
Computer System Architecture

IntroductionIntroduction

Chalermek IntanagonwiwatChalermek Intanagonwiwat

Slides courtesy of David A. Patterson, Peiyi Tang, David Culler, Graham
Kirby and Zoltan Somogyi Kirby, and Zoltan Somogyi

Why take this class?Why take this class?
T d si th t t i st ti s t? ll• To design the next great instruction set?...well...
– Instruction Set Architecture (ISA) has largely

conver edconverged
– Especially in the desktop / server / laptop space

Di t t d b f l k t f– Dictated by powerful market forces
• Tremendous organizational innovation relative

t t bli h d ISA b t tito established ISA abstractions

Why take this class? (cont)Why take this class? (cont.)
M N i t ti t i l t• Many New instruction sets or equivalent
– embedded space, controllers, and p

specialized devices
• Design analysis implementation Design, analysis, implementation

concepts vital to all aspects of CE & CS
E i ith i t ll t l t lb • Equip you with an intellectual toolbox
for dealing with a host of systems g y
design challenges

Forces on Computer Architecture
Understanding the design techniques, machine

structures technology factors evaluation structures, technology factors, evaluation
methods that will determine the form of
computers in 21st Century

Technology ProgrammingParallelism

computers in 21st Century

gy Programming
Languages

Applications Interface Design
(ISA)Computer Architecture: (ISA)Computer Architecture:

• Organization
• Hardware/Software Boundary

Compilers

Operating
Systems HistoryMeasurement &

Evaluation

omp lers

Syst ms yEvaluation

What is “Computer p
Architecture”?

Operating
Application

Compiler

p g
System

Instruction Set
Firmware

I/O systemInstr. Set Proc. Architecture

Datapath & Control

Digital Design
Circuit Design

p

Layout

•Coordination of many levels of abstraction
Layout

y
•Under a rapidly changing set of forces
D i M t d E l ti•Design, Measurement, and Evaluation

Computer DesignComputer Design

h h l l• What are the principal goals?
– performance, performance, performance...p f m , p f m , p f m ...
– but not at any cost and power
T d ffs:• Trade-offs:
– need to understand cost, performance, and

power issues
– need models and measures of cost, ,

performance, and power

Tasks of Computer Designers p g
(Architects)

D i i t i l• Designing a computer involves:
– instruction set architecture (ISA) – programmer

visiblevisible
– computer organization – CPU internals, memory,

buses, ..., ...
– computer hardware – logic design, packaging, …

• Architects must meet:rch t ct mu t m t
– functional requirements

»market & application drivenpp
– performance goals
– cost constraints

Functional RequirementsFunctional Requirements
A li ti • Application area
– general purpose, scientific, commercial

• Operating system requirements
– address space memory management address space, memory management,

protection
– context switching interruptscontext switching, interrupts

• Standards
fl tin p int I/O int nn t p tin – floating-point, I/O interconnect, operating
systems, networks, programming languages

Functional Requirements (cont)Functional Requirements (cont.)

 h • Given these requirements, optimize
cost/performance/power trade-offp p
– e.g., hardware or software implementation

of a featureof a feature
• Design complexity

– time to market is critical

Technology TrendsTechnology Trends
f d• Software trends

– increasing memory usage (from increasing
f l)functionality?)
» 1.5x to 2x per year - up to one address bit/year

– use of high-level languages - use of compilers
» ISA designed for the compiler, not the
programmer

– improved compiler technology – optimization,
schedulingscheduling

Technology Trends (cont)Technology Trends (cont.)
H d t nds• Hardware trends
– IC technology – density & size - transistor count;

cycle timecycle time
– DRAM – capacity 4x per 3 years, but slow cycle

time change
disk it s 2 3 s b f 1990 – disk – capacity was 2x per 3 years before 1990,
now 4x per 3 years,
» slow change in access timeg

• Need to be aware of trends when designing
computers
– design for requirements and technology at time of

shipping

Moore’s Law: 2X transistors /
“ ”“year”

• “Cramming More Components onto Integrated Circuits”
Gordon Moore Electronics 1965– Gordon Moore, Electronics, 1965

• # on transistors / cost-effective integrated circuit double every N
months (12 ≤ N ≤ 24)

http://www.frc.ri.cmu.edu/~hpm/talks/revo.slides/power.aug.curve/power.aug.html

Crossroads: Uniprocessor
P f

10000
Performance

From Hennessy and Patterson, Computer

1000

/7
80

)

