Chulalongkorn University Name

International School of Engineering Student ID
Department of Computer Engineering Station No.
2140105 Computer Programming Lab. Date

Lab 5 — Exception Handling

Objectives:

e Learn the concept of exception handling.
e Use Java exception handling to write more robust code.

Exception

An exception is an event, which occurs during the execution of a program, which disrupts
the normal flow of the program's instructions.

When an error occurs within a method, the method creates an object and hands it off to the
runtime system. The object, called an exception object, contains information about the
error, including its type and the state of the program when the error occurred. Creating an
exception object and handing it to the runtime system is called throwing an exception.

After a method throws an exception, the runtime system attempts to find something to
handle it. The set of possible "something" to handle the exception is the ordered list of
methods that had been called to get to the method where the error occurred. The list of
methods is known as the call stack (see Figure 1).

The call stack showing three method calls, where the first method called has the exception
handler.

Method where
arror occurrad

Method call

Method without an |—
exception handler |4—

Method call

Method withan | —
exception handler |4—

Method call

main —

Figure 1 The call stack

The runtime system searches the call stack for a method that contains a block of code that
can handle the exception. This block of code is called an exception handler. The search
begins with the method in which the error occurred and proceeds through the call stack in

Page 1 of 17

the reverse order in which the methods were called. When an appropriate handler is found,
the runtime system passes the exception to the handler. An exception handler is
considered appropriate if the type of the exception object thrown matches the type that can
be handled by the handler (see Figure 2.)

P Method where
Throws exception error occurred Looking for
appropriate
handier
Method without an
Forwards exception ~"| exception handler
Looking for
appropriate
handler

Method with an

Caftches some .~ exception handler
other exception

main

Figure 2 Searching the call stack for exception handler

One of the most important advantages of exception is that it separates the error-handling
code from regular code.

In traditional programming, error detection could result in spaghetti code (complex and my
branching constructs.) For example, consider the pseudocode that reads an entire file into
the memory.

readFile {
open the file;
determine its size;
allocate that much memory;
read the file into memory;
close the file;

+

There might be some possible errors, what happen if:
e the file cannot be opened?
e the file length cannot be determined?
e enough memory cannot be allocated?
e the read fails?
e the file cannot be closed?

To handle these types of errors, some error detection codes must be added to the program
as show below:

errorCodeType readFile {
initialize errorCode = 0;

open the file;
iT (theFilelsOpen) {

Page 2 of 17

determine the length of the file;
if (gotTheFileLength) {
allocate that much memory;
it (gotEnoughMemory) {
read the file into memory;
if (readFailed) {
errorCode = -1;

}
} else {

errorCode = -2;

}
} else {

errorCode = -3;

close the file;
if (theFileDidntClose && errorCode == 0) {

errorCode = -4;
} else {
errorCode = errorCode and -4;
b
} else {
errorCode = -5;
b

return errorCode;

3

Exceptions enable you to write the main flow of your code and to deal with the exceptional
cases elsewhere. If the readFile function used exceptions instead of traditional error-
management techniques, it would look more like the following.

readFile {
try {
open the file;
determine its size;
allocate that much memory;
read the file into memory;
close the file;
} catch (FileOpenFailed) {
doSomething;
} catch (sizeDeterminationFailed) {
doSomething;
} catch (memoryAllocationFailed) {
doSomething;
} catch (readFailed) {
doSomething;

} catch (FfileCloseFailed){
doSomething;
s

b

Java Exception Hierarchy
Java exceptions are all classes those inherit from Throwable as shown in Figure 3.

Page 3 of 17

I I
| Error | | Exception |

i l T

| Ermr-cderfved classes | | RunTimeException | |Exceprfon-derfved classes

@ other derived classes |

Figure 3 Java Exception Hierarchy

There two type of exception, checked and unchecked exception.

The checked exceptions (all classed derived from Exception) must be handled. That s, a
try-catch must either be nested around the call to the method that throws the exception
or the method signature must include a throws clause for this exception. (Then other
methods that invoke this method must then catch the exception or throw it up the line.)
The compiler will throw an error message if it detects an uncaught exception and will not
compile the file.

