
COMPONENT DIAGRAM
 in UML 2.0

Veronica Carrega

INTRODUCTION

• UML component diagrams describe software components
and their dependencies to each others
– A component is an autonomous unit within a system
– The components can be used to define software systems of

arbitrary size and complexity
– UML component diagrams enable to model the high-level software

components, and the interfaces to those components
– Important for component-based development (CBD)
– Component and subsystems can be flexibly REUSED and

REPLACED
– A dependency exists between two elements if changes to the

definition of one element may cause changes to the other
– Component Diagrams are often referred to as “wiring diagrams”
– The wiring of components can be represented on diagrams by

means of components and dependencies between them

INTRODUCTION
 An Uml diagram classification:
• Static

– Use case diagram, Class diagram

• Dynamic
– State diagram, Activity diagram, Sequence diagram,

Collaboration diagram

• Implementation
– Component diagram, Deployment diagram

UML components diagrams are
• Implementation diagrams:

describe the different elements required for
implementing a system

INTRODUCTION

 Another classification:
• Behavior diagrams

– A type of diagram that depicts behavior of a system
 This includes activity, state machine, and use case diagrams,

interaction diagrams

• Interaction diagrams
– A subset of behavior diagrams which emphasize object

interactions. This includes collaboration, activity, sequence
diagrams

• Structure diagrams
– A type of diagram that depicts the elements of a

specification that are irrespective of time. This includes
class, composite structure, component, deployment

UML components diagrams are structure diagrams

COMPONENT in UML 2.0

• Modular unit with well-defined interfaces
that is replaceable within its environment

• Autonomous unit within a system

– Has one or more provided and required
interfaces

– Its internals are hidden and inaccessible

– A component is encapsulated

– Its dependencies are designed such that it
can be treated as independently as possible

CASE STUDY
• Development of an application collecting students’ opinions

about courses
• A student can

– Read
– Insert
– Update
– Make data permanent about the courses in its schedule

• A professor can only see statistic elaboration of the data
• The student application must be installed in pc client

(sw1, sw2)
• The manager application must be installed in pc client (in

the manager’s office)
• There is one or more servers with DataBase and

components for courses management

COMPONENT NOTATION

 A component is shown as a rectangle
with
 A keyword <<component>>

 Optionally, in the right hand corner a
component icon can be displayed
 A component icon is a rectangle with two

smaller rectangles jutting out from the
left-hand side

 This symbol is a visual stereotype

 The component name

 Components can be labelled with a stereotype

 there are a number of standard stereotypes
ex: <<entity>>, <<subsystem>>

Component ELEMENTS
• A component can have

– Interfaces
An interface represents a declaration of a set of
operations and obligations

– Usage dependencies
A usage dependency is relationship which one element
requires another element for its full implementation

– Ports
Port represents an interaction point between a component
and its environment

– Connectors
• Connect two components
• Connect the external contract of a component to the

internal structure

INTERFACE

 A component defines its behaviour in terms of
provided and required interfaces

 An interface
 Is the definition of a collection of one or more

operations

 Provides only the operations but not the implementation

 Implementation is normally provided by a class/
component

 In complex systems, the physical implementation is
provided by a group of classes rather than a single class

INTERFACE

• May be shown using a rectangle
symbol with a keyword
<<interface>> preceding the name

• For displaying the full signature,
the interface rectangle can be
expanded to show details

 Can be

 Provided

 Required

INTERFACE

• A provided interface
– Characterize services that the

component offers to its
environment

– Is modeled using a ball, labelled
with the name, attached by a
solid line to the component

 A required interface

 Characterize services that the component expects
from its environment

 Is modeled using a socket, labelled with the name,
attached by a solid line to the component

 In UML 1.x were modeled using a dashed arrow

INTERFACE

• Where two components/classes provide and require
the same interface, these two notations may be
combined

 The ball-and-socket notation hint at that interface in
question serves to mediate interactions between the two
components

 If an interface is shown using the rectangle symbol, we
can use an alternative notation, using dependency arrows

INTERFACE

• A component
– Specifies a CONTRACT of the services that it provides

to its clients and that it requires from others
components in terms of its provided and required
interfaces

