Computer System Architecture
Pipelining Part T
Chalermek Intanagonwiwat

Slides courtesy of David Patterson

Pipelining is Naturall
* Laundry Example BBBD

* Ann, Brian, Cathy, Dave

each have one load of clothes

to wash, dry, and fold '

- Washer takes 30 minutes
* Dryer takes 30 minutes
- "Folder" takes 30 minutes

- "Stasher” takes 30 minutes
to put clothes into drawers

jo

()

A

~n o -

—:(DQ_—!:O

Sequential Laundry

GIPM 7 8 9 10 11 12 1 2AM

botaotaotaatzataotzeta0tma 20 20300 20 0!

30'30'30'30' 30'30'30130'30'30'30'30' 303030/ 30
= ime

585 A& "

B A o

& -~

S A

» Sequential laundry takes 8 hours for 4

loads

* If they learned pipelining, how long
would laundry take?

x 0 9 -

—1(‘DQ_ﬁO

ASAP

6IPM 7 8 9 10 11

Pipelined Laundry: Start work

12 1 2AM

== | | Time

30 O 30 30 30 30 30
SEHIT A

5 B

A °

&)
&
» Pipelined laundry takes 3.5 hours for 4

loads!

Pipelining Lessons

Pipelining Lessons (cont.)

- Ifetch: Instruction Fetch

- Fetch the instruction from the Instruction
Memory

* Reg/Dec: Registers Fetch and
Instruction Decode

- Exec: Calculate the memory address

T, —=—== T help latency of T, — === T mile
a 3030 30 30 30 30'30 single task, it helps a 3030 30 30 30 30'30 pipeline stage
s i throughput of s g * Unbalanced lengths
K entire workload K of pipe stages
o) » Multiple tasks 0 r'e-,duces ‘\speedup
r operating r . T‘lme' to fl”".
d simultaneously using d pipeline and time
f different resources f to “drain” it
- Potential speedup = reduces speedup
Number pipe stages - Stall for
Dependences
The Five STC(QZS of Load The Five Sfages of Load
Cyclel §Cycle2 Cycle3 §Cycle4 §CycIeS { (Con.r')
I o A e N e N e N 3 3 3 3 3
Cyclel gCycleZ Cycle3 gCycle4 gCycIeS i
Load | Ifetch ||Reg/Dec || Exec || Mem || Wr | I I I I I I I I I I I
Load | Ifetch IReg/Dec || Exec || Mem I Wr |

- Mem: Read the data from the Data

Memory

- Wr: Write the data back to the

register file

Conventional Pipelined Execution
Representation

Time

IFetch| Dcd Exec |Mem WB

IFetch| Dcd Exec [Mem WB

IFetchf Dcd Exec [Mem WB

|IFetch|l Dcd Exec [Mem WB

IFetch Dcd Exec [|Mem WB

Program Flow

IFetch Dcd Exec [Mem WB

Cyclel Cycle2
Clk J—
Single Cycle | mplementation:

L oad Store i Waste
CycleléCycIeZéCycle3§CycIe4§ Cycle5 Cycle6§CycIe7§CycIe8§ Cycle9§CycIe 10
ek L LT LI LI e rererr

Multiple Cycle Implementation:
L oad Store R-type
Ifetchl Reg I Exec I Mem I Wr Ifetchl Reg I Exec I Mem Ifetch|

Pipel

ne Implementation:

Load| Ifetchl Reg I Exec I Mem I Wr |

Stord Ifetchl Reg | Exec | Mem | Wr |

Single Cycle,
Multiple
Cycle, vs.

R-type| Ifetchl Reg I Exec I Mem I Wr |

Pipeline

Why Pipeline?