The unchecked exceptions, all Error’s and RunTimeException, do not have to be caught
because these type of exceptions indicate programming bugs. This avoids requiring that a
try-catch be place around, for example, every integer division operation to catch a divide
by zero or around every array variable to watch for indices going out of bounds. So the
programmers must ensure that these types of exception must be prevented.

However, you should handle possible run-time exceptions if you think there is a reasonable
chance of one occurring.

The Catch and Specify Requirement
Whenever you call a method that declares to throw any types of checked exception(s), the
program must follow that catch and specify requirement. Otherwise, a compilation error
will occur indicating that there is an unhandled exception. This means that code that throw
certain exceptions must be enclosed by either of the following:
e A try statement that catches the exception. The try must provide a handler for the
exception, as described in Catching and Handling Exceptions.
e A method that specifies that it can throw the exception. The method must provide a
throws clause that lists the exception, as described in Specifying the Exceptions
Thrown by a Method.

Page 4 of 17

Catch and Handling Exceptions
This section describes how to use the three exception handler components — the try,
catch, and finally blocks — to write an exception handler.

The following example defines and implements a class named Fi leReadingDemo that reads
a text file specified in the command-line argument and prints the reading text to the
console.

import java.io.*;
public class FileReadingDemo {

public static void main(String[] args) {
String filename = args[0];
FileReader file = new FileReader(args[0]);
BufferedReader buffer = new BufferedReader(file);
String txt = "";
while ((txt = buffer.readLine()) != null) {
System.out.printin(txt);

}
buffer.close();

- Your turn

Complete the following steps.

1. Create new Java project called lab5.

2. Setup the project to run JUnit as described in Lab 4.

3. Create a new class named Fi leReadingDemo and copy the code above. You will notice
that there are three errors as show in Figure 4 because there are unhandled checked

i
exceptions. The IDE shows errors by marking 2 at the lines that cause compilation
errors.

J] *FileReadingDema. java X

1 dmport java.io.*; | |
Z2 public class FileReadingDemo |

5]

4 public static void main(3tring[] args)
= String filenawe = args[0]:
PiteFromder—fTt new FileReader (args[0]]):
7 BufferedReader buffer = new BufferedBeader (file):
a String txt = "";
il ")= buffer.readlinei)] !'= null) {
10 System. out.printlnitxt)

11 i

Figure 4 Errors when not handling checked exceptions

Page 5 of 17

»4. Open Java APl document to see the description of class Fi leReader in package
jJava.io. Look at the constructor of Fi leReader which takes a string as its argument.
In the constructor signature, it is defined as follow:

public FileReader(String fileName) throws FileNotFoundException

That is for the first error. The second and third errors belong to method readLine and
close in class BufferedReader. Take a look in Java APl document for the method
readLine and close in class BufferedReader. The signatures are defined as follow:

public String readLine() throws I0Exception

public void close() throws I0Exception

In order to handle these exceptions, we must understand the exception handling
mechanism.

The try Block
The first step in constructing an exception handler is to enclose the code that might throw
an exception within a try block. In general, a try block looks like the following.

try {
code < could thrown a checked exception
}

catch and finally blocks .

The segment in the example labeled code contains one or more legal lines of code that
could throw an exception. (The catch and finally blocks are explained later.)

To construct an exception handler for the constructor method from the Fi leReader class,
enclose the exception-throwing statements of the constructor method within a try block.
There is more than one way to do this. You can put each line of code that might throw an
exception within its own try block and provide separate exception handlers for each. Or,
you can put all the code within a single try block and associate multiple handlers with it.
The following listing uses one try block for the entire method because the code in question
is very short.

» 5, Add the try block enclose the code that will throw exceptions

try {
FileReader file = new FileReader(args[0]);

BufferedReader buffer = new BufferedReader(file);

String txt = "";

while ((txt = buffer.readLine()) != null) {
System.out.printin(txt);

}
buffer.close();

3
// catch and finally statements ...

Page 6 of 17

If an exception occurs within the try block, that exception is handled by an exception
handler associated with it. To associate an exception handler with a try block, you must
put a catch block after it.

