!'_ Class Diagram

i What is a Class Diagram?

= A diagram that shows a set of classes,
Interfaces, and collaborations and their
relationships

Why do we need Class
i Diagram?

= Focus on the conceptual and
specification perspectives to avoid the
premature implementation perspective
all the time during your projects

s We can show the static structure of the
things that exist, their internal

ctriintiivrn nA thoivr ralatinnchi

STrUCtui C, ainaG l.I eIl reiadonsi ||pS

other things

What are the main components
i of a Class Diagram?

s Class
— Class name
— Attribute
— Operation

= Relationships
— Generalization
— Association
— Aggregation
— Dependency

i Class - Semantic

A class Is the descriptor for a set of objects
with similar structure, behavior, and
relationships

Classes are declared in class diagrams and
used in most other diagrams.

The name of a class has scope within the
package in which it is declared.

The name must be unique among class
names within its package

Class - Notation

the class name and ———

other properties of
the class

. a list of attributes

a list of operations

Drawing a Class

' .II] . i] 1] I I. i " e (] .I] II iy II
LoFES Y e, .'I;""ll'.llur'.lll'. &CERTE R ol Ty OTRTE COlf A

.|I. .lll-'r';_|r :.:..--I .II..l ! |IIII L |I

Window
Window

tabstract, author—loe, status—tested!

Afiribuies in plane face. lefi fustified N | }-.i..-f.l.h'i.:"-t.r.,;':l ilijull.]'ll'lfl B
S g R 1 # viathilitv: Boolean—invisible
- default size:Rectanele
 maximum size:Rectangle
- Xxprr: Xwindow™®

{ -i'_ll' CFQIONRS 11} Werhe face, |'I-'.:."..r Juxd l'_l'.l'-'.".l'I

Window = displavi)

sz Area - hadel)

visibility:Boolean - created)

- attach X Window (owin: Xowindow ™)

cdisplay()
hided)

i Attributes - Semantic

= At the conceptual level, it Is equivalent
to a composition association

= Attributes are always single-valued

= Any type used as an attribute has value
rather than references

Attribute - Notation

« Notation

— visibility name:type-expression = initial-value {property-
string}

« Visibility: + public, # protected, - private
+ class-scope attribute and instance-scope attribute

Fstze Area—(100, 100
S visibility: Booleanvisible

- default size Rectanele

f maxinnun size: Rectangele

- wpir swindow®

Operation — Semantic &
Notation

« Semantics

— Public methods on a type

— Within conceptual models, indicate the principal
responsibilities of classes.

* Notation
— visibility name (parameter-list).return-type-expression
{property-string}

latestAmountOf | Phenomenon Tvpe value pOQuantity

i Generalization

= A relationship between a general thing
and a more specific kind of that thing

= “Is-a-kind-of” relationship

Generalization — Semantic &

i Notation

« Semantics
— At the conceptual level, similarities among classes.

— At the specification level, subtyping or interface-
Inheritance

— At the implementation level, subclassing or
Implementation-inheritance.

* Notation

Shape

AT

Rectangle Circle Polveon

i Association

= A structural relationship that specifies that

objects of one thing are connected to objects
of other

= At the conceptual level, associations

represent conceptual relationships between
classes

= At the specification level, associations
represent responsibilities

= At the implementation level, associations
represent navigability.

Association - Example

« Example

— An Order has to come from a single Customer.
A Customer may several Orders over time.
Each of these Orders has several Order Lines,

each of which refers to a single Product.

Order Customer

I

Order Line Product

i Association

= Role name

= Each association has two roles; each role Is a
direction on the association

= A role can be explicitly named with a label. It
there is no label, you name a role after the target
class

Multiplicity

Navigability
Aggregation/Composition indicators
Ordering

i Association

ageregalion

Polveon

Led
F

mudiipliciny

=

K>

Fordered !

|_'.".I.|_|'|ll|' Nasiion

CIRNCIC R

An GrapficsBundie role

whose source I8

Podveon and whose 1argel

is GrraphicsBundle

Point

Graphics Bundle

navigabilin

i Dependency

= A using relationship that states that a
change In specification of one thing
may affect another thing that uses it,
but not necessarily the reverse

= One class uses another class as an
argument in the signature of an

I\If'\l\lﬁf\ lf\lf'\

operation

!'_ Sequence Diagram

A First Look at Sequence
i Diagrams

= |llustrates how objects interacts with
each other.

