

guishing among the di�erent contexts in which a deci-

sion node is used. Because each distinct path through

the tree node produces a distinct rule, the pruning de-

cision regarding that attribute test can be made dif-

ferently for each path. In contract, if the tree itself

were pruned, the only two choices would be to remove

the decision node completely, or to retain it in its orig-

inal form. For example, if a test node x in one rule

examining a particular property of examples has less

signi�cance when it is combined with another node y,

it should be removed. However, if node x, without node

y, in another rule plays an important role in classifying

data, it should be retained.

Therefore, converting the tree to rules provides us with

more 
exibility in pruning. Moreover, we incorporate

an additional technique for allowing more 
exibility

in pruning decision trees. Here, instead of completely

pruning nodes, we give higher weights to important

nodes and lower weights to unimportant ones. The sig-

ni�cance level of each node is determined in terms of

a weight trained by a backpropagation neural network

(BNN) which will be described later.

Having a set of rules, we construct a neural network

whose structure is determined as follows. The an-

tecedents of a rule are used as input units that are

linked to one hidden unit which represents the rule.

Therefore, the number of hidden units in the network

is the same as the number of rules. Each class is rep-

resented by one output unit of the network, and thus

the number of output units is equal to the number of

classes. The links from hidden units to output units are

fully connected. Note that all hidden and output units

include bias weights. All weights of all links and bias

weights are trained by the standard backpropagation

algorithm [11]. Figure 3 shows an example of a neural

network constructed from the rules in Table 2.

To train the network, we �rst randomly initialize the

weights of the network, and adjust the weights by the

backpropagation algorithm. In our experiment, all

units in the network use the sigmoid function. The

training examples of the network are the same as those

used to create the decision tree except that only exam-

ples that are correctly classi�ed by the tree are used. In

the training process, each training example is evaluated

with all input units and the truth values of the input

units are determined. The input units whose truth val-

ues are true are set to 1, whereas the units whose truth

values are false are set to 0. The network is repetitively

trained by using training examples until it converges

or the number of training iterations exceeds the prede-

�ned threshold. After having been trained, the network

can be used to classify unseen data. The unseen data

is evaluated with input units as in the training process.

The truth values of the input units are then fed into

the network, and the output with highest value will be

taken as the prediction.

In case of data with no missing value, the value of an

input unit will be 1 or 0 according to its truth value.

However, for data with missing value, we assign to the

input unit the following value:

no: of training examples satisfying that input unit

no: of all training examples

The obtained value is between 0 and 1. This is simi-

lar to a technique for dealing with missing value data

described in [10].

4 The Experimental Results

This section presents the results of soft-pruning deci-

sion trees. We compare our method with C4.5 [10]. For

each dataset, we employ C4.5 to generate an unpruned

decision tree and convert the tree to a rule set. Having

a rule set, we then build our BNN as described above.

To evaluate our soft-pruning method, we ran exper-

iments comparing the method with C4.5's unpruned



Outlook = sunny

Outlook = overcast

Outlook = rain

Humidity ≤ 75

Humidity > 75

Windy = true

Windy = false

Play

Don’t Play

Input layer Hidden layer Output layer

Temp ≤ 81

Temp > 81

Figure 3: The structure of the neural network for the rule set in Table 2.

and pruned trees. Twenty datasets of multi-class learn-

ing domains from the UCI repository [Merz et al., 1997]

were used. In case of datasets where training and test

sets were already provided, the results were evaluated

on the given test sets. In the other datasets provid-

ing no test set, the results were averaged using 6-fold

cross-validation. In 6-fold cross validation, the data

was partitioned into six disjoint subsets. Each subset

was used as a test set once, and the remaining subsets

were used as the training set.

Table 3 report the summary of the datasets and the

classi�cation accuracies of soft-pruning and C4.5. In

the table, 6CV denotes the experiment that uses six-

fold cross-validation. The �fth and sixth columns in

the table show the accuracies of C4.5's unpruned and

C4.5's pruned trees, respectively. The accuracies of

soft-pruning are given in the last column. The row

\Win-lose-tie (Soft-pruning - XXX)" in the table shows

the performance comparison between soft-pruning and

the corresponding systems; where XXX is the C4.5's

unpruned tree or the C4.5's pruned tree. Superscripts

denote con�dence levels for the di�erence in accuracy

between soft-pruning and the corresponding system,

using a one-tailed paired t test: + or � is 90%, ++ or

�� is 95%, +++ or ��� is 99%; no superscripts de-

note con�dence levels that are below 90%(+ indicates

higher accuracy of soft-pruning, whereas � indicates

lower accuracy of soft-pruning). Note that the highest

accuracy for each data set is shown in bold face.