The catch Blocks

You associate exception handlers with a try block by providing one or more catch blocks
directly after the try block. No code can be between the end of the try block and the
beginning of the first catch block.

try {

} catch (ExceptionTypel name) {

} catch (ExceptionType2 name) {
}

Each catch block is an exception handler and handles the type of exception indicated by its
argument. The argument type, ExceptionType, declares the type of exception that the
handler can handle and must be the name of a class that inherits from the Throwable class.
The handler can refer to the exception with name.

The catch block contains code that is executed if and when the exception handler is
invoked. The runtime system invokes the exception handler when the handler is the first
one in the call stack whose ExceptionType matches the type of the exception thrown. The
system considers it a match if the thrown object can legally be assigned to the exception
handler's argument.

>6. Add the following catch blocks to handle the methods that throw exception.

try {

} catch (FileNotFoundException e) {
System.out.printIn("'FileNotFoundException: " + e.getMessage());
} catch (10Exception e) {
System.out.printIn("'Caught I0Exception: " + e.getMessage());
}

System.out.printIn("after try-catch™);

Both handlers print an error message. If the exception thrown is Fi leNotFoundException,
it matches the first catch block. After all statements in the block have been executed, the
execution skips the remaining catch block(s) and continues to the next statement after
try-catch block.

>7. Run the program with the argument as a non-existing file. See the result compare
to Figure 5.

Page 7 of 17

Problems | Javadoc | Declaration | B Console 52 Expressions x £ ® GH jna)
<kerminated = FileReadingDemo [Java Application] C:\Program Files)Javaljrel 6.0\bintjavaw. exe (& nuw, 2007, 21:33:47)
FilelNotFoundException: myText.txt (The system cannot find the file specified)
after try-catch

Figure 5 FileNotFoundException output

The finally Block

The Final ly block always executes when the try block exits. This ensures that the
finally block is executed even if an unexpected exception occurs. But finally is useful for
more than just exception handling — it allows the programmer to avoid having cleanup
code accidentally bypassed by a return, continue, or break. Putting cleanup codeina
finally block is always a good practice, even when no exceptions are anticipated.

>8. Add the following final ly block after the last catch block, and run.

j éaich (10Exception e) {
System.out.printIn("'Caught I0Exception: " + e.getMessage());

3} finally {
System.out.printIn(""finally always executed™);
}

The result should be similar to Figure 6.

Problems | Javadoc | Declaration | B Console 52 Expressions ® £ ® @H jna) = =08
<terminated > FileReadingDemo [Java Application] C:\Program Files)Javaljrel 6.0lbinljavaw.exe (8 n.w, 2007, 22:41:32)
FilelNotFoundException: myText.txt (The system cannot find the file specified)

finally always executed

after try-catch

Figure 6 Finally output with exception

"9. Change the command-line argument to an existing text file. Run and see the result
compare to Figure 7.

The runtime system always executes the statements within the Final ly block

regardless of what happens within the try block. So it's the perfect place to perform
cleanup.

Page 8 of 17

Problems | Javadoc | Declaration SN ERS Expressions

<terminated = FileReadingDemo [Java Application] C:\Pragram FilestJavaljrel 6.0Vbinjavaw. exe (8 now, 2007, 22:47:19)
import jawva.io.*;

pubilic class FileReadingDemo {

public static void main(String[] args) |

String filename = args[0]:

try {
FileReader file = new FileReader (args[0]):
BufferedReader huffer = new BufferedReader (file):
String txt = "
while |(txt = buffer.readLine()] '= null) {

System.out.printlnitxt);

i

+ catch (FileNotFoundException e)

System.err.println("FilelotFoundException: " + e.getMessage ()) :
+ catch (ICException e)
Jystem.err.println("Caught IOException: "™ + e.getMessagei()):

+ finally {
Fystem.err.println("finally alwvays sxecuted™);
¥
System.err.println(Mafter try-catch®™):;
i

i
finally always executed
after try-catch

Figure 7 Finally output without exception

Specifying the Exceptions Thrown by a Method

The previous section showed how to write an exception handler for the main method in the
FileReadingDemo class. Sometimes, it's appropriate for code to catch exceptions that can
occur within it. In other cases, however, it's better to let a method further up the call stack
handle the exception.

