
Class Diagramg

What is a Class Diagram?a s a C ass ag a

A diagram that shows a set of classesA diagram that shows a set of classes,
interfaces, and collaborations and their
relationships

Why do we need ClassWhy do we need Class
Diagram?ag a

Focus on the conceptual andFocus on the conceptual and
specification perspectives to avoid the
premature implementation perspective
all the time during your projectsall the time during your projects
We can show the static structure of the
things that exist, their internal
structure and their relationships tostructure, and their relationships to
other things

What are the main componentsWhat are the main components
of a Class Diagram?of a Class Diagram?

ClassClass
– Class name
– Attribute
– Operation

Relationships
Generalization– Generalization

– Association
– Aggregation
– Dependency

Class - SemanticC ass Se a
A class is the descriptor for a set of objectsA class is the descriptor for a set of objects
with similar structure, behavior, and
relationshipsrelationships
Classes are declared in class diagrams and
used in most other diagramsused in most other diagrams.
The name of a class has scope within the
package in which it is declared.
The name must be unique among class q g
names within its package

Class - NotationC ass o a o

Drawing a Classa g a C ass

Attributes - Semanticbu es Se a

At the conceptual level it is equivalentAt the conceptual level, it is equivalent
to a composition association
Attributes are always single-valued
Any type used as an attribute has value
rather than referencesrather than references

Attribute - Notationbu e o a o

Operation – Semantic &Operation Semantic &
Notationo a o

GeneralizationGe e a a o

A relationship between a general thingA relationship between a general thing
and a more specific kind of that thing
“is-a-kind-of” relationship

Generalization – Semantic &Generalization Semantic &
Notationo a o

Associationsso a o
A structural relationship that specifies that p p
objects of one thing are connected to objects
of other
At the conceptual level, associations
represent conceptual relationships between
lclasses

At the specification level, associations
t ibilitirepresent responsibilities

At the implementation level, associations
t i bilitrepresent navigability.

Association - Examplesso a o a p e

Association sso a o
Role nameRole name

Each association has two roles; each role is a
direction on the association
A role can be explicitly named with a label. It
there is no label, you name a role after the target
classclass

Multiplicity
N i bilitNavigability
Aggregation/Composition indicators
Ordering

Associationsso a o

Dependencyepe de y

A using relationship that states that aA using relationship that states that a
change in specification of one thing
may affect another thing that uses it,
but not necessarily the reversebut not necessarily the reverse
One class uses another class as an
argument in the signature of an
operationoperation

Sequence Diagramq g

A First Look at SequenceA First Look at Sequence
Diagramsag a s

Illustrates how objects interacts withIllustrates how objects interacts with
each other.
Emphasizes time ordering of messages.
Can model simple sequential flow,
branching, iteration, recursion andbranching, iteration, recursion and
concurrency.

Sequence DiagramSeque e ag a

Interaction diagrams come in two formsInteraction diagrams come in two forms,
both present in the UML. The first form is
th di I thi fthe sequence diagram. In this form
objects are shown as vertical lines with the
messages as horizontal lines between
them.
This form was first popularized by
J bJacobson

A Sequence DiagramSeque e ag a

member:
LibraryMember book:Book :Book

Copy

borrow(book)
ok = mayBorrow()ok mayBorrow()

[ok] borrow(member)
setTaken(member)

A Sequence DiagramSeque e ag a
X-Axis (objects)

member: b k B k :Book

(j)

LibraryMember book:Book Copy

Objborrow(book)
ok = mayBorrow()Y-A

ObjectLife
Linemessage

[ok] borrow(member)
tT k (b)

A
xis (ti

message
Activation

b
[] ()

setTaken(member)

im
e)

box

condition

ObjectObje

Object naming: myBirthdyObject naming:
syntax: [instanceName][:className]

myBirthdy
:Date

Name classes consistently with your class
diagram (same classes).
Include instance names when objects are
referred to in messages or when several
objects of the same type exist in the
diagram.

The Life-Line represents the object’s
life during the interactionlife during the interaction

Lif li S lLifeline Samples

Messagesessages

An interaction between two objects isAn interaction between two objects is
performed as a message sent from

bj t t thone object to another.
Most often implemented by a simple
operation call.
Can be an actual message sent through g g
some communication mechanism, either
over the network or internally on a
computer.

