Computer System Architecture

Introduction

Chalermek Intanagonwiwat

Slides courtesy of David A. Patterson, Peiyi Tang, David Culler, Graham
Kirby, and Zoltan Somogyi

Why take this class?

+ To design the next great instruction set?..well...

- Instruction Set Architecture (ISA) has largely
converged

- Especially in the desktop / server / laptop space
- Dictated by powerful market forces

+ Tremendous organizational innovation relative
to established ISA abstractions

Why take this class? (cont.)

* Many New instruction sets or equivalent

- embedded space, controllers, and
specialized devices

- Design, analysis, implementation
concepts vital to all aspects of CE & CS

» Equip you with an intellectual toolbox
for dealing with a host of systems
design challenges

Forces on Computer Architecture

Understanding the design techniques, machine
structures, technology factors, evaluation
methods that will determine the form of
computers in 21st Century

Technology Parallelism Programming

\ / /Languages
Applications —Interface Design

Computer Architecture: (ISA)
+ Organization
+ Hardware/Software Boundary

“——Compilers

Operating / Measurement & Histor
Systems Evaluation 4

What is "Computer
Application Architecture"?

Operating |
System

Instruction Set
Architecture

| Datapath & Control ‘

| Digital Design |
_Circuit Design |
Iaymlt |

* Coordination of many /evels of abstraction
- Under a rapidly changing set of forces
* Design, Measurement, and Evaluation

Computer Design

* What are the principal goals?
- performance, performance, performance...
- but not at any cost and power

* Trade-offs:

- need to understand cost, performance, and
power issues

- heed models and measures of cost,
performance, and power

Tasks of Computer Designers
(Architects)

- Designing a computer involves:
- instruction set architecture (ISA) - programmer
visible
- computer organization - CPU internals, memory,
buses, ...
- computer hardware - logic design, packaging, ...
* Architects must meet:
- functional requirements
»market & application driven
- performance goals
- cost constraints

Functional Requirements

- Application area
- general purpose, scientific, commercial
* Operating system requirements

- address space, memory management,
protection

- context switching, interrupts
- Standards

- floating-point, I/0O interconnect, operating
systems, networks, programming languages

Functional Requirements (cont.)

* Given these requirements, optimize
cost/performance/power trade-off

- e.g., hardware or software implementation
of a feature

- Design complexity
- time to market is critical

Technology Trends

- Software trends
- increasing memory usage (from increasing
functionality?)
» 1.5x to 2x per year - up to one address bit/year
- use of high-level languages - use of compilers
» ISA designed for the compiler, not the
programmer

- improved compiler technology - optimization,
scheduling

Technology Trends (cont.)

- Hardware trends

- IC technology - density & size - transistor count;
cycle time

- DRAM - capacity 4x per 3 years, but slow cycle
time change

- disk - capacity was 2x per 3 years before 1990,
now 4x per 3 years,

» slow change in access time
* Need to be aware of trends when designing
computers
- design for requirements and technology at time of
shipping

Moore's Law: 2X transistors /
' “year”

Transistors
. PerDie
10"

@ 1965 Actual Data 16 26 g
B MOS Arrays 4 MOS Logic 1975 Actual Data 256M 5120

1975 Projection e

Memory
A Microprocessor

1960 1865 1870 1875 1980 1985 1980 1885 2000 2005 2010

+ "Cramming More Components onto Integrated Circuits"
- Gordon Moore, Electronics, 1965

+ # on fransistors / cost-effective integrated circuit double every N
months (12 < N < 24)

MIPS per E;]OEI‘O Evolution of Computer Power/ Cost Mirs I.qllglil\l‘.:il\lenl Sluiﬁ[‘ar ‘{Jlly&llrﬁ,wr C rl o SS r'o a d S : U n i p r‘ O C ess o r‘
9955

Billion 10" 50
Human 1 NU e P f l“
"""" 3 eta 2040 g er Or ance
: {imaginationt| 3 10000 —
Millien I r - From Hennessy and Patterson, Computer
Architecture: A Quantitative Approach, 4th
edition, October, 2006 ??%lyear

- 8 1000 -

=

)

:
! £ 100 -

8

]

E
'R
1000 &

10 -
1
Million
1 : T T T
- 1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006
» - . * VAX . 25%/year 1978 to 1986

o 1900 °F 1020 1940 * RISC + x86: 52%/year 1986 to 2002

* RISC + x86: ??%l/year 2002 to present
http://www.frc.ri.cmu.edu/~hpm/talks/revo.slides/power.aug.curve/power.aug.html

Cost and Trends in Cost Memory Price

* Learning curve brings manufacturing

cost down
- DRAM cost drops 40% per year wl
* Large volume increases purchasing and
manufacturing efficiency s o

DRAM chip

- bringing both cost and selling price down 1

+ Commodization brings both cost and
price down T SN

=

64 Kb Final chip cost

S1000
900
500
700
500
‘oo unes 500
$400
300
5200
$100

Pentium III Cost

]