If the main method doesn't catch the checked exceptions that can occur within it, the main
method must specify that it can throw these exceptions. Let's modify the original main
method to specify the exceptions it can throw instead of catching them. To remind you,
here's the original version of the main method that won't compile.

public static void main(String[] args) {
String filename = args[0];
FileReader file = new FileReader(args[0]);
BufferedReader buffer = new BufferedReader(file);
String txt = ""';
while ((txt = buffer.readLine()) != null) {
System.out.printin(txt);

}
buffer.close();

b

To specify that main can throw two exceptions, add a throws clause to the method
declaration for the main method. (This is what we have done so far when we write Java
statement that need to access 1/0 such as file or keyboard input. We do not want the
handle the exception, so we add throws 10Exception clause after main.) The throws
clause comprises the throws keyword followed by a comma-separated list of all the
exceptions thrown by that method. The clause goes after the method name and argument
list and before the brace that defines the scope of the method; here's an example.

public static void main(String[] args) throws I0Exception,
FileNotFoundException {

Page 9 of 17

>10. Create new class name ThrowExceptionDemo and copy the following code:

public static void main(String[] args) throws I0Exception,
FileNotFoundException {
String filename = args[0];
FileReader file = new FileReader(args[0]);
BufferedReader buffer = new BufferedReader(file);
String txt = ""';
while ((txt = buffer.readLine()) != null) {
System.out.printin(txt);

}
buffer.close();

+

»11. Run it with existing file and non-existing file. Compare the output with Figure 8 & Figure
9.

] Expressions x 5& ® of) Ci =8
<kerminated > ThrowExceptionDemo [Java Application] C:YProgram FilesJavaljrel 6.0\bintjavaw. exe (& a.w, 2007, 23:12:41)
Exception in thread "main™ Java.io.FileNotFoundException: wmyText.txt (The system canhot
at Java.io.Filelnput3tresun.open (HNative Method)
at java.io.FilelInputStream.<inits> (Inknown Source)
at java.io.FileInputStream.<inics> (Unknown Source)
at java.io.FileReader.<init> (Unknown Source)
at ThrowExceptionDemo.wain(ThrowExceptionDemo.jawva:™?)

Prablems | Javadoc | Declaration BENES

Figure 8 FileNotFoundException

Problems | Javadac | Declaration | & Console 52 Expressions x 5& ® oH i Cis =8
<kerminated > ThrowExceptionDemo [Java Application] C:YProgram FilesJavaljrel . 6.0\binljavaw. exe (& A.w, 2007, 23:17:00)

2140101 Cowmputer Prograrmming for International Engineer

2140105 Computer Programming Lab for International Engineesr

2140xxx Discrete 3Jtructure

Figure 9 Without exception

How to Throw Exceptions

Before you can catch an exception, some code somewhere must throw one. Any code can
throw an exception. Regardless of what throws the exception, it's always thrown with the
throw statement.

The Java platform provides numerous exception classes. All the classes are descendants of
the Throwable class, and all allow programs to differentiate among the various types of

exceptions that can occur during the execution of a program.

You can also create your own exception classes to represent problems that can occur within
the classes you write.

Page 10 of 17

The throw Statement

All methods use the throw statement to throw an exception. The throw statement requires
a single argument: a throwable object. Throwable objects are instances of any subclass of
the Throwable class. Here's an example of a throw statement.

throw someThrowableObject;

Throwable Class and Its Subclasses

The objects that inherit from the Throwable class include direct descendants (objects that
inherit directly from the Throwable class) and indirect descendants (objects that inherit
from children or grandchildren of the Throwable class). Figure 10 illustrates the class
hierarchy of the Throwable class and its most significant subclasses. As you can see,
Throwable has two direct descendants: Error and Exception.

Object
|
Throwable
|

|]
Exception

|
RuntimeException

Figure 10 The Throwable class

Error Class

When a dynamic linking failure or other hard failure in the Java virtual machine occurs, the
virtual machine throws an Error. Simple programs typically do not catch or throw
Errors.

Exception Class

Most programs throw and catch objects that derive from the Exception class. An
Exception indicates that a problem occurred, but it is not a serious system problem. Most
programs you write will throw and catch Exceptions as opposed to Errors.