Inter-process communication (Signaling, …)
Remote Procedure Call (RMI, CORBA, …)

Messages (Cont.)essages (Co)

If object obj sends a message toIf object obj1 sends a message to
another object obj2 an association must 2
exist between those two objects:

Structural dependencyStructural dependency
obj2 is in the global scope of obj1
obj2 is in the local scope of obj1 (method
argument)argument)
obj1 and obj2 are the same object

Messages (Cont.)essages (Co)
A message is represented by an arrowA message is represented by an arrow
between the life lines of two objects.

Self calls are also allowedSelf calls are also allowed
The time required by the receiver object to
process the message is denoted by an activation-process the message is denoted by an activation-
box.

A message is labeled at minimum with theA message is labeled at minimum with the
message name.

Arguments and control information (conditionsArguments and control information (conditions,
iteration) may be included.
Prefer using a brief textual description wheneverPrefer using a brief textual description whenever
an actor is the source or the target of a message.

Message Typesessage ypes

Synchronous
Asynchronous
SimpleSimple
Create <<create>>

Destroy <<destroy>>

Synchronous MessagesSy o ous essages

Nested flow of control typically implementedNested flow of control, typically implemented
as an operation call.

The routine that handles the message is completed
before the caller resumes execution.

:A :B

doYouUnderstand()

Caller
Blocked

return
(optional)yesBlocked

Return Valuese u a ues

Optionally indicated using a dashed arrow
with a label indicating the return value.g

Don’t model a return value when it is obvious
what is being returned, e.g. getTotal()a s be g e u ed, e g ge o a ()
Model a return value only when you need to
refer to it elsewhere, e.g. as a parameterrefer to it elsewhere, e.g. as a parameter
passed in another message.
Prefer modeling return values as part of aPrefer modeling return values as part of a
method invocation, e.g. ok = isValid()

Object CreationObje C ea o

An object may create another object viaAn object may create another object via
a <<create>> message.

Preferred
:A :B :A

<<create>> <<create>> :B

Constructor

Object DestructionObje es u o

An object may destroy another object via aAn object may destroy another object via a
<<destroy>> message.

An object may destroy itself.
Avoid modeling object destruction unless memory
management is critical.

:A :B
<<destroy>><<destroy>>

Asynchronous Messagessy o ous essages
Used for modeling concurrent systems.Used for modeling concurrent systems.
Caller does not wait for the message to be
handled before it continues to execute.handled before it continues to execute.

As if the call returns immediately
Active objects own an execution thread andActive objects own an execution thread and
can initiate control activity.
An asynchronous message can:An asynchronous message can:

Create a new thread (a new activation record)
Create a new objectCreate a new object
Communicate with a thread that is already
running.

Control informationCo o o a o
ConditionCondition

syntax: ‘[‘ expression ’]’ message-label
h l f h dThe message is sent only if the condition is

true
[ok] borrow(member)

example:

Iteration

[ok] borrow(member)

Iteration
syntax: * [‘[‘ expression ‘]’] message-label
The message is sent many times to possibly
multiple receiver objects. p j

Control Information (Cont.)Co o o a o (Co)

Iteration examples:Iteration examples:

:Driver :Bus:CompoundShape :Shape

*[until full] insert()*draw()
draw()

The syntax of
expressions is

t t d dnot a standard

Control Information (Cont.)Co o o a o (Co)

The control mechanisms of sequenceThe control mechanisms of sequence
diagrams suffice only for modeling
i l lt tisimple alternatives.
Consider drawing several diagrams for g g
modeling complex scenarios.
Don’t use sequence diagrams for detailedDon t use sequence diagrams for detailed
modeling of algorithms (this is better done
using activity diagrams pseudo-code orusing activity diagrams, pseudo code or
state-charts).

Frame Element
Frame Element is the optional graphical boundary of a diagram p g p y g
A frame element provides a consistent place for a diagram's label,
while providing a graphical boundary for the diagram
The diagram's label is placed in the top left corner called theThe diagram s label is placed in the top left corner, called the
frame's "namebox," a sort of dog-eared rectangle, and the actual
UML diagram is defined within the body of the larger enclosing
rectangle.rectangle.

