Chapter 3: Transport Layer

Our goals:

O understand principles
behind transport
layer services:

o multiplexing/demultipl
exing

O reliable data fransfer

o flow control

O congestion control

O learn about transport
layer protocols in the
Internet:

o UDP: connectionless
transport

o TCP: connection-oriented
transport

O TCP congestion control

Transport Layer 3-1

Chapter 3 outline

0 3.1 Transport-layer
services

0 3.2 Multiplexing and
demultiplexing

0 3.3 Connectionless
transport: UDP

3 3.4 Principles of
reliable data transfer

3 3.5 Connection-oriented

transport: TCP
O segment structure
O reliable data transfer
o flow control
O connection management

3 3.6 Principles of

congestion control

0 3.7 TCP congestion

control

Transport Layer 3-2

Transport services and protocols

O provide /ogical communication

between app processes
running on different hosts

O transport protocols run in
end systems

O send side: breaks app

messages into segments,
passes to network layer

O rcv side: reassembles

segments into messages,

passes to app layer

O more than one transport
protocol available to apps

o Internet: TCP and UDP

transport
data link network
physical

Transport Layer 3-3

Transport vs. network layer

O network layer: logical
communication
between hosts

O transport layer: logical
communication
between processes

O relies on, enhances,
network layer services

Household analogy:

12 kids sending letters
to 12 kids

O processes = kids

O app messages = letters
in envelopes

O hosts = houses

O transport protocol =
Ann and Bill

O network-layer protocol
= postal service

Transport Layer 3-4

Internet transport-layer protocols

O reliable, in-order
delivery (TCP) —
networ

O congestion control
o flow control
O connection setup

3 unreliable, unordered

delivery: UDP
o no-frills extension of
"best-effort” IP

0 services not available: cp ‘
O delay guarantees :
O bandwidth guarantees

Transport Layer 3-5

Chapter 3 outline

0 3.1 Transport-layer 3 3.5 Connection-oriented
services transport: TCP

0 3.2 Multiplexing and O segment structure
demultiplexing o reliable data transfer

1 3.3 Connectionless o flow control
transport: UDP O connection management

3 3.6 Principles of
congestion control

0 3.7 TCP congestion
control

3 3.4 Principles of
reliable data transfer

Transport Layer 3-6

Multiplexing/demultiplexing

Multiplexing at send host:

gathering data from multiple
sockets, enveloping data with
header (later used for
demultiplexing)

Demultiplexing at rcv host:

delivering received segments
to correct socket

[] =socket O = process

P1) application CP2D) P4 application
transport transport transport
network network network
link link link
physical physical physical

host 1 host 2 host 3

Transport Layer 3-7

How demultiplexing works

O host receives IP datagrams

o each datagram has source — 32 bits
IP address, destination IP
address source port #| dest port #

O each datagram carries 1
transport-layer segment

O each segment has source,
destination port number
(recall: weII—knowr_u por"r application
numbers for specific data
applications)

other header fields

(message)
O host uses IP addresses & port
numbers to direct segment to
appropriate socket TCP/UDP segment format

Transport Layer 3-8

Connectionless demultiplexing

O Create sockets with port
numbers:

DatagramSocket mySocketl = new
DatagramSocket(99111);

DatagramSocket mySocket2 = new
DatagramSocket(99222);

3 UDP socket identified by
two-tuple:
(des‘r IP address, dest port number)

0 When host receives UDP
segment:

O checks destination port
number in segment

O directs UDP segment to
socket with that port
number

0 IP datagrams with
different source IP
addresses and/or source
port numbers directed
to same socket

Transport Layer 3-9

Connectionless demux (cont)

DatagramSocket serverSocket = new DatagramSocket(6428);

SP: 6428 SP: 6428
DP: 9157 DP: 5775

SP: 9157 SP: 5775

client DP: 6428 server DP: 6428 Client

IP: A IP: C IP:B

SP provides "return address”

Transport Layer 3-10

Connection-oriented demux

3 TCP socket identified
by 4-tuple:
O source IP address
O source port number
O dest IP address
O dest port number

O recv host uses all four
values to direct
segment to appropriate
socket

O Server host may support

many simultaneous TCP
sockefts:

O each socket identified by
its own 4-tuple

7 Web servers have

different sockets for
each connecting client

O hon-persistent HTTP will
have different socket for
each request

Transport Layer 3-11

Connection-oriented demux

(cont)

SP: 80 SP: 80
DP: 9157 DP: 5775

SP: 9157 SP: 5775

client | DP:80 server OP: 80 Client
IP: A IP: C IP:B

Transport Layer 3-12

Chapter 3 outline

0 3.1 Transport-layer
services

0 3.2 Multiplexing and
demultiplexing

0 3.3 Connectionless
transport: UDP

A 3.4 Principles of
reliable data transfer

3 3.5 Connection-oriented
transport: TCP
O segment structure
o reliable data transfer
o flow control
O connection management
3 3.6 Principles of
congestion control
03 3.7 TCP congestion
control

Transport Layer 3-13

UDP: User Datagram Protocol [RFC 768]

3 “no frills," "bare bones"
Internet transport
protocol

O “best effort” service, UDP
segments may be:

O lost
O delivered out of order
to app

O connectionless:

O no handshaking between
UDP sender, receiver

O each UDP segment
handled independently
of others

Why is there a UDP?

O no connection
establishment (which can
add delay)

O simple: no connection state
at sender, receiver

O small segment header

O no congestion control: UDP
can blast away as fast as
desired

Transport Layer 3-14

UDP: more

O often used for streaming
multimedia apps

O loss tolerant Length, in |Source port # dest port #
O rate sensitive bytes of UDP [~ length checksum
segment
0 other UDP uses inf,r:dmg’
o DNS header
o SNMP
O reliable transfer over UDP: Application
add reliability at data
application layer (message)

o application-specific
error recovery!