The Java platform defines the many descendants of the Exception class. These
descendants indicate various types of exceptions that can occur. For example,

I 1legalAccessException signals that a particular method could not be found, and
NegativeArraySizeException indicates that a program attempted to create an array with
a negative size.

One Exception subclass, RuntimeException, is reserved for exceptions that indicate
incorrect use of an API. An example of a runtime exception is Nul IPointerException,
which occurs when a method tries to access a member of an object through a null
reference.

Page 11 of 17

Creating Exception Classes
When faced with choosing the type of exception to throw, you can either use one written by
someone else — the Java platform provides a lot of exception classes you can use — or you
can write one of your own. You should write your own exception classes if you answer yes
to any of the following questions; otherwise, you can probably use someone else's.
e Do you need an exception type that isn't represented by those in the Java platform?
e Would it help users if they could differentiate your exceptions from those thrown by
classes written by other vendors?
e Does your code throw more than one related exception?

To create new exception, define a new class which extends from Exception, and have —
Exception as its postfix. For example, to create a new exception called RangeException:

public class RangeException extends Exception {
public RangeException(String msg) {
super(msg);

public RangeException() {

- Your turn (1)

Complete the class ArrayOfInt as specified.

Suppose you are writing a class called ArrayOfInt which has two attributes, element (array
of int) and size (int). This class implements a growable array of int values. The capacity
of the array can be grown (increased) or shrunk (decreased) (new capacity can be greater or
smaller than the current capacity).

e element stores integers (when first create, it stores nothing).

e size stores how many integers element currently stores.

This class must have the following members:
e Constructors:
0 with one argument, the initial capacity. This constructor initializes element
to an array of int with its length equals the initial capacity.
0 with no argument that initializes element to an array of int with its length
equals 10, the default initial capacity.
e Methods:
0 setCapacity(): takes one intinput argument, the new capacity. This
method must do the following tasks:
= First, check that the new capacity is different from the current
capacity. If the new capacity equals to current capacity, this method
does nothing.
= Second, allocate a new array of int with its length equals the new
capacity.

Page 12 of 17

1.
2.

= Third, copy the content of element to the new array
= Finally, assign this new array to element.

0 get():takes one int input argument, the index of the element to be
retrieved by the caller. This method must check that the index is in the valid
range (0 < index < size). If the index is valid, this method returns an int
stored at the specified index. Otherwise, it throws
Inval idElementlndexException.

0 add(): takes one intinput argument, the value to be stored (added to the
array). This value will be appended to the end of element. The variable size
should also be updated to an appropriate value. Before appending the new
value to the end of element, it must check whether size exceeds the
capacity (the length of element) or not. If the capacity is exceeded, this
method must create a new element, which is a new array with twice its
previous capacity. In the end, element will store the original content
appended with the new value.

0 set(): takes two int input arguments, index and value. This method must
check that the index is in the valid range (0 < index < size). If the index is
valid, this method set the element at the specified index to that input value.
Otherwise, it throws InvalidElementlIndexException.

Import Iab5. jar into your project.

There are errors indicated that Inval idElementlindexException has not been
declared. Create a new exception by creating a new class that extends from
jJava. lang.Exception as the code below:

public class InvalidElementIndexException extends Exception {
public InvalidElementlndexException(String msg) {

super(msg);

public InvalidElementlndexException() {

}
+

The only thing required in the class is its constructors.

Create new Java test case for ArrayOfInt as in Lab 4, and select methods setCapacity,
get, add, and set as the methods to be tested.

In ArrayOfIntTest. java add two data members, and modify the setUp method as
follow:

public class ArrayOfintTest {

ArrayOfint emptyList;

ArrayOfint aList;

@Before

protected void setUp() throws Exception {
int[] a={1, 2, 33};
emptyList = new ArrayOfInt();
aList = new ArrayOfint(a);

Page 13 of 17

Method setUp will be run before each test. We will use setUp to initialize our test data
that will be available for each test. In each test in Lab 4, we had to create a lot of same
data over and over. We will start with two ArrayOfiInt, aList which has 3 elements,
and emptyList.

Method tearDown will be the clean up method that run after each test. In our situation,
we don’t have anything to clean up so we don’t have to modify tearDown.