= Emphasizes time ordering of messages.

= Can model simple sequential flow,
branching, iteration, recursion and
concurrency.

i Sequence Diagram

= Interaction diagrams come in two forms,
both present in the UML. The first form Is
the sequence diagram. In this form
objects are shown as vertical lines with the
messages as horizontal lines between
them.

= This form was first popularized by
Jacobson

uence Diagram

iASeq

member: _ :Book
LibraryMember book:Book Copy
borrow(book)

“ ok = mayBorrow()

ﬁ

[0k] borrow(member)

=H setTaken(member) ﬂ

i A Sequence Diagram

X-AXis (objects)

(BWi) SIXW-A

>
member: _ :Book
LibraryMember book:Book Copy
borrowgo(l)k) _‘ i Life 5 Object
ok = mayBorrow() ;) !
) ! Line |
messSage J‘ !
§ | Activation

[ok] borrow(member),

AN

condition

H setTaken(member) ﬂ/box

ODbject

= Object naming: myBirthdy

= syntax: [finstanceNamel]/:className]

‘Date

= Name classes consistently with your class
diagram (same classes).

= Include instance names when objects are
referred to in messages or when several
objects of the same type exist in the
diagram.

= The Life-Line represents the object’s
life during the interaction

Lifeline Samples

=d Lifelines /

Self

Lifelin=

Instance :Class

=d Mare Lifelines /

7

EAY
Actar

@OQ

El-:-un-:larg.r I:-:untrn:-l Entlh.r

Messages

= An Interaction between two objects Is
performed as a message sent from
one object to another.

= Most often implemented by a simple
operation call.

= Can be an actual message sent through
some communication mechanism, either
over the network or internally on a
computer.
» Inter-process communication (Signaling, ...)
« Remote Procedure Call (RMI, CORBA, ...)

i Messages (Cont.)

= If object obj, sends a message to
another object obj, an association must
exist between those two objects:
= Structural dependency
= 0DJ, IS In the global scope of obj,
= 0D}, Is In the local scope of obj, (method

arniimant)
Al HU|||\J| |L}

= 0bJ, and obj, are the same object

Messages (Cont.)

= A message IS represented by an arrow
between the life lines of two objects.
= Self calls are also allowed

= The time required by the receiver object to
process the message Is denoted by an activation-
box.
= A message Is labeled at minimum with the
mesSsage name.
= Arguments and control information (conditions,
Iteration) may be included.

= Prefer using a brief textual description whenever
an actoris the source or the target of a message.

i Message Types

Synchronous >
Asynchronous ~
Simple >
Create S-creater”
<<destroy>>

Destroy S

i Synchronous Messages

= Nested flow of control, typically implemented
as an operation call.

= The routine that handles the message is completed
before the caller resumes execution.

A B

doYouUnderstand() -

Caller |— J ret_urn
Blocked . yes = _= — (optional)

i Return Values

= Optionally indicated using a dashed arrow
with a label indicating the return value.

= Don’t model a return value when it is obvious
what is being returned, e.g. getTotal()

= Model a return value only when you need to
refer to It elsewhere, e.g. as a parameter
passed in another message.

= Prefer mndnlmg return value

method invocation, e.g. ok

g
o J

i Object Creation

= An object may create another object via
a <<create>> message.

Preferred
A B A
<<create>> :L <<create>> B
7L H
- | Constructor |: - -

i Object Destruction

= An object may destroy another object via a
<<destroy>> message.
= An object may destroy itself.

= Avoid modeling object destruction unless memory
management is critical.

rt d
Parent . A . B
T

Child <<destroy>>.

S N et W

i Asynchronous Messages

= Used for modeling concurrent systems.

= Caller does not wait for the message to be
handled before it continues to execute.
= As If the call returns immediately

= Active objects own an execution thread and
can Initiate control activity.

= An asynchronous mesSsage can.
Create a new thread (a new activation record)
Create a new object

Communicate with a thread that is already
running.