C A A S N G - A A A A Y
AR A A A

IC Cost

Blank
Silicon ingot wafers
processing steps
Tested dies Tested Patterned wafers
Bm wafer I/ ™
Bond die guboh . - | Wafe .._r]
ni ie 10 - arer
package OoROO 2l c@ tester f /
oogo : L -y
l oo N
Packaged dies Tested packaged dies
) o] | Part]| 1) = Ship to
[) tester 1])] customers
COSt _ Cost die T Cost testing +Cost packaging
Ic Final Test Yield

Wafer

- 8 inch diameter

- 564 MIPS
processors

- 0.18y process

© 2003 Elseviar Science (USA) AS rights resenved

Pentium 4 Die

.\ System’; R
“Interface’ -

| [Pt
[
|

‘1 = " Oubet Ofder:

Conirol‘-"-

Cost of Die

* Manufacturing process determines
- cost of wafer, wafer yield, defect rate
« IC designer controls die area
* Area determined by both circuit elements and
I/0 pads
- lots of pins increases die cost
* Cost of die+ Area"
- where n between about 2.0 and 4.0

+ Also fixed costs (e.g., mask costs, setting up
fabrication)

Cost of Die (cont.)

‘ - Cost of wafer
Cost of die = — —
Dies per water x Die yield

7 % (Wafer Diameter/2)®> 7 x Wafer Diameter

Dies per water = : - —_———
Dies area V2 x Die area,

o . fects per it area % Die area .~ ®
Die yield = Wafer yield x (14 Defects per unit area x Die area)

a
where a 1s the manufacturing complexity factor, which is 3.0 for
the multilevel metal CMOS in 1995,

Cost of Components

* Example: component costs in a workstation:

- Cabinet & packaging 6%
- Circuit board - processor 22%
- DRAM (64/128MB) 5%
- video system 5%
- PCB & I/0 system 5%
- I/0 devices - keyboard/mouse 3%
- monitor 19%
- disk (1/20GB) 9%

CD/DVD drive 6%

Cost of Components (cont.)

» Although IC cost is a differentiator
- it is not a major cost component

» Cost reductions over time offset by
increased resources required
- E.g., more DRAM & disk,...

From Component Costs to Product
Prices

* Direct Cost:
- 20-40% of component cost for labor,
warranty, etc.
* Gross Margin:
- 20-55% of the average selling price for
research and development, marketing, etc.
- Average Discount:

- 40-50% of the list price for retailers’
margin

Price Components

Measurement and Evaluation

Architecture is an iterative process
-- searching the space of possible designs
-- at all levels of computer systems

' Good Ideas
" Mediocre Ideas

Bad Ideas

Performance

* Many performance metrics are context
dependent

- response time: time from start to
completion of a job

- throughput: rate of job completion
* Usual question: how much faster is X

than ¥Y?
- depends on execution time

Performance (cont.) Measuring Performance

- "X is n times faster than Y" means: - Difficulties
N Performance , Execution Time - what to measure
~ Performance . ~ Execution Time X - interference

- reproducibility
- comparability

* Only consistent and reliable measure:
- the time taken to run real programs

Measuring Performance (cont.) Measuring Performance (cont.)
» Execution time best measured using elapsed + On a multi-programmed system, some
time time spent on other jobs
- €. from the clock on the wall - use an otherwise unloaded system to make
- includes all aspects of execution — what the user measurements

sees

« Can use a tool such as Unix time command to
make measurements:

graham% time Is

2003-09-30.xbk week_01.pdf week_01_handout.ppt
misc week_01.ppt

0.000u 0.010s 0:00.00 0.0%

Benchmarks

* Real applications
- the kind of programs run in real life, with real I/0,
options, ...
» e.g., compiler, fext processor

- Scripted applications
- to reproduce interactive or multi-user behavior

- Kernels
- key parts of real programs used to evaluate
aspects of performance

Benchmarks (cont.)

» Toy benchmarks - small programs with
known results

» e.g., Quicksort

* Synthetic benchmarks

- constructed to match typical behavior of
real programs
» e.g., Whetstone, Dhrystone

SPEC Benchmarks

 Benchmark suite
- better indication of overall performance?

+ Standard Performance Evaluation

Corporation (SPEC)

- formed in response to lack of believable
benchmarks

- SPEC92, SPEC95, SPEC2000 — mix of
integer & floating-point benchmarks,
including kernels, small programs and real
programs

SPEC Benchmarks (cont.)

+ SPEC reports

- detailed machine configuration and compiler
options, and includes measured data

» aim for reproducibility
» unlike figures often reported in magazines!
- also compare baseline with optimized performance
+ Result summarized as SPECmarks
- relative o reference machine: VAX-11/780 = 1

http://www.spec.org/

Integer SPEC Results

600 . 250
@ SPECbase CINT2000 1225
BOO [+ oo | apEs A Tona .
performance/zost
4176
400 ‘
N 1150
SPECbasa 00 F [1qz5 SPEC CINT2000
CINT2000 - "~ per $1000 in prica
4100
200 175
100 -"/‘ 3%
L . e : |
e 26
0 L . i " L 0
Compag Dell Dell HP Eun 1BM Sun
Presario Precision Precision Workstation Sunblade RS8000 Sunblade
7000 530 420 c3E00 100011750 44PAT0 100

(@ 2003 Elsevier Sciance {USA). All rights resarved.