Start adding the first test, modify testSetCapacity method with the following code:

@Test

public void testSetCapacity() {
assertEquals(emptyList.element. length,

ArrayOfInt_DEFAULT _INITIAL_CAPACITY);

aList.setCapacity(5);
assertEquals(5, aList.element.length);
aList._setCapacity(20);
assertkEquals(20, aList.element.length);

b

We test that the emptyList must have the element’s length equals to

DEFAULT _INITIAL_CAPACITY, 10, since the capacity of our ArrayOfint is the
element. length attribute. Set the capacity to some more different values, and
compare with expected values.

Modify the testGet method, and add new test testGetWithException method as
follow.

@Test
public void testGet() throws InvalidElementlndexException {
int data;
data = alList.get(0);
assertEquals(l1, data);
data = alList.get(l);
assertEquals(2, data);
data = alList.get(2);
asserteEquals(3, data);
}

@Test(expected = InvalidElementlndexException.class)

public void testGetWithException() throws InvalidElementlindexException {
int data = alList.get(3);

}

We know that element 0, 1, 2 of aList has value 1, 2, and 3 respectively. The
statements

data = alList.get(3);
must throw InvalidElementIndexException since the index exceed the capacity. The
line

@Test(expected=InvalidElementlndexException.class)
is added before the method header to test that the method has to throw

InvalidElementindexException, otherwise the test will fail.

Page 14 of 17

7. Modify testAdd method as follow:

@Test

public void testAdd() {
emptyList.add(4);
asserteEquals(4, emptyList.get(0));
assertEquals(1, emptyList.size);
emptyList.add(10);
assertEquals(10, emptyList.get(1));
assertEquals(2, emptyList.size);
aList.add(99);
assertEquals(99, aList.get(3d));
assertEquals(4, alList.size);

b

8. Modify testSet method, and add testSetWithException method as follow:

@Test
public void testSet() {
int data;

data = aList.get(0);
aList.set(0, data + 1);
assertEquals(aList.get(0), data + 1);
assertFalse(aList.get(0) == data);

}

@Test(expected=InvalidElementIndexException.class)
public void testSetWithException() {

emptyList.set(3, 5);
3

9. Implement the ArrayOfint class for method, setCapacity, get, add, and set until
all tests are passed.

- Your turn (2)

Create new package called util.
Create new class called Keyboard in package util.
In Keyboard.java, add four static methods

readlnt()

readInt(String prompt)

readDouble()

. readDouble(String prompt)

In each method, implement the method in the way that it will display prompt
message and wait for user input and then convert that input into the
appropriate data types (readInt converts to int, and readDouble convert to
double). If the user input cannot be converted to its desired type, the method
must try to get new user input until user enters the correct number format. An
appropriate error message should be displayed.
Note: Look at Java APl document for class Integer, and Double, handle some
exceptions when the input is not in the correct format and I/O error occurs.

Page 15 of 17

Export to util.jar and save in your desktop.

Create new java project.

Go to project properties.

Select Java Build Path > Libraries > Add External JARs...
Select util.jar from step (5) in your desktop then click OK.

. Create a Java application.

. Add statement import util.Keyboard.

. In main method, get some user input using Keyboard.readXXX.

. Run the application to test it.

. Now you have utility for reading keyboard input. Keep the file for future use.

Reference

Sun’s Java Tutorial, http://java.sun.com/docs/books/tutorial/essential/exceptions/.

Page 16 of 17

Chulalongkorn University Name
International School of Engineering Student ID.
Department of Computer Engineering Station No.
2140-105 Computer Programming Lab. Data

Lab 5 - Exception Handling.

Task | Description Result Note
1 Create all test cases
2 setCapacity
3 get
4 add
5 Set
6 Createutil _jar
e class Keyboard
7 Use util _.Keyboard

Page 17 of 17

	Objectives:
	Exception
	Java Exception Hierarchy
	The Catch and Specify Requirement
	Catch and Handling Exceptions

	Your turn
	The try Block
	The catch Blocks
	The finally Block
	Specifying the Exceptions Thrown by a Method
	How to Throw Exceptions
	The throw Statement
	Throwable Class and Its Subclasses
	Error Class
	Exception Class
	Creating Exception Classes

	Your turn (1)
	Your turn (2)
	Reference
	Task
	Description
	Result
	Note