Control information

= Condition
= syntax: ‘[' expression ']’ message-label

= The message is sent only if the condition Is
true

= example:

= Iteration
= syntax: * [‘[' expression ‘]’] message-label

= The message Is sent many times to possibly
multiple receiver objects.

[ok] borrow(member) 1

i Control Information (Cont.)

-CompoundShape

-Shape

draw()

*draw()

ﬂ

= |teration examples:

-Driver

—>

|
—

‘Bus

*[until full] insert()i

I

The syntax of
expressions Is
not a standard

i Control Information (Cont.)

= The control mechanisms of sequence
diagrams suffice only for modeling
simple alternatives.

= Consider drawing several diagrams for
modeling complex scenarios.

= Don’t use sequence diagrams for detalled
modeling of algorithms (this Is better done

||c|ng ,f.mfn/n"v r//nnrnmc necalinN-ronna or

I.VL y fJ UUUUUUUUUUU

state- charts)

i Frame Element

= Frame Element is the optional graphical boundary of a diagram
= A frame element provides a consistent place for a diagram's label,
while providing a graphical boundary for the diagram

= The diagram's label is placed in the top left corner, called the
frame's "namebox," a sort of dog-eared rectangle, and the actual
UML diagram is defined within the body of the larger enclosing

rectangle.

< Diagram's Label =)

< Diagram's Content Area >

Incoming and Outgoing Message at
the border of the frame element

= On sequence diagrams incoming and outgoing messages
(a.k.a. interactions) for a sequence can be modeled by
connecting the messages to the border of the frame element

¢d Balance Lookup (int accountNumber) : in/'t)

I
I

|

|

geBalance (am:-.nu*un'b-e.fi} |
F |

refrievesccount (acoounthwember [)
erSACCount
P ool SRR
geBalance ()

I
i ’D
balanca b s s i a e T e ki el JhaLan:e
FEEERE S |
i

i Message Sample

=d MESSEIQEE/ =d Recursion /

Source Target Source

return:= messageiparameter)

seltTmessage

messagelparameter) J_

' -
recursion
messagelreturn)

[1

i Lost and Found Message

=d Lo=t and Found /

Lifeline
: lost_message
L =@
f found_message
1= .'

*UML 2.0 introduced the concept of
messages that do not reach their
destination (lost messages)or are from
unknown sources (found messages)

*Note that lost and found are relative
terms ; the receiver or sender might only
be unknown with respect to your current
sequence diagram

sLost messages are commonly used to
show how a system handles a network
failure resulting in an undelivered message
*Found messages are commonly used for
modeling exception handling —you don 't
necessarily care who threw the exception ;
you simply want to show how it is handled

register : RegisterOffice

ar : AccountsReceivable

getFastDueBalance { studentId)

pastDueBalance
..g:_: __________________________________

[pastDueBalance = 0] addStudent studentId

drama : Class

Combined Fragments

= The sequence diagrams are not intended for showing complex
procedural logic

= However, there are a number of mechanisms that do allow for adding
a degree of procedural logic to diagrams and which come under the
heading of combined fragments.

= A combined fragment is one or more processing sequence enclosed in
a frame and executed under specific named circumstances. The
fragments available are:

= Alternative fragment (denoted “alt”) models if...then...else constructs.
= Option fragment (denoted “opt”) models switch constructs.

= Break fragment models an alternative sequence of events that Is
processed instead of the whole of the rest of the diagram.

= Parallel fragment (denoted “par”) models concurrent processing.

= Consider fragment is in effect the opposite of the ignore fragment: any
message not included in the consider fragment should be ignored.

= Loop fragment encloses a series of messages which are repeated.

bark : Bank theCheck @ Check account @ CheckingAccourn

Alternative
Fragments

s Alternatives are oSS

|
|
|
|
|
|
I
|
used to designate a ER— PR oo E
mutually exclusive ... | |
choice between two o e |
Oor more message forsFcER st 1
sequences Tj

|
P S Py e e [___________________________ 1 2
. [els=]
= Alternatives allow sstremensunipes |
tlri e .r‘r‘l O d e i i iAl g Of ti‘l e nDteRebJrnedChecIL { theCheck %