– Can be replaced
– The system can be extended

 In a system context where there are multiple components
that require or provide a particular interface, a notation
abstraction can be used that combines by joining

 the interfaces

DEPENDENCIES

• Usage Dependency
– A usage dependency is relationship which one

element requires another element for its full
implementation

– Is a dependency in which the client requires the
presence of the supplier

– Is shown as dashed arrow with a <<use>> keyword
– The arrowhead point from the dependent

component to the one of which it is dependent

 Components can be
connected by usage
dependencies

PORT

 Is shown as a small square symbol
 Ports can be named, and the name is

placed near the square symbol
 Is associated with the interfaces that

specify the nature of the interactions
that may occur over a port

 Specifies a distinct interaction point

 Between that component and its environment

 Between that component and its internal parts

PORT

• Ports can support unidirectional communication or
bi-directional communication

 If there are multiple
interfaces associated
with a port, these
interfaces may be listed
with the interface icon,
separated by a commas

PORT

– All interactions of a component with its
environment are achieved through a port

– The internals are fully isolated from the
environment

– This allows such a component to be used in any
context that satisfies the constraints specified by
its ports

– Ports are not defined in UML 1.x

EXTERNAL VIEW

• An external view (or black box
view) shows publicly visible
properties and operations

 An external view of a component is
by means of interface symbols
sticking out of the component box

 The interface can be listed in the
compartment of a component box

 A component have an external view and an internal
view

INTERNAL VIEW

• An internal, or white box
view of a component is
where the realizing
classes/components are
nested within the
component shape

 Realization is a relationship between two set of
model elements
 One represents a specification
 The other represent an implementation of the

latter

INTERNAL VIEW

• The internal class that realize the
behavior of a component may be
displayed in an additional
compartment

 Compartments can also be used to
display parts, connectors or
implementation artifacts

 An artifact is the specification of a
phisycal piece of information

INTERNAL VIEW

 Components can be built recursively

ASSEMBLY
• Two kinds of connectors:

– Delegation
– Assembly

• ASSEMBLY CONNECTOR
– A connector between 2 components defines that one

component provides the services that another
component requires

– He must only be defined from a required interface
to a provided interface

– An assembly connector is notated by a “ball-and-
socket” connection

 This notation allows
for succint grafical

 wiring of components

SEMANTICS

• The semantics for an assembly connector :
– Are that signals travel along an instance of a

connector originating in a required port and
delivered to a provided port

– The interfaces provided and required must be
compatible

– The interface compatibility between provided and
required ports that are connected enables an
existing component in a system to be replaced

SEMANTICS

– Multiple connections directed from a single required
interface to provided interfaces indicates that the
instance that will handle the signal will be determined
at execution time

DELEGATION

 DELEGATION CONNECTOR
 Links the external contract of a component to the

internal realization

 Represents the forwarding of signals

 He must only be defined between used interfaces
or ports of the same kind

DELEGATION
– The target interface must support a signature compatible

with a subset of operations of the source interface
– A port may delegate to a set of ports on subordinate

components
– The union of the target interfaces must be signature

compatible with the source interface
• Semantics:

– Is a declaration that behaviour that is available on a
component instance is not realized by that component
itself, but by another instance that has compatible
capabilities

– Is used to model the hierarchical decomposition
– Message and signal flow will occur between the connected

ports

CASE STUDY

CASE STUDY

DEPLOYMENT DIAGRAMS

• Deployment diagrams
– Show the physical relationship between hardware

and software in a system
– Hardware elements:

• Computers (clients, servers)
• Embedded processors
• Devices (sensors, peripherals)

– Are used to show the nodes where software
components reside in the run-time system

 There is a strong link between components diagrams and
deployment diagrams

DEPLOYMENT DIAGRAMS

 Deployment diagram
 Contains nodes and connections
 A node usually represent a piece of hardware in

the system

 A connection depicts the
communication path used by
the hardware to
communicate

 Usually indicates the
method such as TCP/IP

DEPLOYMENT DIAGRAMS

 An artifact
 Is the specification of a

phisycal piece of
information

 Ex: source files, binary
executable files, table in
a database system,….

 An artifact defined by
the user represents a
concrete element in the
physical world

 Deployment diagrams
contain artifact

DEPLOYMENT DIAGRAMS

• An artifact manifest one or more model elements

• A <<manifestation>> is the concrete physical of one
or more model elements by an artifact

• This model element often is a component

 A manifestation is
notated as a dashed line
with an open arrow-head
labeled with the keyword
<<manifest>>

DEPLOYMENT DIAGRAMS

REFERENCIES

• UML 2.0 Superstructure Specification
 August 2, 2003

 UML 2 Superstructure Final Adopted Specification
 www.omg.org/cgi-bin/doc?ptc/2003-08-02

• The Diagrams of UML 2.0
 by Scott W. Ambler, 2003-2004
 www.agilemodeling.com/essays/umlDiagrams.htm

• UML overview
 By Mandar Chitnis, Pravin Tiwari, & Lakshmi

Ananthamurthy

 http://www.developer.com/design/article.php/1553851