+«—— 32 bits

UDP segment format

Transport Layer 3-15

UDP checksum

Goal: detect "errors” (e.g., flipped bits) in fransmitted

segment

Sender:

O freat segment contents
as sequence of 16-bit
integers

0 checksum: addition (1's
complement sum) of
segment contents

O sender puts checksum

value into UDP checksum
field

Receiver:

0 compute checksum of
received segment

O check if computed checksum
equals checksum field value:

o NO - error detected

o YES - no error detected.
But maybe errors
nonetheless? More later

Transport Layer 3-16

Chapter 3 outline

0 3.1 Transport-layer
services

0 3.2 Multiplexing and
demultiplexing

0 3.3 Connectionless
transport: UDP

O 3.4 Principles of
reliable data transfer

0 3.5 Connection-oriented
transport: TCP
O segment structure
o reliable data transfer
o flow control
O connection management
3 3.6 Principles of
congestion control
03 3.7 TCP congestion
control

Transport Layer 3-17

Principles of Reliable data transfer

O important in app., transport, link layers
O top-10 list of important networking topics!

Jreliable channel zdt_send () ylodal deliver data()
5 reliable data reliable data
s transfer protocol transfer protocol
o (sending side) (receiving side)

udt_send(}i Irdt_rcv()

(Junreliable channel J

(b) service implementation

transport |application

(a) provided service

O characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

Transport Layer 3-18

Reliable data transfer: getting started

rdt_send(): called from above,
(e.g., by app.). Passed data to
deliver to receiver upper layer

del i ver_data(): called by

rdt to deliver data to upper

rdt_send()

/

deliver data()

send [reliable data relicble data receive
side transfer protocol transfer protocol id
(sendiing side) receiving side) side

udt_send ()] [pocke']

[packet | Irdt_rcv 0

T-n()unreliable channel)J

udt _send() : called by rdt,
to transfer packet over
unreliable channel to receiver

rdt_rcv(): called when packet
arrives on rcv-side of channel

Transport Layer 3-19

Reliable data transfer: getting started

we'll:

O incrementally develop sender, receiver sides of
reliable data transfer protocol (rdt)

O consider only unidirectional data transfer
O but control info will flow on both directions!

7 use finite state machines (FSM) to specify

sender, receiver
event causing state transition

actions taken on state transition

event @
actions)

Transport Layer 3-20

state: when in this
"state” next state
uniquely determined
by next event

Rdt1.0: reliable transfer over a reliable channel

3 underlying channel perfectly reliable
O ho bit errors

O no loss of packets
0 separate FSMs for sender, receiver:

O sender sends data into underlying channel
O receiver read data from underlying channel

“*AWait for
call from
above

rdt_send(data) Wait for

call from
below

rdt_rcv(packet)

extract (packet,data)
deliver_data(data)

packet = make_pkt(data)
udt_send(packet)

sender receiver

Transport Layer 3-21

Rdt2.0: channel with bit errors

3 underlying channel may flip bits in packet
O recall: UDP checksum to detect bit errors
O the question: how to recover from errors:

O acknowledgements (ACKs): receiver explicitly tells sender
that pkt received OK

O negative acknowledgements (NAKs): receiver explicitly
tells sender that pkt had errors

O sender retransmits pkt on receipt of NAK
O human scenarios using ACKs, NAKs?

O new mechanisms inr dt 2. 0 (beyond r dt 1. 0):
O error detection

O receiver feedback: control msgs (ACK NAK) rcvr->sender

Transport Layer 3-22

rdt2.0: FSM specification

rdt_send(data)
snkpkt = make_pkt(data, checksum) receiver
udt_send(sndpkt)
rdt_rcv(rcvpkt) &&
iISNAK(rcvpkt)

Wait for
call from
above

rdt_rcv(rcvpkt) &&
corrupt(rcvpkt)

udt_send(NAK)

udt_send(sndpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt) S
A

Wait for
call from

sender -

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)
extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

Transport Layer 3-23

rdt2.0: operation with no errors

rdt_send(data)
snkpkt = make_pkt(data, checksum)
d

rdt_rcv(rcvpkt) &&
iISNAK(rcvpkt)

call from

- rdt_rcv(rcvpkt) &&
udt_send(sndpkt)
above

corrupt(rcvpkt)
udt_send(NAK)

rdt_rcv(rcvpkt) && isACK(rcvpkt)
—_—
A

notcorrupt(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

Transport Layer 3-24

rdt2.0: error scenario

rdt_send(data)
snkpkt = make_pkt(data, checksum)
d(snd

call from
above

rdt_rcvgrchktz &&
corrupt(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) && isACK(rcvpkt)
A

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)
extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

Transport Layer 3-25

rdt2.0 has a fatal flaw!

What happens if
ACK/NAK corrupted?

O sender doesn't know what
happened at receiver!

O can't just retransmit:
possible duplicate

What to do?

O sender ACKs/NAKs
receiver's ACK/NAK? What
if sender ACK/NAK also
garbled?

O retransmit, but this might
cause retransmission of
correctly received pkt!

Handling duplicates:

O sender adds sequence
number to each pkt

O sender retransmits current
pkt if ACK/NAK garbled

O receiver discards (doesn't
deliver up) duplicate pkt

stop and wait

Sender sends one packet,
then waits for receiver
response

Transport Layer 3-26

rdt2.1: sender, handles garbled ACK/NAKs

rdt_send(data)

sndpkt = make_pkt(0, data, checksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
isSNAK(rcvpkt))

udt_send(sndpkt)

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& iSACK(rcvpkt)

A

rdt_rcv(rcvpkt)
&& notcorrupt(revpkt)
&& iSACK(rcvpkt)

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
isNAK(rcvpkt))

udt_send(sndpkt)

rdt_send(data)

sndpkt = make_pkt(1, data, checksum)
udt_send(sndpkt)

Transport Layer 3-27

rdt2.1: receiver, handles garbled ACK/NAKs

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seqO(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)

\
\

rdt_rcv(rcvpkt) && (corrupt(rcvpkt) \\

sndpkt = make_pkt(NAK, chksum) \
)

udt_send(sndpkt) Qi

rdt_rcv(rcvpkt) &&
not corrupt(rcvpkt) && (
has_seql(rcvpkt)

sndpkt = make_pkt(ACK, chksum)

udt_send(sndpkt)