CIaSSiC "if then else" _ ret_JrnCheck{ﬂﬁeCilreck}
|
|
|

logic | F

Option

3 Fragments

register . RegisterOffice

The option
combination
fragment is used
to model a
sequence that,
given a certain
condition, will
occur; otherwise,
the sequence does
not occur

An nntinn i1c 1icad
AT UpPJuUI 1o ustu

to model a simple

"If then"
statement

—h_

ar . AccountsReceivable

drama : Class

“opt

.:-i’ __________

[pastDuebalance = 0]

getPastDueBalance { studentld)
pastbueBalance

addStudent (studentld)

|
|
|
|
|
|
|
|
|
vl

getCostOfClass {)

-

-=E: ___________

ClassCost

chargeForClass {) r

+———

Loop
i Fragments

= The loop In the sequence diagram uses a
Boolean test to verify if the loop sequence
should be run

= When you get to the loop combination
fragment a test is done to see If the value
of the entry condition is true. Then the
sequence goes Iinto the loop fragment

Loop Fragment

analyst ; Financial&nalyst

system . ReportingSystem

secSystem SecuritySystem

availableRenorts | Reports

reportsEnu © Reports

aReport : Report

getivalableReports) |

availableReports L|J

i

getSecurityClearance (userlg__)

getRequy

redsecurityLevel {)

| | =
| hasAnotherReport L-—|
"::'- """"""""""""""" 15 e
loop | | |
[hasanotherReport = true] | | |
gethextRepgrt () | |
1 I il
| aRepart | u
I - - R e

[userlearancelevel == required
Level] add (aRe ; rt)

has.ﬁ.nutherRFpDrt ()

Reference
» Fragments

cust | Custormer

The text "ref" Is
placed inside the
frame's
namebox, and
the name of the
seguence
diagram being
referenced IS
placed inside the
frame's content

Y dala N wandh

aica (:ll\.)l 1Yy VVILlI
any parameters
to the sequence
diagram

amount)

teller @ ATM

theirBanlk : Bank

withdrawCash (accounthumber |

JF.,_._.._.._._.._._.._._._._._.__._._._._._.
i)

i

1

L

cash

|

getBalance (accounthumber)

|

|
o 'I 1
re_f I

Balance Lookup(accountNumber) :
Real

dehit { accounttumber , amount)

ref |
Debit Account (accountNumber,
amount)

— |

Referenced Sequence Diagram (It

* IS reusable)

o Balance Lookup | Integer : accountNumber) : Real)

%
5
:
|
g
|
:
:

setvalue (balapoe)

S g e

Gate

m gate is a connection point for connecting a message inside a fragment with a message
outside a fragment

= A gate as a small square on a fragment frame

= Diagram gates act as off-page connectors for sequence diagrams, representing the source of
incoming messages or the target of outgoing messages

=d Top Lewel Diagram / =d Nested Diagram /

Objectt Objectz Objects Objectz Objects

L Mested Dizagram
 ate

<
]

Break
3 Fragments

sd Cash Check)

When a break combined
fragment's message is to be
executed, the enclosing
interaction's remainder
messages will not be executed
because the sequence breaks
out of the enclosing
interaction

Once all the messages in the
break combination have been
sent, the sequence exits
without sending any of the
remaining messages

In this way the break
combined fragment is much
like the break keyword in a
programming language like
C++ or Java.

bark : Bank theCheck : Check

cashiCheck (theCheck }.. | |

getdmount {

amount
..E _____________________

getBalance { }!

account : Checkingaccount

|
balanc#

CTe

[balance = amount]

I
addInsuFﬁenﬂ:unAFee {0
I

nDteRetJmedChedL { theCheck 3

L
=i

returnCheck (ﬂﬁechefck 3

o

addDehitTransan:’ﬂDn { check
Murmber , amount)

storePhotoOfChedk { theCheck)
I

ISR LR - |

D e S SR

Parallel
3 Fragments

The parallel
combination
fragment is drawn
using a frame, and
you place the text
"par” in the frame's
namebox

The frame is
divided into
content sections,
separated by a
dashed line

Each interaction in
the frame
represents a thread
of execution done
In parallel

hunger‘erSDn : Person

cookFood ()

aven : Microwavetven

yummyFood

|..:: ___________________

nukeFood

rotateFood {

i

"""""" i3