Incoming and Outgoing Message at
the border of the frame elementthe border of the frame element
On sequence diagrams incoming and outgoing messages
(a.k.a. interactions) for a sequence can be modeled by(a.k.a. interactions) for a sequence can be modeled by
connecting the messages to the border of the frame element

Message Sampleg p

Lost and Found Messageg
•UML 2.0 introduced the concept of p
messages that do not reach their
destination (lost messages)or are from
unknown sources (found messages)unknown sources (found messages)
•Note that lost and found are relative
terms ; the receiver or sender might only
be unknown with respect to your currentbe unknown with respect to your current
sequence diagram
•Lost messages are commonly used to
h h t h dl t kshow how a system handles a network

failure resulting in an undelivered message
•Found messages are commonly used for
modeling exception handling —you don ’t
necessarily care who threw the exception ;
you simply want to show how it is handledyou s p y a t to s o o t s a d ed

Combined Fragments g
The sequence diagrams are not intended for showing complex

d l lprocedural logic
However, there are a number of mechanisms that do allow for adding
a degree of procedural logic to diagrams and which come under the
heading of combined fragmentsheading of combined fragments.
A combined fragment is one or more processing sequence enclosed in
a frame and executed under specific named circumstances. The
fragments available are:fragments available are:
Alternative fragment (denoted “alt”) models if…then…else constructs.
Option fragment (denoted “opt”) models switch constructs.
B k f t d l lt ti f t th t iBreak fragment models an alternative sequence of events that is
processed instead of the whole of the rest of the diagram.
Parallel fragment (denoted “par”) models concurrent processing.
C id f t i i ff t th it f th i f tConsider fragment is in effect the opposite of the ignore fragment: any
message not included in the consider fragment should be ignored.
Loop fragment encloses a series of messages which are repeated.

Alternative
FragmentsFragments

Alternatives areAlternatives are
used to designate a

t ll l imutually exclusive
choice between two
or more message
sequencesq
Alternatives allow
the modeling of thethe modeling of the
classic "if then else"
l ilogic

Option
FragmentsFragments

The optionThe option
combination
fragment is used g
to model a
sequence that,
given a certaingiven a certain
condition, will
occur; otherwise,
th dthe sequence does
not occur
An option is usedAn option is used
to model a simple
"if then"
t t tstatement

Loop
FragmentsFragments

The loop in the sequence diagram uses aThe loop in the sequence diagram uses a
Boolean test to verify if the loop sequence
h ld bshould be run

When you get to the loop combination y g p
fragment a test is done to see if the value
of the entry condition is true Then theof the entry condition is true. Then the
sequence goes into the loop fragment

Loop Fragment

Reference
FragmentsFragments

The text "ref" is
placed inside the
frame's
namebo andnamebox, and
the name of the
sequencesequence
diagram being
referenced is
l d d hplaced inside the

frame's content
area along witharea along with
any parameters
to the sequence q
diagram

Referenced Sequence Diagram (ItReferenced Sequence Diagram (It
is reusable)s eusab e)

Gate
A gate is a connection point for connecting a message inside a fragment with a message
outside a fragmentg
A gate as a small square on a fragment frame
Diagram gates act as off-page connectors for sequence diagrams, representing the source of
incoming messages or the target of outgoing messages

Break
FragmentsFragments

When a break combined
fragment's message is to be
executed, the enclosing
interaction's remainder
messages will not be executed
because the sequence breaks
out of the enclosing
i t tiinteraction
Once all the messages in the
break combination have been

h isent, the sequence exits
without sending any of the
remaining messages
In this way the break
combined fragment is much
like the break keyword in a

i l likprogramming language like
C++ or Java.

Parallel
FragmentsFragments

The parallel
bi icombination

fragment is drawn
using a frame, and

l th t tyou place the text
"par" in the frame's
namebox
Th f iThe frame is
divided into
content sections,

t d bseparated by a
dashed line
Each interaction in
h fthe frame

represents a thread
of execution done
i ll lin parallel