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seql(rcvpkt)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) && (corrupt(rcvpkt)

sndpkt = make_pkt(NAK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
not corrupt(rcvpkt) &&
has_seqO(rcvpkt)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

extract(rcvpkt,data)
deliver_data(data)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

Transport Layer 3-28

rdt2.1: discussion

Sender: Receiver:

0 seq # added to pkt O must check if received

7 two seq. #'s (0,1) will packet is duplicate
suffice. Why? o state indicates whether

O or 1is expected pkt

O must check if received seq #

AC.K/ NAK corrupted 3 note: receiver can not
O fwice as many states know if its last

O state must “remember” ACK/NAK received OK

whether “current” pkt

has O or 1 seq. # at sender

Transport Layer 3-29

rdt2.2: a NAK-free protocol

3 same functionality as rdt2.1, using ACKs only

0 instead of NAK, receiver sends ACK for last pkt
received OK
O receiver must explicitly include seq # of pkt being ACKed

3 duplicate ACK at sender results in same action as
NAK: retransmit current pkt

Transport Layer 3-30

rdt2.2: sender, receiver fragments

rdt_send(data)

sndpkt = make_pkt(0, data, checksum)
udt_send(sndpkt)

~. . rdt_rcv(rcvpkt) &&
s . (corrupt(rcvpkt) ||
i Wait for .
Cg%tffrz;] ACK iSACK(rcvpkt,1))
above 0 udt_send(sndpkt)
vvvv sender FSM
fragment rdt_rcv(rcvpkt)
_ && notcorrupt(rcvpkt)
rdt_rcv(rcvpkt) && R && isACK(rcvpkt,0)

(corrupt(rcvpkt) || R A
has_seql(revpky)(YWatioy receiver FSM T
0 from o,
udt_send(sndpkt) below fragment e
‘_/

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seql(rcvpkt)
extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(ACK1, chksum)
udt_send(sndpkt) Transport Layer 3-31

rdt+3.0: channels with errors andloss

New assumption: Approach: sender waits

underlying channel can “reasonable” amount of
also lose packets (data time for ACK
or ACKs) O retransmits if no ACK
o checksum, seq. #, ACKs, received in this time
retransmissions will be 0 if pkt (or ACK) just delayed
of help, but not enough (not lost):
Q: how to deal with loss? O retransmission will be

duplicate, but use of seq.
#'s already handles this

O receiver must specify seq
of pkt being ACKed

O requires countdown fimer

O sender waits until
certain data or ACK
lost, then retransmits

O yuck: drawbacks?

Transport Layer 3-32

rdt3.0 sender

rdt_send(data)
\ sndpkt = make_pkt(0,
\ udt_send(sndpkt)
\ start_timer

rdt_rcv(rcvpkt)
A

Wait for
call Ofrom
above
rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt,1)

stop_timer

rdt_rcv(rcvpkt) &&
data, checksum) (corrupt(rcvpkt) ||
A

timeout
udt_send(sndpkt)
start_timer

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt,0)

stop_timer

Wait for

rdt3.0 in action

timeout
udt_send(sndpkt) C

start_timer (_/

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
iISACK(rcvpkt,0))

A

call 1 from
above

rdt_rcv(rcvpkt)
A

rdt_send(data)

sndpkt = make_pkt(1, data, checksum)
udt_send(sndpkt)
start_timer

Transport Layer 3-33

sender receiver
sender receiver okt
Lt d pki0 P (
send pki0 % rcv pki0 eE rcv PO
CK %ng ACKOD ACK send ACKO
- rev ACKO
rev ACKO send pktl r;--;?]
send pit1 T ioss)
cv pktl
send ACK]
revACK])
send pki0 pkt g timeout pkt |
ACK & rcv pkio resend pktl \b rcv pktl
L
send ACKO ACK send ACK]
evACK]
send pkt0
Q) operation with no loss ~)
(@) ope ACK sond ACKO

(b) lost packet

Transport Layer 3-34

rdt3.0 in action

sender receiver sender receiver
[SLUN ki g
send pki0 0 eV PO send pki0 * rov pKIO
ACK send ACKD ACK send ACKO
rcv ACKD rev ACKO
send pkil Pkt send pkil
rev pktl ey pkil
CK, send ACK] send ACK]
(loss) X
timeout
resend pkil

timeout Pkt 4 —
resend pkil \’ .
P (defect duplicate] 1cVACK]

rov pktl
{detect duplicate)

ACK] ACK send ACK] send pki0 send ACK]
ICV,
pkt rev pkto
send pki0 rev pki0 send ACKOD
send ACKOD

y

(c) lost ACK

(d) premature timeout

Transport Layer 3-35

Performance of rdt+3.0

0 rdt3.0 works, but performance stinks
O example: 1 Gbps link, 15 ms e-e prop. delay, 1KB packet:

L (packet length in bits) _ 8kb/pkt

T, W = = _ ;
transmit™ R (transmission rate, bps) ~ 10**9 b/sec _ 8 microsec

- L/R 008 560027
sender prT,| /R 30008

O U e Utilization - fraction of time sender busy sending
O 1KB pkt every 30 msec -> 33kB/sec thruput over 1 Gbps link
O network protocol limits use of physical resources!

