
COMPONENT DIAGRAM
 in UML 2.0

Veronica Carrega

INTRODUCTION

• UML component diagrams describe software components
and their dependencies to each others
– A component is an autonomous unit within a system
– The components can be used to define software systems of

arbitrary size and complexity
– UML component diagrams enable to model the high-level software

components, and the interfaces to those components
– Important for component-based development (CBD)
– Component and subsystems can be flexibly REUSED and

REPLACED
– A dependency exists between two elements if changes to the

definition of one element may cause changes to the other
– Component Diagrams are often referred to as “wiring diagrams”
– The wiring of components can be represented on diagrams by

means of components and dependencies between them

INTRODUCTION
 An Uml diagram classification:
• Static

– Use case diagram, Class diagram

• Dynamic
– State diagram, Activity diagram, Sequence diagram,

Collaboration diagram

• Implementation
– Component diagram, Deployment diagram

UML components diagrams are
• Implementation diagrams:

describe the different elements required for
implementing a system

INTRODUCTION

 Another classification:
• Behavior diagrams

– A type of diagram that depicts behavior of a system
 This includes activity, state machine, and use case diagrams,

interaction diagrams

• Interaction diagrams
– A subset of behavior diagrams which emphasize object

interactions. This includes collaboration, activity, sequence
diagrams

• Structure diagrams
– A type of diagram that depicts the elements of a

specification that are irrespective of time. This includes
class, composite structure, component, deployment

UML components diagrams are structure diagrams

COMPONENT in UML 2.0

• Modular unit with well-defined interfaces
that is replaceable within its environment

• Autonomous unit within a system

– Has one or more provided and required
interfaces

– Its internals are hidden and inaccessible

– A component is encapsulated

– Its dependencies are designed such that it
can be treated as independently as possible

CASE STUDY
• Development of an application collecting students’ opinions

about courses
• A student can

– Read
– Insert
– Update
– Make data permanent about the courses in its schedule

• A professor can only see statistic elaboration of the data
• The student application must be installed in pc client

(sw1, sw2)
• The manager application must be installed in pc client (in

the manager’s office)
• There is one or more servers with DataBase and

components for courses management

COMPONENT NOTATION

 A component is shown as a rectangle
with
 A keyword <<component>>

 Optionally, in the right hand corner a
component icon can be displayed
 A component icon is a rectangle with two

smaller rectangles jutting out from the
left-hand side

 This symbol is a visual stereotype

 The component name

 Components can be labelled with a stereotype

 there are a number of standard stereotypes
ex: <<entity>>, <<subsystem>>

Component ELEMENTS
• A component can have

– Interfaces
An interface represents a declaration of a set of
operations and obligations

– Usage dependencies
A usage dependency is relationship which one element
requires another element for its full implementation

– Ports
Port represents an interaction point between a component
and its environment

– Connectors
• Connect two components
• Connect the external contract of a component to the

internal structure

INTERFACE

 A component defines its behaviour in terms of
provided and required interfaces

 An interface
 Is the definition of a collection of one or more

operations

 Provides only the operations but not the implementation

 Implementation is normally provided by a class/
component

 In complex systems, the physical implementation is
provided by a group of classes rather than a single class

INTERFACE

• May be shown using a rectangle
symbol with a keyword
<<interface>> preceding the name

• For displaying the full signature,
the interface rectangle can be
expanded to show details

 Can be

 Provided

 Required

INTERFACE

• A provided interface
– Characterize services that the

component offers to its
environment

– Is modeled using a ball, labelled
with the name, attached by a
solid line to the component

 A required interface

 Characterize services that the component expects
from its environment

 Is modeled using a socket, labelled with the name,
attached by a solid line to the component

 In UML 1.x were modeled using a dashed arrow

INTERFACE

• Where two components/classes provide and require
the same interface, these two notations may be
combined

 The ball-and-socket notation hint at that interface in
question serves to mediate interactions between the two
components

 If an interface is shown using the rectangle symbol, we
can use an alternative notation, using dependency arrows

INTERFACE

• A component
– Specifies a CONTRACT of the services that it provides

to its clients and that it requires from others
components in terms of its provided and required
interfaces