- Suppose we execute 100 instructions
- Single Cycle Machine
- 45 ns/cycle x 1 CPI x 100 inst = 4500 ns
* Multicycle Machine
- 10 ns/cycle x 4.6 CPI (due to inst mix) x
100 inst = 4600 ns
- Ideal pipelined machine

- 10 ns/cycle x (1 CPI x 100 inst + 4 cycle
drain) = 1040 ns

S~ W0 5 —

- o a-=0

Why Pipeline? Because the
resources are therel

Time (clock cycles)

Inst O

Inst 1

Inst 2

Inst 3

Inst 4

Reg

Can pipelining get us into Can pipelining get us info

trouble? trouble? (cont.)
Cne 1 - data hazards: attempt to use item before
* Yes: Pipeline Hazards it is ready
- structural hazards: attempt to use the - Eg., one sock of pair in dryer and one in
same resource two different ways at the washer; can't fold until get sock from washer
same time through dryer

structural hazard or folder busy doing instruction still in the pipeline
something else (watching TV)

Can pipelining get us into Single Memory is a Structural
trouble? (cont.) Hazard

Time (clock cycles)

- control hazards: attempt to make a

decision before condition is evaluated ' |Loag [MerHr= \‘_%_Ml Reg
* E.g., washing football uniforms and need to " oa 2| [
get proper detergent level; need to see after t |instr 1 Mem K Reg l-'%- Mem h Reg
dryer before next load in r. 15| :
* branch instructions o lInstr 2 Mem [+ Reg]:a- Mem R
. Ty r
Can always resolve hazards by waiting ¢ |instr 3 (s @r e | Reg
- pipeline control must detect the hazard ° nstr 4 v L e €8 O v

- take action (or delay action) to resolve
hazards

Detection is easy in this case! (right half highlight means read, left half write)

Control Hazard Solutions
- Stall: wait until decision is clear

- Its possible to move up decision to 2nd stage

by adding hardware to check registers as

being read
| Time (clock cycles)
n
* |Add Mi“ R
leeq R Ryl
? Load - 2\ _Mem
d
e
r

+ Impact: 2 clock cycles per branch
instruction => slow

Control Hazard Solutions (cont.)

* Predict: guess one direction then back
up if wrong
- Predict not taken

Time (clock cycles)

Add

o0~ W0 o5 —

Beq
Load

- o a-=0

Mem

El Reg

)

Mem

g =3
: H B
1)

Memlrg_Reg

Mem

i

Mem

-

Reg

Control Hazard Solutions (cont.)

* Impact: 1 clock cycles per branch

instruction if right, 2 if wrong (right -

50% of time)

* More dynamic scheme: history of 1

branch (- 90%)

Time (clock cycles)

Add
Beq
Load

S e~ W0 5 —

- o a-=0

Mem H—Reg
>y e
o [

Control Hazard Solutions (cont.)

* Redefine branch behavior (takes place
after next instruction) "delayed branch”

O W0 o5 —

- o a-=0

Time (clock cycles)

Add
Beq

Misc

Load

Reg

P v Reg

Mem

Reg

!
e

Control Hazard Solutions (cont.)
* Impact: O clock cycles per branch

instruction if can find instruction to put

in “slot” (- 50% of time)

Data Hazard on rl

. . add rl ,r2,r3
» As launch more instruction per clock =
cycle, less useful subr4, rl r3
I Time (clock cycles)
n S — i and r6, rl ,r7
S em eg em Reg
Add 5
rt. I or r8,rl,r9
Beq Mem B %_ Mem Ii Reg
v > xorrl0,rl rll
(: Load M Reg)c> Mem Reg
Data Hazard on rl: (cont.) Data Hazard Solution:
« “Forward” result from one stage to another
* Dependencies backwar dsin time are hazards _
Time (clock cycles) i i
_ IF_ ID/RE NEXT _MEM_WE
Tlme(clockcycles?F e | add Q,rz,r3 im K Reg ?'. Dm ; e
m B4R n
! add r1,r2,r3 || = ° |subrd,r1,r3 'm
Im .
' subr4,r1,r3 " land ré,r1,r7
r. O
o and r6,ﬂ,r7 (; or I'8, ’rg
r e
g or r8,r1,r9 r |xorrl0,rl1,r11 gl
r [xorr10,r1,r11 Reg o _ :
«“or” OK if defineread/write properly

Forwarding (or Bypassing):
What about Loads

Time (clock cycles)
IF ID/RE \EX:i MEM W

lwr1,0(r2) [m [ilres % 5

sub r4,r1,r3 'm ﬂ@- pm |FR69

* Dependencies backwardsin time are hazards
» Can’t solve with forwar ding:
* Must delay/stall instruction dependent on loads