Transport Layer 3-36

rdt3.0: stop-and-wait operation

sender receiver

first packet bit transmitted, t = 0 —pe--------emeeememeoooo
last packet bit transmitted, t =L / R

first packet bit arrives

RTT —last packet bit arrives, send
ACK
ACK arrives, send nex
packet, t =RTT + L/ Rfl\\ ”””””””””””
| < g
.008
L/R = = 0.00027

sender RTT+L/R ~ 30,008

Transport Layer 3-37

Pipelined protocols

Pipelining: sender allows multiple, “in-flight”, yet-to-
be-acknowledged pkts
O range of sequence numbers must be increased
O buffering at sender and/or receiver

+— ACK packets

(@) a stop-and-wait p in operati (b} a pipelined protocel in op

O Two generic forms of pipelined protocols: go-Back-N,
selective repeat

Transport Layer 3-38

Pipelining: increased utilization

sender receiver

first packet bit transmitted, t = 0 —fu-----------oroomceeeeooooee
last bit transmitted, t=L /R

first packet bit arrives

——last packet bit arrives, send ACK

last bit of 2nd packet arrives, send ACK
last bit of 31 packet arrives, send ACK

ACK arrives, send next,
packet, t=RTT +L/R |

Increase utilization
/by a factor of 3!
3*L/R .024
= = = 0.0008
sender RTT+L/R 30008

Transport Layer 3-39

Go-Back-N

Sender:
O k-bit seq # in pkt header
0 “window" of up fo N, consecutive unack'ed pkts allowed

send_base nexfsegnum dlready usable, not
v i ack’ed yet sent
TRV CEEITOELO0000N0 | sevimeraa] rotoscee
t_ window size —4 _
N

0 ACK(n): ACKs all pkts up to, including seq # n - "cumulative ACK"
O may receive duplicate ACKs (see receiver)

O ftimer for each in-flight pkt

O timeout(n): retransmit pkt n and all higher seq # pkts in window

Transport Layer 3-40

GBN: sender extended FSM

rdt_send(data)