The results show that soft-pruning was more accu-

rate than C4.5's unpruned trees in 17 datasets, and

less in only 1 dataset. Compared with C4.5's pruned

trees, soft-pruning achieved a higher accuracy in 14

datasets and lower in 5 datasets. If we include con�-

dence levels in the comparison, we can see that soft-

pruning performs signi�cantly better than both C4.5's

unpruned and pruned trees on 5 datasets. Soft-pruning

performed signi�cantly worse than C4.5's pruned trees

only on one dataset. These results demonstrate the

usefulness of soft-pruning decision trees. The better

results are due to more 
exibility in pruning of our

method: (1) converting a tree to rules before pruning

will produce a non-leaf node of the tree in more than

two rules, and thus this node can be separately soft-

pruned according to its participation in the rules, and

(2) a node that has some degree of signi�cance for a

rule will not be completely pruned, and will be assigned

with an appropriate weight by the neural network.



Table 3: The percent accuracies of soft-pruning and C4.5.

Data #Train #Test #Classes C4.5 C4.5 Soft-Pruning

Set (Unpruned) (Pruned)

Allbp 2800 972 3 96.81 97.84 97.43

Allhyper 2800 972 5 98.87 98.56 98.77

Allhypo 2800 972 5 99.49 99.49 99.79

Allrep 2800 972 4 98.77 99.07 98.97

Anneal 798 100 6 97.00 95.00 98.00

Balance-scale 625 6CV 3 69.76+++ 65.77+++ 89.92

Glass 214 6CV 6 66.34 66.34 67.79

Image 210 2100 7 89.43 91.00 89.90

Iris 150 6CV 3 95.33 94.00 95.33

LED 2000 500 10 75.40 75.20 76.00

LED 17 2000 500 10 66.40 74.60
�� 69.40

Lymphography 148 6CV 4 73.70 78.38 78.39

Primary-tumor 339 6CV 22 42.19 41.32++ 45.15

Satimage 4435 2000 6 84.90++ 85.45 86.80

Segment 2310 6CV 7 96.97 96.97 97.19

Shuttle 43500 14500 7 99.97+ 99.95++ 99.99

Soybean 307 376 19 85.64 86.70 86.44

Waveform 5000 6CV 3 75.76+++ 75.82+++ 80.62

Waveform+noise 5000 6CV 3 75.22+++ 75.30+++ 80.56

Wine 178 6CV 3 93.30 93.30 93.30

Average 84.06 84.54 86.49

Win-lose-tie(Soft-pruning - XXX) 17-1-2 14-5-1

5 Conclusion

We have proposed a novel method for decision tree

pruning, called soft-pruning. The main contribution of

our work is the method of employing a backpropaga-

tion neural network to prune the decision tree. The re-

sults comparing soft-pruning and C4.5 show that soft-

pruning performs better than standard C4.5's pruned

and unpruned trees.

One disadvantage of soft-pruning is that it loses the

ease of interpretability of the original trees. One of

our future research is to transform the obtained net-

work into a more understandable representation such

as probabilistic rules.

References

[1] C. F. Allex, J. W. Shavlik, and F. R. Blattner, \Neu-

ral Network Input Representations that Produce Accurate

Consensus Sequences from DNA Fragment Assemblies",

Bioinformatics, 15, 1999, pp. 723-728.

[2] J. P. Bradford, C. Kunz, R. Kohavi, C. Brunk, and

C. E. Brodley, \Pruning Decision Trees with Misclassi�ca-

tion Costs", Proceedings of the 10th European Conference

on Machine Learning (ECML-98). Springer-Verlag, 1998.

[3] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J.

Stone, Classi�cation and Regression Trees, Belmont, CA:

Wadsworth, 1984.

[4] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R.

E. Howard, W. Hubbard, and L. D. Jackel, \Backpropaga-

tion Applied to Handwritten Zip Code Recognition", Neural

Computation, 1(4), 1989.

[5] M. Mehta, J. Rissanen, and R. Agrawal, \MDL-based

Decision Tree Pruning", Proceedings of the First Interna-

tional Conference on Knowledge Discovery and Data Min-

ing, AAAI Press, 1995, pp. 216-221.

[6] C. J. Merz, P. M. Murphy, and D. W. Aha,

\UCI repository of machine learning databases", De-

partment of Information and Computer Science, Univer-

sity of California, Irvine, CA. http://www.ics.uci.edu/

~mlearn/MLRep-ository.html, 1997.

[7] T. Mitchell, Machine Learning, New York: McGraw-

Hill, 1997.

[8] D. A. Pomerleau, \Knowledge-Based Training of Ar-

ti�cial Neural Networks for Autonomous Robot Driving",

In J. H. Connel and S. Mahadevan (Eds.), Robot Learning,

Boston: Kluwer Academic Publishers, 1993, pp. 19-43.

[9] J. R. Quinlan, \Simplifying Decision Trees", Inter-

national Journal of Man-Machine Studies, 27, 1987, pp.

221-234.

[10] J. R. Quinlan, C4.5:Programs for Machine Learning

San Mateo, CA: Morgan Kaufmann, 1993.

[11] D. E. Rumelhart, G. E. Hinton, and R. J. Williams,

\Learning Internal Representations by Error Propagation",

In D. E. Rumelhart and J. L. McClelland (Eds.) Parallel

distributed processing, 1, Cambridge, MA:MIT Press, 1986.


