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Why take this class?

+ To design the next great instruction set?..well...

- Instruction Set Architecture (ISA) has largely
converged

- Especially in the desktop / server / laptop space
- Dictated by powerful market forces

+ Tremendous organizational innovation relative
to established ISA abstractions

Why take this class? (cont.)

* Many New instruction sets or equivalent

- embedded space, controllers, and
specialized devices

- Design, analysis, implementation
concepts vital to all aspects of CE & CS

» Equip you with an intellectual toolbox
for dealing with a host of systems
design challenges

Forces on Computer Architecture

Understanding the design techniques, machine
structures, technology factors, evaluation
methods that will determine the form of
computers in 21st Century
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* Coordination of many /evels of abstraction
- Under a rapidly changing set of forces
* Design, Measurement, and Evaluation

Computer Design

* What are the principal goals?
- performance, performance, performance...
- but not at any cost and power

* Trade-offs:

- need to understand cost, performance, and
power issues

- heed models and measures of cost,
performance, and power

Tasks of Computer Designers
(Architects)

- Designing a computer involves:
- instruction set architecture (ISA) - programmer
visible
- computer organization - CPU internals, memory,
buses, ...
- computer hardware - logic design, packaging, ...
* Architects must meet:
- functional requirements
»market & application driven
- performance goals
- cost constraints

Functional Requirements

- Application area
- general purpose, scientific, commercial
* Operating system requirements

- address space, memory management,
protection

- context switching, interrupts
- Standards

- floating-point, I/0O interconnect, operating
systems, networks, programming languages




Functional Requirements (cont.)

* Given these requirements, optimize
cost/performance/power trade-off

- e.g., hardware or software implementation
of a feature

- Design complexity
- time to market is critical

Technology Trends

- Software trends
- increasing memory usage (from increasing
functionality?)
» 1.5x to 2x per year - up to one address bit/year
- use of high-level languages - use of compilers
» ISA designed for the compiler, not the
programmer

- improved compiler technology - optimization,
scheduling

Technology Trends (cont.)

- Hardware trends

- IC technology - density & size - transistor count;
cycle time

- DRAM - capacity 4x per 3 years, but slow cycle
time change

- disk - capacity was 2x per 3 years before 1990,
now 4x per 3 years,

» slow change in access time
* Need to be aware of trends when designing
computers
- design for requirements and technology at time of
shipping

Moore's Law: 2X transistors /
' “year”
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+ "Cramming More Components onto Integrated Circuits"
- Gordon Moore, Electronics, 1965

+  # on fransistors / cost-effective integrated circuit double every N
months (12 < N < 24)
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Cost and Trends in Cost Memory Price

* Learning curve brings manufacturing

cost down
- DRAM cost drops 40% per year wl
* Large volume increases purchasing and
manufacturing efficiency s o

DRAM chip

- bringing both cost and selling price down 1

+ Commodization brings both cost and
price down T SN

=

64 Kb Final chip cost




S1000
900
500
700
500
‘oo unes 500
$400
300
5200
$100

Pentium III Cost

]

C A A S N G - A A A A Y
AR A A A

IC Cost

Blank
Silicon ingot wafers
processing steps
Tested dies Tested Patterned wafers
Bm wafer I/ ™
Bond die guboh . - | Wafe .._r ]
ni ie 10 - arer
package OoROO 2l c@ tester f /
oogo : L -y
l oo N
Packaged dies Tested packaged dies
) o] | Part ]| 1) = Ship to
[ ) tester 1] ) ] customers
COSt _ Cost die T Cost testing +Cost packaging
Ic Final Test Yield

Wafer

- 8 inch diameter

- 564 MIPS
processors

- 0.18y process

© 2003 Elseviar Science (USA) AS rights resenved

Pentium 4 Die

.\ System’; R
“Interface’ -

| [Pt
[
|

‘1 = " Oubet Ofder:

Conirol‘-"-




Cost of Die

* Manufacturing process determines
- cost of wafer, wafer yield, defect rate
« IC designer controls die area
* Area determined by both circuit elements and
I/0 pads
- lots of pins increases die cost
* Cost of die+ Area"
- where n between about 2.0 and 4.0

+ Also fixed costs (e.g., mask costs, setting up
fabrication)

Cost of Die (cont.)

‘ - Cost of wafer
Cost of die = — —
Dies per water x Die yield

7 % (Wafer Diameter/2)®> 7 x Wafer Diameter

Dies per water = : - —_———
Dies area V2 x Die area,

o . fects per it area % Die area .~ ®
Die yield = Wafer yield x (14 Defects per unit area x Die area )

a
where a 1s the manufacturing complexity factor, which is 3.0 for
the multilevel metal CMOS in 1995,

Cost of Components

* Example: component costs in a workstation:

- Cabinet & packaging 6%
- Circuit board - processor 22%
- DRAM (64/128MB) 5%
- video system 5%
- PCB & I/0 system 5%
- I/0 devices - keyboard/mouse 3%
- monitor 19%
- disk (1/20GB) 9%

CD/DVD drive 6%

Cost of Components (cont.)

» Although IC cost is a differentiator
- it is not a major cost component

» Cost reductions over time offset by
increased resources required
- E.g., more DRAM & disk,...