if (nextseqnum < base+N) {
sndpkt[nextseqnum] = make_pkt(nextsegnum,data,chksum)
udt_send(sndpkt[nextseqgnum])
if (base == nextseqnum)
start_timer
nextseqnum-++
~~~~~ }
A else
"""" refuse_data(data)

‘ : : timeout
start_timer
udt_send(sndpkt[base])
O Q udt_send(sndpkt[base+1])

udt_send(sndpkt[nextseqnum-1])

nextseqnum=1

rdt_rcv(rcvpkt)
&& corrupt(rcvpkt)

A rdt_rcv(rcvpkt) &&

notcorrupt(rcvpkt)

base = getacknum(rcvpkt)+1
If (base == nextseqnum)
stop_timer
else

start_timer Transport Layer 3-41

GBN: receiver extended FSM

default
udt_send(sndpkt) rdt_rev(revpkt)
T~ && notcurrupt(rcvpkt)

A T=~o && hassegnum(rcvpkt,expectedsegnum)
[ -

expectedsegnum=1 Qextract(rcvpkt,data)

sndpkt = deliver_data(data)

make_pkt(expectedsegnum,ACK,chksum)  sndpkt = make_pkt(expectedseqnum,ACK,chksum)
udt_send(sndpkt)
expectedsegnum-++

ACK-only: always send ACK for correctly-received pkt
with highest /n-order seq #
O may generate duplicate ACKs
O heed only remember expect edsegnum
0 out-of-order pkt:
o discard (don't buffer) -> no receiver buffering!
O Re-ACK pkt with highest in-order seq #

Transport Layer 3-42

GBN in sender receiver

N send pkiO
action \'b rev pki0

send pkt1 send ACKO
¥ send pki? \\(Iﬁss rggﬁgkcm
send pkt3
(waif) rev pki3, discard
¥ send ACK]
rcv ACKO
send pktd
rev ACK1 rev pkid, discard
send pki5 \ send ACK
kio, di d
—pld?2 timeout rs%\;fwg ACK]lSCQr

send pkt2 \‘:

send pkt3 \ rcv pki2, deliver

send pkt4 send ACK?2

send pktb rcv pktd, deliver
send ACK3

Transport Layer 3-43

Selective Repeat

O receiver /ndividually acknowledges all correctly
received pkts

O buffers pkts, as needed, for eventual in-order delivery
to upper layer

O sender only resends pkts for which ACK not
received
O sender timer for each unACKed pkt
0 sender window
O N consecutive seq #'s
O again limits seq #s of sent, unACKed pkts

Transport Layer 3-44




Selective repeat: sender, receiver windows

send_base  nexfsegnum

already usable, not
A4 v ack'ed yet sent
U000 0TI RAREI0000000 | sepmets ] ot
£ window size —4 )
N

(a) sender view of sequence numbers

acceptable

(buffered) but I (\yithin window)

out of order
I already ack’ed

JO0O0DNEEITIVIRIREIROO0D  oopmotogamer [rorescer
yet received
t _ window size—2*
N
rcv_base

(b) receiver view of sequence numbers

Transport Layer 3-45

Selective repeat

—sender

data from above :

O if next available seq # in
window, send pkt

timeout(n):

O resend pkt n, restart timer

ACK(n) in [sendbase sendbase+N]:

O mark pkt n as received

O if n smallest unACKed pkft,
advance window base to
next unACKed seq #

— receiver

pk'l' nin [rcvbase, rcvbase+N-1]

O send ACK(n)

O out-of-order: buffer

O in-order: deliver (also
deliver buffered, in-order
pkts), advance window to
next not-yet-received pkt

pk'l' nin [rcvbase-N recvbase-1]

0 ACK(n)

otherwise:

O ighore

Transport Layer 3-46

Selective repeat in action

pktl sent

0123456783 _—j_—ﬁ__*___‘-*pktﬂ rovd, delivered., ACKD sent

pktl sent 0|1 23 4|56 7 89

D1z3f456783 pktl rovd, delivered. ACKL sent

pkt? =ent 01|23 4 5(6 789
—foizalise s 0s —wx

(loss)
pkt3 sent, window full

0123456 7879

pkt3 rovd, buffered. ACKI =ent

01|2 3465|783

ACKD rovd. pktd =ent
O[1 23 4|56 789

ACKl rovd, pktS sent

01)]2 34567879

—— pkt2 TIHEOQUT, pkt2 resent

01)]2 3465|6789

pktd rowd, buffersd. ACK4 sent
01|23 456 789

pktS rowd, buffersd. ACKS sent

01|23 456789

pkt? rowd, plet?, pletd, pktd, pkth
delivered, ACKZ sent

t12345F783]

ACK3 rowd, nothing sent

01|2 3465|7829

~t Layer 3-47

sender window

Selective repeat: e

receiver window

(after receipt)

. 0121301 of1 23jo1 2
d'lemma R EXR! " 2:201-23012
Fiz]s 01 & 0 1 2012

Example:

' ti t
O seq #s:0,1,2,3 rlaTreaﬂémii pktﬁkto
- —_— i ket
O window size=3 L3 01 with Seq number 0
. (a)

O receiver sees ho -
difference in two oo s A
scenarios! A
- " oo 0220 1 2

O incorrectly passes Lrzs o 0 1E2gh 2

. kt2 CK1
duplicate data as new bizson o 0 1 202
in (a) 2 3]0 1

. . o 11 F receive packet

Q: what relationship with seq number 0
between seq # size
and window size? (b)

Transport Layer 3-48




Chapter 3 outline

0 3.5 Connection-oriented
transport: TCP
O segment structure
O reliable data transfer
o flow control
O connection management

3 3.6 Principles of
congestion control

03 3.7 TCP congestion
control

0 3.1 Transport-layer
services

0 3.2 Multiplexing and
demultiplexing

a 3.3 Connectionless
transport: UDP

A 3.4 Principles of
reliable data transfer

Transport Layer 3-49

TCP: Overview

0O point-to-point:

O ohe sender, one receiver
O reliable, in-order byte

steam.

O no “message boundaries”
O pipelined:

O TCP congestion and flow

control set window size

O send & receive buffers

application application
socket writes data reads data
— L - _ 4
door
send buffer receive buffer
@ [Seqment] —» @

__ socket

RFCs: 793, 1122, 1323, 2018, 2581

0 full duplex data:

o bi-directional data flow
in same connection

O MSS: maximum segment
size

O connection-oriented:

o handshaking (exchange
of control msgs) init's
sender, receiver state
before data exchange

O flow controlled:

o sender will not
overwhelm receiver

door

Transport Layer 3-50

TCP segment structure

32 bits

URG: urgent data
(generally not used)™_ source port # | dest port #

ACK: ACK # sequence number

valid\\quledgemenT number

PSH: push data now head "5_46"2; APRISIF| Receive window
(generally not used)—| W Urg data pnter

Opf/ioré (variable length)

counting

by bytes

of data

(not segments!)

# bytes
rcvr willing
to accept

RST, SYN, FIN:— |
connection estab
(setup, teardown

commands) application
Internet data
checksum (variable length)
(as in UDP)

Transport Layer 3-51

TCP seq. #'s and ACKs

Seq. #'s:

O byte stream
“humber” of first
byte in segment’s be
data

ACKs:

O seq # of next byte
expected from

other side host ACKs
o cumulative ACK receipt .
. : of echoed ——d=43, ACK=g
Q: how receiver handles c \
out-of-order segments

O A: TCP spec doesn't
say, - up to
implementor

q=42
types : ACK=
YP' 79' datg = o
host ACKs

Seg=.

receipt of

=C~'C' ech
i dotd , echoes
s back 'C
set”

time
simple telnet scenario

Transport Layer 3-52




TCP Round Trip Time and Timeout

Q: how to set TCP
timeout value?
O longer than RTT
O but RTT varies
O too short: premature
timeout
O unnecessary
retransmissions
