COMPONENT DIAGRAM
in UML 2.0

Veronica Carrega

INTRODUCTION

« UML component diagrams describe software components
and their dependencies to each others

A component is an autonomous unit within a system

The components can be used to define software systems of
arbitrary size and complexity

UML component diagrams enable to model the high-level software
components, and the interfaces to those components

Important for component-based development (CBD)

Component and subsystems can be flexibly REUSED and
REPLACED

A dependency exists between two elements if changes to the
definition of one element may cause changes to the other

Component Diagrams are often referred to as "wiring diagrams”

The wiring of components can be represented on diagrams by
means of components and dependencies between them

INTRODUCTION

An Uml diagram classification:
« Static

— Use case diagram, Class diagram
* Dynamic

— State diagram, Activity diagram, Sequence diagram,
Collaboration diagram

« Implementation
— Component diagram, Deployment diagram

UML components diagrams are

« Implementation diagrams:
describe the different elements required for
implementing a system

INTRODUCTION

Another classification:

 Behavior diagrams
— A type of diagram that depicts behavior of a system

This includes activity, state machine, and use case diagrams,
inferaction diagrams

« Interaction diagrams

— A subset of behavior diagrams which emphasize object
interactions. This includes collaboration, activity, sequence
diagrams

« Structure diagrams

— A type of diagram that depicts the elements of a
specification that are irrespective of time. This includes
class, composite structure, component, deployment

UML components diagrams are structure diagrams

COMPONENT in UML 2.0

* Modular unit with well-defined interfaces
that is replaceable within its environment

« Autonomous unit within a system

— Has one or more provided and required
interfaces

— Its internals are hidden and inaccessible
— A component is encapsulated

— I'ts dependencies are designed such that it
can be treated as independently as possible

CASE STUDY

Development of an application collecting students’ opinions
about courses

A student can

— Read

— Insert

— Update

— Make data permanent about the courses in its schedule

A professor can only see statistic elaboration of the data

The student application must be installed in pc client
(swl, sw2)

The manager application must be installed in pc client (in
the manager's office)

There is one or more servers with DataBase and
components for courses management

COMPONENT NOTATION

m A component is shown as a rectangle
with
= A keyword <«component>>

= Optionally, in the right hand corner a
component icon can be displayed

= A component icon is a rectangle with two
smaller rectangles jutting out from the
left-hand side

= This symbol is a visual stereotype
= The component name

<< components
Corsolss

Corsols2

s Components can be labelled with a stereotype
there are a number of standard stereotypes

ex: «entity», <«<subsystem>»

Component ELEMENTS

* A component can have

— Interfaces
An interface represents a declaration of a set of
operations and obligations

— Usage dependencies
A usage dependency is relationship which one element
requires another element for its full implementation

— Ports
Port represents an interaction point between a component
and its environment

— Connectors

* Connect two components

* Connect the external contract of a component to the
internal structure

INTERFACE

= A component defines its behaviour in terms of
provided and required interfaces

m An interface

= Is the definition of a collection of one or more
operations

= Provides only the operations but not the implementation

= Implementation is normally provided by a class/
component

= In complex systems, the physical implementation is
provided by a group of classes rather than a single class

INTERFACE

* May be shown using a rectangle e
. piCourseForhan
symbol with a keyword
«interface>> preceding the name

 For displaying the full signature,
the interface rectangle can be Cinteriace »»
expanded to show details piCaursaForhdan
TipoDatiAggregat Leggil)
m Can be
= Provided

= Required

INTERFACE

« A provided interface oo
— Characterize services that the O— 3]
component offers to its S
enVII"OﬂmenT piCourseFarhbian
— Is modeled using a ball, labelled
with the name, attached by a 7| e
solid line to the component corso [-

m A r‘equired interface DBAForCourse
= Characterize services that the component expects
from its environment

= Is modeled using a socket, labelled with the name,
attached by a solid line to the component

= In UML 1.x were modeled using a dashed arrow

INTERFACE

« Where two components/classes provide and require
the same interface, these two notations may be
CO m b I ned E iCaurseFarhian E

II..-'_
hManager @ Corsa

m The ball-and-socket notation hint at that interface in
question serves to mediate interactions between the two
components

m If an interface is shown using the rectangle symbol, we
can use an alternative notation, using dependency arrows