– Can be replaced
– The system can be extended

 In a system context where there are multiple components
that require or provide a particular interface, a notation
abstraction can be used that combines by joining

 the interfaces

DEPENDENCIES

• Usage Dependency
– A usage dependency is relationship which one

element requires another element for its full
implementation

– Is a dependency in which the client requires the
presence of the supplier

– Is shown as dashed arrow with a <<use>> keyword
– The arrowhead point from the dependent

component to the one of which it is dependent

 Components can be
connected by usage
dependencies

PORT

 Is shown as a small square symbol
 Ports can be named, and the name is

placed near the square symbol
 Is associated with the interfaces that

specify the nature of the interactions
that may occur over a port

 Specifies a distinct interaction point

 Between that component and its environment

 Between that component and its internal parts

PORT

• Ports can support unidirectional communication or
bi-directional communication

 If there are multiple
interfaces associated
with a port, these
interfaces may be listed
with the interface icon,
separated by a commas

PORT

– All interactions of a component with its
environment are achieved through a port

– The internals are fully isolated from the
environment

– This allows such a component to be used in any
context that satisfies the constraints specified by
its ports

– Ports are not defined in UML 1.x

EXTERNAL VIEW

• An external view (or black box
view) shows publicly visible
properties and operations

 An external view of a component is
by means of interface symbols
sticking out of the component box

 The interface can be listed in the
compartment of a component box

 A component have an external view and an internal
view

INTERNAL VIEW

• An internal, or white box
view of a component is
where the realizing
classes/components are
nested within the
component shape

 Realization is a relationship between two set of
model elements
 One represents a specification
 The other represent an implementation of the

latter

INTERNAL VIEW

• The internal class that realize the
behavior of a component may be
displayed in an additional
compartment

 Compartments can also be used to
display parts, connectors or
implementation artifacts

 An artifact is the specification of a
phisycal piece of information

INTERNAL VIEW

 Components can be built recursively

ASSEMBLY
• Two kinds of connectors:

– Delegation
– Assembly

• ASSEMBLY CONNECTOR
– A connector between 2 components defines that one

component provides the services that another
component requires

– He must only be defined from a required interface
to a provided interface

– An assembly connector is notated by a “ball-and-
socket” connection

 This notation allows
for succint grafical

 wiring of components

SEMANTICS

• The semantics for an assembly connector :
– Are that signals travel along an instance of a

connector originating in a required port and
delivered to a provided port

– The interfaces provided and required must be
compatible

– The interface compatibility between provided and
required ports that are connected enables an
existing component in a system to be replaced

SEMANTICS

– Multiple connections directed from a single required
interface to provided interfaces indicates that the
instance that will handle the signal will be determined
at execution time

DELEGATION

 DELEGATION CONNECTOR
 Links the external contract of a component to the

internal realization

 Represents the forwarding of signals

 He must only be defined between used interfaces
or ports of the same kind

DELEGATION
– The target interface must support a signature compatible

with a subset of operations of the source interface
– A port may delegate to a set of ports on subordinate

components
– The union of the target interfaces must be signature

compatible with the source interface
• Semantics:

– Is a declaration that behaviour that is available on a
component instance is not realized by that component
itself, but by another instance that has compatible
capabilities

– Is used to model the hierarchical decomposition
– Message and signal flow will occur between the connected

ports

CASE STUDY

CASE STUDY

DEPLOYMENT DIAGRAMS

• Deployment diagrams
– Show the physical relationship between hardware

and software in a system
– Hardware elements:

• Computers (clients, servers)
• Embedded processors
• Devices (sensors, peripherals)

– Are used to show the nodes where software
components reside in the run-time system

 There is a strong link between components diagrams and
deployment diagrams

DEPLOYMENT DIAGRAMS

 Deployment diagram
 Contains nodes and connections
 A node usually represent a piece of hardware in

the system

 A connection depicts the
communication path used by
the hardware to
communicate

 Usually indicates the
method such as TCP/IP

DEPLOYMENT DIAGRAMS

 An artifact
 Is the specification of a

phisycal piece of
information

 Ex: source files, binary
executable files, table in
a database system,….

 An artifact defined by
the user represents a
concrete element in the
physical world

 Deployment diagrams
contain artifact

DEPLOYMENT DIAGRAMS

• An artifact manifest one or more model elements

• A <<manifestation>> is the concrete physical of one
or more model elements by an artifact

• This model element often is a component

 A manifestation is
notated as a dashed line
with an open arrow-head
labeled with the keyword
<<manifest>>

DEPLOYMENT DIAGRAMS

REFERENCIES

• UML 2.0 Superstructure Specification
 August 2, 2003

 UML 2 Superstructure Final Adopted Specification
 www.omg.org/cgi-bin/doc?ptc/2003-08-02

• The Diagrams of UML 2.0
 by Scott W. Ambler, 2003-2004
 www.agilemodeling.com/essays/umlDiagrams.htm

• UML overview
 By Mandar Chitnis, Pravin Tiwari, & Lakshmi

Ananthamurthy

 http://www.developer.com/design/article.php/1553851