O too long: slow reaction
to segment loss

Q: how to estimate RTT?

0 Sanpl eRTT: measured time from
segment transmission until ACK
receipt

O ignore retransmissions

O Sanpl eRTT will vary, want
estimated RTT "smoother”

O average several recent
measurements, not just
current Sanpl eRTT

Transport Layer 3-53

TCP Round Trip Time and Timeout

Esti mat edRTT = (1- a)*Esti matedRTT + a* Sanpl eRTT
O Exponential weighted moving average

0 influence of past sample decreases exponentially fast
0 typical value: o = 0.125

Transport Layer 3-54

Example RTT estimation:

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

350

300

N

a

S
—e
—e

RTT (milliseconds)

N
S
S

150

100

1 8 15 22 29 36 43

50 57 64 71 78 85 92 99 106
time (seconnds)

—o— SampleRTT —#&— Estimated RTT

Transport Layer 3-55

TCP Round Trip Time and Timeout

Setting the timeout

0O Estint edRTT plus "safety margin”
O large variation in Est i mat edRTT - > larger safety margin

0 first estimate of how much SampleRTT deviates from
EstimatedRTT:

DevRTT = (1-B)*DevRTT +
B*| Sanmpl eRTT- Est i mat edRTT]|

(typically, p = 0.25)

Then set timeout interval:

Timeout I nterval = EstimatedRTT + 4*DevRTT

Transport Layer 3-56




Chapter 3 outline

0 3.1 Transport-layer
services

0 3.2 Multiplexing and
demultiplexing

0 3.3 Connectionless
transport: UDP

A 3.4 Principles of
reliable data transfer

0 3.5 Connection-oriented
transport: TCP
O segment structure
o reliable data transfer
o flow control
O connection management
3 3.6 Principles of
congestion control

03 3.7 TCP congestion
control

Transport Layer 3-57

TCP reliable data transfer

O TCP creates rdt
service on top of IP's
unreliable service

O Pipelined segments
O Cumulative acks

O TCP uses single
retransmission timer

O Retransmissions are
triggered by:
O timeout events
O duplicate acks
O Initially consider
simplified TCP sender:

O ignore duplicate acks

O ignore flow control,
congestion control

Transport Layer 3-58

TCP sender events:

data rcvd from app:

O Create segment with
seq #

0 seq # is byte-stream
number of first data
byte in segment

3 start timer if not
already running (think
of timer as for oldest
unacked segment)

O expiration interval:
TimeOutlInterval

timeout:

O retransmit segment
that caused timeout

O restart timer

Ack recvd:

O If acknowledges
previously unacked

segments

O update what is known to
be acked

o start timer if there are
outstanding segments

Transport Layer 3-59

NextSegNum = InitialSeqNum
SendBase = InitialSeqNum

loop (forever) {
switch(event)

event: data received from application above
create TCP segment with sequence number NextSeqNum
if (timer currently not running)
start timer
pass segment to IP
NextSegNum = NextSegqNum + length(data)

event: timer timeout
retransmit not-yet-acknowledged segment with
smallest sequence number
start timer

event: ACK received, with ACK field value of y
if (y > SendBase) {
SendBase =y
if (there are currently not-yet-acknowledged segments)
start timer

}

} /* end of loop forever */

TcP

sender
(simplified)

Comment:

- SendBase-1: last
cumulatively
ack'ed byte
Example:

- SendBase-1=71;
y= 73, so the rcvr
wants 73+ ;

y > SendBase, so
that new data is
acked

Transport Layer 3-60




TCP: retransmission scenarios

@Hosf A Host D

Seg=
9=92 g bytes data
100
‘y
X

+~— timeout——

loss
Se‘?=92
W
_100
pore
SendBase
= 100
time

lost ACK scenario

]
5
15
£
=
o
:-;
v
|
Sendbase ]
=100 5
SendBase §
=120 E
N
(o)}
:';
(]
SendBase 1
=120 ;
premature timeout
time

Transport Layer 3-61

TCP retransmission scenarios (more)

1 riost 4 Host 8 | )

Seg=g,
: 8 byteg data
+ 10
g Seq:loo P\C’\L
g , 20 54
atq
= X
loss
SendBase A(;\&"’zo
=120
time

Cumulative ACK scenario

Transport Layer 3-62

TCP ACK generation [RFc 1122, RFC 2581]

Event at Receiver

TCP Receiver action

Arrival of in-order segment with
expected seq #. All data up to
expected seq # already ACKed

Delayed ACK. Wait up to 500ms
for next segment. If no next segment,
send ACK

Arrival of in-order segment with
expected seq #. One other
segment has ACK pending

Immediately send single cumulative
ACK, ACKing both in-order segments

Arrival of out-of-order segment
higher-than-expect seq. # .
Gap detected

Immediately send duplicate ACK,
indicating seq. # of next expected byte

Arrival of segment that
partially or completely fills gap

Immediate send ACK, provided that
segment starts at lower end of gap

Transport Layer 3-63

Fast Retransmit

O Time-out period often
relatively long:
o long delay before
resending lost packet
O Detect lost segments
via duplicate ACKs.

O Sender often sends
many segments back-to-
back

O If segment is lost,

there will likely be many
duplicate ACKs.

O If sender receives 3
ACKs for the same
data, it supposes that
segment after ACKed
data was lost:

o fast retransmit: resend
segment before timer
expires

Transport Layer 3-64




Fast retransmit algorithm:

event: ACK received, with ACK field value of y
if (y > SendBase) {
SendBase =y
if (there are currently not-yet-acknowledged segments)
start timer
}

else {
increment count of dup ACKs received fory
if (count of dup ACKs received fory = 3) {
resend segment with sequence number y

}

a duplicate ACK for
already ACKed segment

fast retransmit

Transport Layer 3-65

Chapter 3 outline

0 3.1 Transport-layer
services

0 3.2 Multiplexing and
demultiplexing

0 3.3 Connectionless
transport: UDP

3 3.4 Principles of
reliable data transfer

3 3.5 Connection-oriented
transport: TCP
O segment structure
O reliable data transfer
o flow control
O connection management
3 3.6 Principles of
congestion control

0 3.7 TCP congestion
control

Transport Layer 3-66

TCP Flow Control

O receive side of TCP
connection has a
receive buffer:

-flow control
sender won't overflow

transmitting oo much,

receiver's buffer by

too fast

— RevWindow —
O

application

P process

7777,
data from %/ 2% /,//%
/// o

wbter
i
f——— RevBuffer ————#

0 app process may be
slow at reading from
buffer

speed-matching
service: matching the
send rate to the
receiving app's drain
rate

Transport Layer 3-67

TCP Flow control: how it works

f— RevWindow —f
007
data from %7 £ %%

P

//7 7 //%
7
#7 RevBuffer 4’4

(Suppose TCP receiver
discards out-of-order
segments)

O spare room in buffer
RcvW ndow

Last Byt eRead]

process