@ =zirterface== E
hManzger (:]7 Corso

iCourzeForManager

INTERFACE

m Ina system context where there are multiple components
that require or provide a particular interface, a notation
abstraction can be used that combines by joining

the interfaces oo G

©—

aaaaaaa

Corsofrchitetture

* A component

— Specifies a CONTRACT of the services that it provides
to its clients and that it requires from others
components in terms of its provided and required
interfaces

— Can be replaced
— The system can be extended

DEPENDENCIES

= Components can be
connected by usage Manager E} oo &
dependencies

» Usage Dependency

— A usage dependency is relationship which one
element requires another element for its full
implementation

— Is a dependency in which the client requires the
presence of the supplier

— Is shown as dashed arrow with a <<use>> keyword

— The arrowhead point from the dependent
component to the one of which it is dependent

PORT

Specifies a distinct interaction point
= Between that component and its environment
= Between that component and its internal parts

Is shown as a small square symbol
Ports can be named, and the name is

placed near the square symbol
Is associated with the interfaces that

sﬂecify the nature of the interactions
that may occur over a port

=0
]
piCourseF orStud p [:I_<:
piCourseForshdan p3 I:‘]_c
rbBAFarCourse

PORT

 Ports can support unidirectional communication or

bi-directional communication

Corso
nss
piCourseF arstud pe [:I—C
| O= P
piCourseForshdan p3 I:‘]_(
ribBAFarCourse

m If there are multiple
interfaces associated
with a port, these
interfaces may be listed
with the interface icon,
separated by a commas

p o rtrain

Q

o

-
power

Engine

ourzeFarsStud
urseForShlan

O— P

[My}
(=]

ri[?-Eh'l‘xFl:urlll:-urgleI
nes

PORT

— All interactions of a component with its
environment are achieved through a port

— The internals are fully isolated from the
environment

— This allows such a component to be used in any
context that satisfies the constraints specified by
Its ports

— Ports are not defined in UML 1.x

EXTERNAL VIEW

m A component have an external view and an internal
view

ss
: O—

« An external view (or black box sicewsfastue| o, =

view) shows publicly visible O— —

. . iCourseForshia nDBAFarCourse
properties and operations p

m An external view of a component is
by means of interface symbols
sticking out of the component box <Cprovidedneraces>>

piCourseForstud
piCourseFarbdan

m The interface can be listed in the g e metacEs>>
nDBAForCourse
compartment of a component box

Corsol52

INTERNAL VIEW

* An internal, or white box

View Of a ComponenT is riCourseF orStud
where the realizing -
CIGSS@S/ComponenTS are DBAF orStud

hested within the
compohnent shape

Student

Appl

GUI

m Realization is a relationship between two set of

model elements
= One represents a specification

= The other represent an implementation of the

latter

fiSeckarStud

INTERNAL VIEW

« The internal class that realize the
behavior of a component may be
displayed in an additional
compartment

s Compartments can also be used to
display parts, connectors or
implementation artifacts

m Anartifact is the specification of a
phisycal piece of information

LLComponents»
Student

5]

<<required interfaces»»
HCourseForstud
HOBAForstud
HsecForStud

<Lrealizations»»

Appl
G

<Lattifactss»

studentjar

INTERNAL VIEW

s Components can be built recursively

2]

Student
PRl g umseF arstud
':][]{ = E rSecForStud
riCourseFarStud | wdelegates Appl xdelegates

]ﬂ ;ﬂErEtud ‘ _C\‘—‘D—C

:] adelegatex pStud3 nSeckarStud
| i 7 iGUI
nbBAForstud | pStud2

G $:|

ASSEMBLY

« Two kinds of connectors:

— Delegation
— Assembly

« ASSEMBLY CONNECTOR

— A connector between 2 components defines that one
component provides the services that another
component requires

— He must only be defined from a required interface

to a provided interface

— An assembly connector is notated by a "ball-and-

socket" connection

This notation allows
for succint grafical

wiring of components

Manager

2]

Corso

SEMANTICS

» The semantics for an assembly connector :

— Are that signals travel along an instance of a
connector originating in a required port and
delivered to a provided port

— The interfaces provided and required must be
compatible

— The interface compatibility between provided and
required ports that are connected enables an
existing component in a system to be replaced

SEMANTICS

— Multiple connections directed from a single required
interface to provided interfaces indicates that the
instance that will handle the signal will be determined
at execution time