??%/year
Architecture: A Quantitative Approach, 4th
edition, October, 2006

100

ce
 (v

s.
 V

AX
-1

1/

52%/year

10Pe
rfo

rm
an

c

2 %/

1

25%/year

1
1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006

• VAX : 25%/year 1978 to 1986
• RISC + x86: 52%/year 1986 to 2002RISC + x86: 52%/year 1986 to 2002
• RISC + x86: ??%/year 2002 to present

Cost and Trends in CostCost and Trends in Cost

 f • Learning curve brings manufacturing
cost down
– DRAM cost drops 40% per year

• Large volume increases purchasing and • Large volume increases purchasing and
manufacturing efficiency
– bringing both cost and selling price down

• Commodization brings both cost and Commodization brings both cost and
price down

Memory PriceMemory Price

Pentium III CostPentium III Cost IC Cost

WaferWafer
 h d• 8 inch diameter

• 564 MIPS
processors

• 0.18µ process0.18µ process

Pentium 4 Die

Cost of DieCost of Die
M f t i d t i• Manufacturing process determines
– cost of wafer, wafer yield, defect rate

IC d i t l di • IC designer controls die area
• Area determined by both circuit elements and

I/O dI/O pads
– lots of pins increases die cost

C f di A• Cost of die ≢ Arean

– where n between about 2.0 and 4.0
l f d (k • Also fixed costs (e.g., mask costs, setting up

fabrication)

Cost of Die (cont)Cost of Die (cont.)

Cost of ComponentsCost of Components
E l k• Example: component costs in a workstation:
– Cabinet & packaging 6%
– Circuit board – processor 22%
– DRAM (64/128MB) 5%
– video system 5%
– PCB & I/O system 5%
– I/O devices – keyboard/mouse 3%
– monitor 19%
– disk (1/20GB) 9%
– CD/DVD drive 6%

Cost of Components (cont)Cost of Components (cont.)

l h h ff• Although IC cost is a differentiator
– it is not a major cost componentm j mp

• Cost reductions over time offset by
increased resources requiredincreased resources required
– E.g., more DRAM & disk,...

From Component Costs to Product p
Prices

Di t C t • Direct Cost:
– 20-40% of component cost for labor,

 warranty, etc.
• Gross Margin: g

– 20-55% of the average selling price for
research and development, marketing, etc.p , g,

• Average Discount:
– 40-50% of the list price for retailers' – 40-50% of the list price for retailers

margin

Price ComponentsPrice Components

Measurement and Evaluation
Architecture is an iterative process

-- searching the space of possible designs
at all le els of comp ter s stems-- at all levels of computer systemsDesign

AnalysisAnalysis

Cost /

Creativity

Performance
Analysis

Good IdeasGood Ideas
Mediocre IdeasMediocre Ideas

Bad Ideas

PerformancePerformance

 f • Many performance metrics are context
dependentp
– response time: time from start to

completion of a jobcompletion of a job
– throughput: rate of job completion
U l ti h h f t i X • Usual question: how much faster is X
than Y?
– depends on execution time

Performance (cont)Performance (cont.)

“ f h • “X is n times faster than Y” means:

Measuring PerformanceMeasuring Performance

ff l• Difficulties
– what to measurem
– interference

reproducibility– reproducibility
– comparability

• Only consistent and reliable measure:
– the time taken to run real programsthe time taken to run real programs

Measuring Performance (cont)Measuring Performance (cont.)

E b d l d • Execution time best measured using elapsed
time
– e.g. from the clock on the wall
– includes all aspects of execution — what the user

sees
• Can use a tool such as Unix time command to

make measurements:
graham% time lsg
2003-09-30.xbk week_01.pdf week_01_handout.ppt
misc week_01.ppt
0.000u 0.010s 0:00.00 0.0%

Measuring Performance (cont)Measuring Performance (cont.)

 l • On a multi-programmed system, some
time spent on other jobsp j
– use an otherwise unloaded system to make

measurementsmeasurements

BenchmarksBenchmarks
l l• Real applications

– the kind of programs run in real life, with real I/O,
 options, ...