Floating Point SPEC Results

600 250
550 F [SPECbase CFP2000 {225
500 F ey S & SPEC CFP2000 0
450 - performanceicost
417§
a0 - ! ; : e g . .
350 - Y 1150
SPECDhase SPEC CFP2000
300 - & : = 125 :
CFP2000 \ per $1000 in price
250 | \ <100
200 | \. /I-\ 175
150 F Y
- B
| el Sl /
50 - ; 125
L L L L L 0
Deill Compag HP Sun IBM Dell Sun
Precision Presario Worksiation Sunblade RS6000 Precision Sunblade
530 7000 £3500 10001750 44PM70 420 100

© 2003 Elsevier Science (USA). All rights reserved.

Reporting Performance

- Want repeatable results
- experimental science
- predict running time for X on Y

 How do we compare machines based on
collections of execution times for each?

Reporting Performance: Example

Computer | Computer | Computer
A B C

Program P1 1s 10s 20s

Program P2| 1000s 100s 20s

Total 1001s 110s 40s

Combining Performance
Measures

= Arithmetic mean tracks total execution time in this case

* Performance is often expressed as a rate

- e.g. millions of instructions per second
- inverse of time
* Use harmonic mean — inverse of (average of inverses)

Weighted Means

- If different programs run with different frequencies

* weight each component with its relative frequency

- Weighted arithmetic mean

n

Time . = > (Weight , x Time,)

i=1

* Weighted harmonic mean
1
Weight,

Z Rate,

i=1

Rate = —

mean

Combining Relative Ratios
* Approach used by SPEC

-normalised results

»for each program in the suite, calculate time ratio w.r.t.
reference

- use geomefric mean to combine ratios

Comparison

* Equal-time Weighted arithmetic mean
can be influenced
- by the peculiarity of the machine and the
size of program input
* Geometric mean of normalized time is
independent of them

- Relative to referenced machine for the
same program on the same input

Comparison (cont.)

+ Geometric mean rewards relative

improvement regardless the size of the

program

- Improvement from 2 sec to 1 sec ==
improvement from 2000 sec to 1000 sec

* Geometric mean cannot predict actual

performance

Quantitative Principle of
Computer Design

« Make The Common Case Fast

- Make frequent cases simpler, faster and use
less resources

- Improving frequent cases has greatest
impact on overall performance

- Examples:
- in ALU, most operations don't overflow

» make non-overflowing operations faster,
even if overflow case slows down

- exception handling in Java

Amdahl's Law

* Law of diminishing returns

- Overall effect of an enhancement is
weighted by proportion of time that the
enhancement is used

Amdahl's Law Quantified

* Speedup is ratio of execution times:

. Tofd'

S =
overall
I

enh

- Let F_,, be fraction of original execution time that

enhancement is used

Tenh = Tofd X ((1 _Fenh)_'_ %ﬁﬁ.}

enh

1
5‘01-‘91'933 = F
(]‘ - F;?ﬂh) + fﬂ

enh

Amdahl's Law Example Clocks, Cycles, etc.

- Suppose * What does 26Hz mean?

- we can modify branch instructions to take half as long - clock frequency

- measurements show branches account for 10% of execution el) B Tt T G T e

time - CPU time = number of cycles for a program x cycle time

* Instruction count =
number of instructions executed in the program

» Average cycles per instruction (CPT) =
cycle count / instruction count

- F,,=015,,=2,so0

en, 4!/

CPU Time = IC x CPI x T,
 Parameters are interrelated:
- cycle time depends on hardware technology

* Thus improvement is only 5% - IC depends on instruction set and compiler
- if enhancement costs more than 5% extra, is it worth it? - CPI depends on CPU organisation and instruction set

CPU Performance Model Example
* If we have ninstruction classes, each taking different number
of cycles - CPU A
- IC; = instruction count for class 7 - compare to set the condition code (20%)
- CPI;= CPI for class 7 - conditional branch based on the condition code
(20%)
_ noo] - CPUB
CPU TIime = Z (IC, x CPI,)x T, - compare is included in the conditional branch
= (20%)
- Cycle time is 25% slower than in CPU A.
i([(-_-_ x CPIL) | * The conditional branch takes 2 cycles. All

other instructions take one cycle.

CPI =+

Example (cont.)

* NIA = # of instructions on A

« CTA = cycle time of A

« CPU time A=08*NIA*1*CTA+
02*NIA*2*(CTA

=12*NIA*CTA

- CPU time B=0.6 * NIA *1* 125*CTA +
0.2* NIA*2*125*CTA

=125 * NIA* CTA