Corsol 52

SecuritySerwer

Corsofrchitetture

DELEGATION
= DELEGATION CONNECTOR

= Links the external contract of a component to the
internal realization

= Represents the forwarding of signals

= He must only be defined between used interfaces
or ports of the same kind

Studernt
P e g yrseF arstud
)—[}E—F—__')_ E riSecForstud
riCouseFarStud | =delegates _:l— Appl = xdelegates
HDBAForStud | \\—\[]—C
) wdelegates pStudz rifeckorstud
. L T iGLI
rbBAFarStud | pStud2
Gl E

DELEGATION

— The target interface must support a signature compatible
with a subset of operations of the source interface

— A port may delegate to a set of ports on subordinate
components

— The union of the target interfaces must be signature
compatible with the source interface

e Semantics:

— Is a declaration that behaviour that is available on a
component instance is not realized by that component
itself, but by another instance that has compatible
capabilities

— Is used to model the hierarchical decomposition

— Message and signal flow will occur between the connected
ports

CASE STUDY

piDBAfar3tud % fibBAforstud Studert I Securit 3]
Qf risecFor @ piSFS SourityFar Student
Stud
OE E = DEAccess pilBAforCourse
DB
g riDE nbBAForCourse
piDBAforkd an |
@j piCourseForStud Corsol3z
i FarStud
riCourseFar ul_ @_
i BAForkd an
E _ _ . . i85 gpiss Security Server
piSFh a,llrlSFM E 7 piCourseFartd an L O ¥
Securit Ny
ecurityFor Manager Q,.f Man=zger EourecFortan @— .
L]

ridFF

)]

O Carsofrehitetture
pidFF

Cffice

Student

CASE STUDY

nCouseForStud

DBAccess

O—L
O
nibBAFarstud

pStudd

wdelegaten

nCouseForStud

Student

2]

Appl $:|

nSeckorStud

ribBAFarStud

adelegatan

pStud2

pStuda

2]

SecurityForStudent

nSecForStud

DEPLOYMENT DIAGRAMS

m There is a strong link between components diagrams and
deployment diagrams

« Deployment diagrams

— Show the physical relationship between hardware
and software in a system

— Hardware elements:
« Computers (clients, servers)

« Embedded processors
* Devices (sensors, peripherals)

— Are used to show the nodes where software
components reside in the run-time system

DEPLOYMENT DIAGRAMS

s Deployment diagram
= Contains nodes and connections

= A node usually represent a piece of hardware in
the system

ModeZ

= A connection depicts the
communication path used by

the hardware to
communicate

= Usually indicates the

Mode

method such as TCP/IP

DEPLOYMENT DIAGRAMS

m Deployment diagrams

ModeZ

contain artifact
. madﬁad»l%ﬂ
m An Qr‘.thCt Artifacts

= Is the specification of a A
phisycal piece of |
information

TCR/AF

= Ex: source files, binary
executable files, table in
a database system,....

= An artifact defined by T u
the user repraen?s Q Attifactl f------ = Adifactz

concrete element in the
physical world

DEPLOYMENT DIAGRAMS

« An artifact manifest one or more model elements

« A «manifestation>> is the concrete physical of one
or more model elements by an artifact

« This model element often is a component
m A manifestation is

notated as a dashed line e E:
with an open arrow-head N
labeled with the keyword
«manifest»

wartifacts @
Caorsol52.java

DEPLOYMENT DIAGRAMS

Client Stud

xarifacts |=
Stud

'y

&K‘“*-—-__TEPIIP

w artifacts Ig “'_,1_ -
Secttud Tl el
Clienthan

«artifact= @
Office

wartifacts IE
Manager

wartifacts Ia
Sechan

zartifacts |=
[s]=]

wartifacts Ia
Coursel=2

Serwer

zartifacts |=

D BACcess
7 W
. .
- .
- .
. .
, .
.
.
.
.
.
- .
. .
.- .
L .
- .
wartifacts E]
Coursefrch
:
‘
f
‘
.
B
.
. ¢
- B
. ‘
. .
- :
. .
. ¢
- B
. ‘
.

o
w artifacts @
SecuritySenrar

TCRAP_]

REFERENCIES

« UML 2.0 Superstructure Specification
August 2, 2003

UML 2 Superstructure Final Adopted Specification
www.omg.org/cgi-bin/doc?ptc/2003-08-02

* The Diagrams of UML 2.0
by Scott W. Ambler, 2003-2004
www.agilemodeling.com/essays/umlDiagrams.htm

« UML overview

By Mandar Chitnis, Pravin Tiwari, & Lakshmi
Ananthamurthy

http://www.developer.com/design/article.php/1553851