» e.g., compiler, text processor
• Scripted applications

– to reproduce interactive or multi-user behavior
• Kernels

– key parts of real programs used to evaluate key parts of real programs used to evaluate
aspects of performance

Benchmarks (cont)Benchmarks (cont.)

 h k ll h • Toy benchmarks - small programs with
known results

» e.g., Quicksort
S th ti b h k• Synthetic benchmarks
– constructed to match typical behavior of yp

real programs
» e.g., Whetstone, Dhrystone e.g., Whetstone, Dhrystone

SPEC BenchmarksSPEC Benchmarks
B h k it• Benchmark suite
– better indication of overall performance?

• Standard Performance Evaluation
Corporation (SPEC)Corporat on (SPEC)
– formed in response to lack of believable

benchmarksbenchmarks
– SPEC92, SPEC95, SPEC2000 — mix of

integer & floating-point benchmarks, integer & floating point benchmarks,
including kernels, small programs and real
programsp g

SPEC Benchmarks (cont)SPEC Benchmarks (cont.)
SPEC t• SPEC reports
– detailed machine configuration and compiler

options and includes measured data options, and includes measured data
» aim for reproducibility
» unlike figures often reported in magazines!» unlike figures often reported in magazines!

– also compare baseline with optimized performance
• Result summarized as SPECmarksResult summarized as SPECmarks

– relative to reference machine: VAX-11/780 = 1

http://www.spec.org/

Integer SPEC ResultsInteger SPEC Results Floating Point SPEC ResultsFloating Point SPEC Results

Reporting PerformanceReporting Performance

 l l• Want repeatable results
– experimental sciencep m
– predict running time for X on Y
H d mp m hin s b s d n • How do we compare machines based on
collections of execution times for each?

Reporting Performance: ExampleReporting Performance: Example

 Computer
A

Computer
B

Computer
C

Program P1 1s 10s 20s

Program P2 1000s 100s 20sg

T t l 1001 110 40Total 1001s 110s 40s

Combining Performance g
Measures Weighted MeansWeighted Means

Combining Relative RatiosCombining Relative Ratios ComparisonComparison

E l h h • Equal-time Weighted arithmetic mean
can be influenced
– by the peculiarity of the machine and the

size of program inputsize of program input
• Geometric mean of normalized time is

i d d t f th independent of them
– Relative to referenced machine for the

same program on the same input

Comparison (cont)Comparison (cont.)

 l • Geometric mean rewards relative
improvement regardless the size of the p g
program
– Improvement from 2 sec to 1 sec == – Improvement from 2 sec to 1 sec ==

improvement from 2000 sec to 1000 sec
G t i t di t t l • Geometric mean cannot predict actual
performance

Quantitative Principle of p
Computer Design

M k Th C C F t• Make The Common Case Fast
– Make frequent cases simpler, faster and use

l less resources
– Improving frequent cases has greatest

 ll fimpact on overall performance
• Examples:p

– in ALU, most operations don’t overflow
» make non-overflowing operations faster » make non overflowing operations faster,
even if overflow case slows down

– exception handling in Javaexception handling in Java

Amdahl’s LawAmdahl s Law

 f h • Law of diminishing returns
• Overall effect of an enhancement is Overall effect of an enhancement is

weighted by proportion of time that the
enhancement is usedenhancement is used

Amdahl’s Law QuantifiedAmdahl s Law Quantified

Amdahl’s Law ExampleAmdahl s Law Example Clocks Cycles etcClocks, Cycles, etc.

CPU Performance ModelCPU Performance Model ExampleExample
P • CPU A

– compare to set the condition code (20%)
– conditional branch based on the condition code

(20%)
• CPU B

– compare is included in the conditional branch
(20%)

– Cycle time is 25% slower than in CPU A.
• The conditional branch takes 2 cycles. All

other instructions take one cycle.y

Example (cont)Example (cont.)
NIA # f i t ti A• NIA = # of instructions on A

• CTA = cycle time of Ay
• CPU time A = 0.8 * NIA * 1 * CTA +

0 2 * NIA * 2 * CTA0.2 * NIA * 2 * CTA
= 1.2 * NIA * CTA

• CPU time B = 0.6 * NIA * 1 * 1.25*CTA +
0.2 * NIA * 2 * 1.25*CTA

= 1.25 * NIA * CTA