O Rcvr advertises spare
room by including value
of RevW ndow in
segments

O Sender limits unACKed
data fo RevW ndow

O guarantees receive
buffer doesn't overflow

application

RcvBuf f er - [ Last Byt eRevd -

Transport Layer 3-68




Chapter 3 outline

0 3.1 Transport-layer
services

0 3.2 Multiplexing and
demultiplexing

0 3.3 Connectionless
transport: UDP

A 3.4 Principles of
reliable data transfer

3 3.5 Connection-oriented
transport: TCP
O segment structure
o reliable data transfer
o flow control
O connection management
3 3.6 Principles of
congestion control
03 3.7 TCP congestion
control

Transport Layer 3-69

TCP Connection Management

Recall: TCP sender, receiver
establish "connection”
before exchanging data
segments

3 initialize TCP variables:

O seq. #s
o buffers, flow control
info (e.g. RevW ndow)

3 client: connection initiator

Socket clientSocket = new
Socket (" host name", "port

nunber");

O server: contacted by client

Socket connectionSocket =
wel conmeSocket . accept () ;

Three way handshake:

Step 1: client host sends TCP
SYN segment to server

O specifies initial seq #
O ho data
Step 2: server host receives
SYN, replies with SYNACK
segment
o server allocates buffers
O specifies server initial
seq. #

Step 3: client receives SYNACK,
replies with ACK segment,
which may contain data

Transport Layer 3-70

TCP Connection Management (cont.)

Closing a connection:

client closes socket:
cli ent Socket . cl ose();

Step 1: client end system
sends TCP FIN control

segment to server

Step 2: server receives
FIN, replies with ACK.
Closes connection, sends
FIN.

SZPVEP@

Fin
cK
B close
=\
% ACk
2
he]
Q
£
-
closed

Transport Layer 3-71

TCP Connection Management (cont.)

Step 3: client receives FIN,
replies with ACK.

o Enters "timed wait" -
will respond with ACK
to received FINs

Step 4: server, receives
ACK. Connection closed.

Note: with small
modification, can handle
simultaneous FINs.

close

ﬂ;:,‘) client server‘@
closin
9 FiIn
cK .
£ closing
/
+
=
3 closed
E
+—
d

Transport Layer 3-72




TCP Connection Management (cont)
e S e

W;E‘“TI SI’N_‘;ENI
vee FIN receive SYN & ACH
TCP server
p -"'I client application l ifeCyCl e
7 initistes elese connactisn

e nothing —gend FIN . ..| CLOSED | _._____\\.ﬂ:;r::;:;lpll::l;:ﬂ
TCP client siackiy
lifecycle )

Y o]

end FIN s v

v
CLOSE_WAIT SYN_RCVD
/ recaive ACK
" sand nothing
I
ESTABLISHED |<-

Transport Layer 3-73

Chapter 3 outline

0 3.1 Transport-layer 3 3.5 Connection-oriented
services transport: TCP

0 3.2 Multiplexing and O segment structure
demultiplexing o reliable data transfer

3 3.3 Connectionless o flow control
transport: UDP O connection management

0 3.6 Principles of
congestion control

0 3.7 TCP congestion
control

3 3.4 Principles of
reliable data transfer

Transport Layer 3-74

Principles of Congestion Control

Congestion:
3 informally: "too many sources sending oo much
data too fast for network to handle”

0 different from flow control!
O manifestations:
O lost packets (buffer overflow at routers)
O long delays (queueing in router buffers)
3 a top-10 problem!

Transport Layer 3-75

Causes/costs of congestion: scenario 1

Host A

Ain - original data

3 two senders, two
receivers

O one router,
infinite buffers

O no retransmission

unlimited shared
output link buffers

c _ - : 0 large delays
. § ’ when congested
< 7 maximum
achievable
CIo ! throughput
Mo Mo i

Transport Layer 3-76




Causes/costs of congestion: scenario 2

O one router, finite buffers
7 sender retransmission of lost packet

HostA ;. original data Aout

] " origi <
&« i original data, plus
retransmitted data

Host B finite shared output
° link buffers

| 224

Transport Layer 3-77

Causes/costs of congestion: scenario 2

O always: 7\. }\'out (goodput)

0 “perfect” r‘eTr‘ansmlssmn only when loss: A > Kout

O refransmission of delayed (nhot lost) packet makes 7\, larger
(than perfect case) for same A out

24 Cf24
P S——
5 5]
[+] [+]
< _. < '
5C .6C 5C
r !
}‘in ?"in

“costs" of congestion:
O more work (retrans) for given "goodput”
O unneeded retransmissions: link carries multiple copies of pkt

Transport Layer 3-78

Causes/costs of congestion: scenario 3

O four senders
O multihop paths
O timeout/retransmit

Q: what happens as k
and K’ incr‘ease ?

Host A .
o _ ), : original data ’

[ «— ), : original data, plus b
retransmitted data l
finite shared output
lipk buffers
Host B
o]
l T
jés i
- LU
—

Transport Layer 3-79

Causes/costs of congestion: scenario 3

Cl24

lou’r

ll
in
Another "cost"” of congestion:

0 when packet dropped, any "upstream transmission
capacity used for that packet was wasted!

Transport Layer 3-80




Approaches towards congestion control

Two broad approaches towards congestion control:

Chapter 3 outline

End-end congestion
control:

Network-assisted
congestion control:

3 no explicit feedback from O routers provide feedback

network

O congestion inferred from
end-system observed loss,
delay

O approach taken by TCP

to end systems
O single bit indicating

congestion (SNA,
DECbit, TCP/IP ECN,
ATM)

O explicit rate sender

should send at

Transport Layer 3-81

0 3.1 Transport-layer
services

0 3.2 Multiplexing and
demultiplexing

3 3.3 Connectionless
transport: UDP

3 3.4 Principles of
reliable data transfer

3 3.5 Connection-oriented
transport: TCP
O segment structure
o reliable data transfer
o flow control
O connection management
3 3.6 Principles of
congestion control
0 3.7 TCP congestion
control

Transport Layer 3-82

TCP Congestion Control

1 end-end control (no network
assistance)

0 sender limits fransmission:
Last Byt eSent - Last Byt eAcked

How does sender

< CongW n
O Roughly,
_ CongWin
rate = FqT_ Bytes/sec

03 CongW n is dynamic, function
of perceived network
congestion

perceive congestion?

O loss event = timeout or
3 duplicate acks

O TCP sender reduces
rate (CongW n) after
loss event

three mechanisms:

o AIMD
o slow start

O conservative after
timeout events

Transport Layer 3-83

TCP AIMD

multiplicative decrease:

additive increase:

cut CongW n in half
after loss event

congestion
window

24 Kbytes —

16 Kbytes —

8 Kbytes

increase CongW n by
1 MSS every RTT in
the absence of loss
events: probing

time

Long-lived TCP connection

Transport Layer 3-84




TCP Slow Start

O When connection begins,
CongWn =1MSS