From Component Costs to Product
Prices

* Direct Cost:
- 20-40% of component cost for labor,
warranty, etc.
* Gross Margin:
- 20-55% of the average selling price for
research and development, marketing, etc.
- Average Discount:

- 40-50% of the list price for retailers’
margin

Price Components

Measurement and Evaluation

Architecture is an iterative process
-- searching the space of possible designs
-- at all levels of computer systems

' Good Ideas
" Mediocre Ideas

Bad Ideas

Performance

* Many performance metrics are context
dependent

- response time: time from start to
completion of a job

- throughput: rate of job completion
* Usual question: how much faster is X

than ¥Y?
- depends on execution time




Performance (cont.) Measuring Performance

- "X is n times faster than Y" means: - Difficulties
N Performance ,  Execution Time - what to measure
~ Performance . ~ Execution Time X - interference

- reproducibility
- comparability

* Only consistent and reliable measure:
- the time taken to run real programs

Measuring Performance (cont.) Measuring Performance (cont.)
» Execution time best measured using elapsed + On a multi-programmed system, some
time time spent on other jobs
- €. from the clock on the wall - use an otherwise unloaded system to make
- includes all aspects of execution — what the user measurements

sees

« Can use a tool such as Unix time command to
make measurements:

graham% time Is
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Benchmarks

* Real applications
- the kind of programs run in real life, with real I/0,
options, ...
» e.g., compiler, fext processor

- Scripted applications
- to reproduce interactive or multi-user behavior

- Kernels
- key parts of real programs used to evaluate
aspects of performance

Benchmarks (cont.)

» Toy benchmarks - small programs with
known results

» e.g., Quicksort

* Synthetic benchmarks

- constructed to match typical behavior of
real programs
» e.g., Whetstone, Dhrystone

SPEC Benchmarks

 Benchmark suite
- better indication of overall performance?

+ Standard Performance Evaluation

Corporation (SPEC)

- formed in response to lack of believable
benchmarks

- SPEC92, SPEC95, SPEC2000 — mix of
integer & floating-point benchmarks,
including kernels, small programs and real
programs

SPEC Benchmarks (cont.)

+ SPEC reports

- detailed machine configuration and compiler
options, and includes measured data

» aim for reproducibility
» unlike figures often reported in magazines!
- also compare baseline with optimized performance
+ Result summarized as SPECmarks
- relative o reference machine: VAX-11/780 = 1

http://www.spec.org/
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Reporting Performance

- Want repeatable results
- experimental science
- predict running time for X on Y

 How do we compare machines based on
collections of execution times for each?

Reporting Performance: Example

Computer | Computer | Computer
A B C

Program P1 1s 10s 20s

Program P2| 1000s 100s 20s

Total 1001s 110s 40s




Combining Performance
Measures

= Arithmetic mean tracks total execution time in this case

* Performance is often expressed as a rate

- e.g. millions of instructions per second
- inverse of time
* Use harmonic mean — inverse of (average of inverses)

Weighted Means

- If different programs run with different frequencies

* weight each component with its relative frequency

- Weighted arithmetic mean

n

Time . = > (Weight , x Time, )

i=1

* Weighted harmonic mean
1
Weight,

Z Rate,

i=1

Rate = —

mean

Combining Relative Ratios
* Approach used by SPEC

-normalised results

»for each program in the suite, calculate time ratio w.r.t.
reference

- use geomefric mean to combine ratios

Comparison

* Equal-time Weighted arithmetic mean
can be influenced
- by the peculiarity of the machine and the
size of program input
* Geometric mean of normalized time is
independent of them

- Relative to referenced machine for the
same program on the same input




Comparison (cont.)

+ Geometric mean rewards relative

improvement regardless the size of the

program

- Improvement from 2 sec to 1 sec ==
improvement from 2000 sec to 1000 sec

* Geometric mean cannot predict actual

performance

Quantitative Principle of
Computer Design

« Make The Common Case Fast

- Make frequent cases simpler, faster and use
less resources

- Improving frequent cases has greatest
impact on overall performance

- Examples:
- in ALU, most operations don't overflow

» make non-overflowing operations faster,
even if overflow case slows down

- exception handling in Java

Amdahl's Law

* Law of diminishing returns

- Overall effect of an enhancement is
weighted by proportion of time that the
enhancement is used

Amdahl's Law Quantified

* Speedup is ratio of execution times:

. Tofd'

S =
overall
I

enh

- Let F_,, be fraction of original execution time that

enhancement is used

Tenh = Tofd X ((1 _Fenh)_'_ %ﬁﬁ.}

enh

1
5‘01-‘91'933 = F
(]‘ - F;?ﬂh) + fﬂ

enh




Amdahl's Law Example Clocks, Cycles, etc.

- Suppose * What does 26Hz mean?

- we can modify branch instructions to take half as long - clock frequency

- measurements show branches account for 10% of execution el ) B Tt T G T e

time - CPU time = number of cycles for a program x cycle time

* Instruction count =
number of instructions executed in the program

» Average cycles per instruction (CPT) =
cycle count / instruction count

- F,,=015,,=2,so0

en, 4!/

CPU Time = IC x CPI x T,
 Parameters are interrelated:
- cycle time depends on hardware technology

* Thus improvement is only 5% - IC depends on instruction set and compiler
- if enhancement costs more than 5% extra, is it worth it? - CPI depends on CPU organisation and instruction set

CPU Performance Model Example
* If we have ninstruction classes, each taking different number
of cycles - CPU A
- IC; = instruction count for class 7 - compare to set the condition code (20%)
- CPI;= CPI for class 7 - conditional branch based on the condition code
(20%)
_ noo ] - CPUB
CPU TIime = Z (IC, x CPI,)x T, - compare is included in the conditional branch
= (20%)
- Cycle time is 25% slower than in CPU A.
i([(-_-_ x CPIL) | * The conditional branch takes 2 cycles. All

other instructions take one cycle.

CPI =+




Example (cont.)

* NIA = # of instructions on A

« CTA = cycle time of A

« CPU time A=08*NIA*1*CTA+
02*NIA*2*(CTA

=12*NIA*CTA

- CPU time B=0.6 * NIA *1* 125*CTA +
0.2* NIA*2*125*CTA

=125 * NIA* CTA