O Example: MSS = 500
bytes & RTT = 200 msec
O initial rate = 20 kbps
O available bandwidth may
be >> MSS/RTT

O desirable to quickly ramp
up to respectable rate

O When connection begins,
increase rate
exponentially fast until
first loss event

Transport Layer 3-85

TCP Slow Start (more)

3 When connection @ Host A Host e D
begins, increase rate

exponentially until LT —Sesegmen |
first loss event: T
O double CongW n every %
RTT
O done by incrementing
CongW n for every ACK four segmens
received

3 Summary: initial rate
is slow but ramps up
exponentially fast ﬂine

Transport Layer 3-86

Refinement

O After 3 dup ACKs:
o CongW n is cut in half

O window then grows
linearly

M But after timeout event:

o CongW n instead set to

1 MSS;
O window then grows
exponentially

O to a threshold, then
grows linearly

— Philosophy:

* 3 dup ACKs indicates
network capable of

delivering some segments
* timeout before 3 dup
ACKs is "more alarming’

Transport Layer 3-87

Refinement (more)

Q: When should the
exponential
increase switch to 14 -
linear?

A: When CongW n
gets to 1/2 of its
value before
timeout.

=
o

1 threshold

o]

threshold

(segments)

congestion window size

o N O
L L

1 fep
[“rahoe Y
1 2 3 45 6 7 8 9101112 1314 15

Implementation:
O Variable Threshold

O At loss event, Threshold is
set to 1/2 of CongWin just
before loss event

Transmission round

Transport Layer 3-88




Summary: TCP Congestion Control

0 When CongW n is below Thr eshol d, sender in
slow-start phase, window grows exponentially.

0 When CongW n is above Thr eshol d, sender is in
congestion-avoidance phase, window grows linearly.

0 When a triple duplicate ACK occurs, Threshol d
set to CongW n/ 2 and CongW n set to
Threshol d.

O When timeout occurs, Thr eshol d set to
CongW n/ 2 and CongW n is set to 1 MSS.

Transport Layer 3-89

TCP Fairness

Fairness goal: if K TCP sessions share same
bottleneck link of bandwidth R, each should have
average rate of R/K

TCP connection 1

bottleneck
router

connection 2 capacity R

Transport Layer 3-90

Why is TCP fair?

Two competing sessions:
O Additive increase gives slope of 1, as throughout increases
O multiplicative decrease decreases throughput proportionally

equal bandwidth share

loss: decrease window by factor of 2
congestion avoidance: additive increase

loss: decrease window by factor of 2
congestion avoidance: additive increase

Connection 2 throughput o

Connection 1 throughput R

Transport Layer 3-91

Fairness (more)

Fairness and UDP Fairness and parallel TCP

A Multimedia apps often connections
do not use TCP 3 nothing prevents app from

o do not want rate opening parallel cnctions
throttled by congestion between 2 hosts.
control 7 Web browsers do this
O Instead use U_DP‘ 7 Example: link of rate R
o pump audio/video at supporting 9 cnctions;
constant rate, tolerate
O new app asks for 1 TCP, gets

packet loss rate R/10
a Rgsearch area: TCP O new app asks for 11 TCPs,
friendly gets R/2 |

Transport Layer 3-92




Delay modeling

Q: How long does it take to
receive an object from a
Web server after sending
a request?

Ignoring congestion, delay is
influenced by:

0O TCP connection establishment

O data transmission delay

O slow start

Notation, assumptions:

0 Assume one link between
client and server of rate R

0 S: MSS (bits)

O O: object size (bits)

O no retransmissions (no loss,
no corruption)

Window size:

O First assume: fixed
congestion window, W
segments

O Then dynamic window,
modeling slow start

Transport Layer 3-93

Fixed congestion window (1)

intiate TCF |
commaction .

Fir‘ST Case: tequest

object -

WS/R > RTT + S/R: ACK fo
first segment in window
returns before window's
worth of data sent

ayiz)

delay = 2RTT + O/R

time ¥
at cliert

e
RTT

¥ [

SIR

RIT

1stack
teturns

¥

tishe
al server

Transport Layer 3-94

Fixed congestion window (2)

initiate TCP

connection

Second case:

0 WS/R<RTT+S/R: wait 7

for ACK after sending
window's worth of data
sent

delay = 2RTT + O/R
+ (K-1)[S/R + RTT - WS/R]

fime
at client ¥

S
“‘*H-M*_km
pactey |
T RTT

///::'—/k/,///j, " Im

RIT

teturns

//\
//*::/ s

y tirme
at server

K is the number of windows that cover the object.

Transport Layer 3-95

TCP Delay Modeling: Slow Start (1)

Now suppose window grows according to slow start

Will show that the delay for one object is:

Latency = 2RTT + % + P{RTT +%

}—(2“1)2

where Pis the number of times TCP

P =minfQ,K — 1}

idles at server:

- where Q is the number of times the server idles

if the object were of infinite size.

-and K is the number of windows that cove

r the object.

Transport Layer 3-96




TCP Delay Modeling: Slow Start (2)

Delay components: niate TCP

* 2 RTT for connection —

estab and request request_|

. O/R to transmit object s first window
object =Sk

- time server idles due I second window
to slow start =25R
Server idles: third vindow
P = min{K-1,Q} times

EXClm Ie: fourth window
—L =8S/R

+ 0/S =15 segments

+ K = 4 windows

-Q=2

M2 e,

delivered
time at
time at server
client

Server idles P=2 times

Transport Layer 3-97

TCP Delay Modeling (3)

% + RTT = time from when server starts to send segment

until server receives acknowledgement

initiate TCP
connection

S . ; ; \
oKt R time to transmit the kth window request
object — : first window
=SIR

N

S ST i RiT
E+RTT—2 R =idle time after the kth window ¥

second window
=2SIR

[lmrd window

where [x]* = max(x,0)

=4SIR

fourth window
=8SIR

.
delay :%+ 2RTT + idleTime,

p=1

SO Rt S vRTT o2 8
R ~'R R ' ™\ complete
object transmission
delivered
_O L ORTT +P[RTT + - (2" 1) > g
R R R Icﬂl'::nfll server

Transport Layer 3-98

TCP Delay Modeling (4)

Recall K = number of windows that cover object

How do we calculate K ?

K =min{k :2°S +2'S +---+ 2'S > O}
=min{dk:2°+2"' +---+ 21 >0/S}

ok 15 O
=min{k : 2 128}
=min{k:k2|ogz(%+1)}
=[Iogz(%+1)1

Calculation of Q, number of idles for infinite-size object,
is similar (see HW).

Transport Layer 3-99

Chapter 3: Summary

3 principles behind ftransport
layer services:

o multiplexing,
demultiplexing

o reliable data transfer
o flow control Next:

O congestion control A leaving the network

3 instantiation and “edge" (application,
implementation in the transport layers)

Internet 0 into the network
o UDP “COI"e"
o TCP

Transport Layer 3-100




