
Computer System Architecture

Memory Part II

Chalermek Intanagonwiwat

Slides courtesy of David Patterson and John Hennessy

The Art of Memory System
Design

Processor

$

MEM

Memory

reference stream
<op,addr>, <op,addr>,<op,addr>,<op,addr>, . . .

op: i-fetch, read, write

Optimize the memory system organization
to minimize the average memory access time
for typical workloads

Workload or
Benchmark
programs

• Two issues:
– How do we know if a data item is in the

cache?
– If it is, how do we find it?

• Our first example:
– block size is one word of data
– "direct mapped"
For each item of data at the lower level,
there is exactly one location in the cache
where it might be.
e.g., lots of items at the lower level share locations
in the upper level

Cache
• Mapping: address is modulo the number

of blocks in the cache

Direct Mapped Cache

0 0 0 0 1 0 0 1 0 1 0 1 0 0 1 0 1 1 0 1 1 0 0 0 1 1 0 1 0 1 1 1 0 0 1 1 1 1 0 1

00
0

C a c h e

M e m o ry

00
1

01
0

01
1

10
0

10
1

11
0

11
1

• For MIPS:
Direct Mapped Cache (cont.)

A d d r e s s (s h o w i n g b i t p o s i t i o n s)

2 0 1 0

B y t e
o f f s e t

V a l i d T a g D a t aI n d e x
0
1
2

1 0 2 1
1 0 2 2
1 0 2 3

T a g

I n d e x

H i t D a t a

2 0 3 2

3 1 3 0 1 3 1 2 1 1 2 1 0 • Taking advantage of spatial locality:
Direct Mapped Cache (cont.)

Address (showing bit positions)

16 12 Byte
offset

V Tag Data

Hit Data

16 32

4K
entries

16 bits 128 bits

Mux

32 32 32

2

32

Block offsetIndex

Tag

31 16 15 4 3 2 1 0

Extreme Example: single big line

• Cache Size = 4 bytes
Block Size = 4 bytes
– Only ONE entry in the cache

0

Cache DataValid Bit

Byte 0Byte 1Byte 3

Cache Tag

Byte 2

Extreme Example: single big
line (cont.)

• If an item is accessed, likely that it will
be accessed again soon
– But it is unlikely that it will be accessed

again immediately!!!
– The next access will likely to be a miss

again
• Continually loading data into the cache but

discard (force out) them before they are used
again

• Worst nightmare of a cache designer: Ping Pong
Effect

• Increasing the block size tends to
decrease miss rate:

Performance

1 K B
8 K B
1 6 K B
6 4 K B
2 5 6 K B

2 5 6

4 0 %

3 5 %

3 0 %

2 5 %

2 0 %

1 5 %

1 0 %

5 %

0 %

M
is

s
ra

te

6 41 64

B lo c k s iz e (b y te s)

• Use split caches because there is more
spatial locality in code:

Performance (cont.)

Program
Block size in

words
Instruction
miss rate

Data miss
rate

Effective combined
miss rate

gcc 1 6.1% 2.1% 5.4%
4 2.0% 1.7% 1.9%

spice 1 1.2% 1.3% 1.2%
4 0.3% 0.6% 0.4%

Block Size Tradeoff
• In general, larger block size take

advantage of spatial locality BUT:
– Larger block size means larger miss

penalty:
• Takes longer time to fill up the block

– If block size is too big relative to cache
size, miss rate will go up
• Too few cache blocks

• In general, Average Access Time:
– = Hit Time x (1 - Miss Rate) + Miss Penalty

x Miss Rate

Block Size Tradeoff (cont.)
Miss
Penalty

Block Size

Miss
Rate Exploits Spatial Locality

Fewer blocks:
compromises
temporal locality

Block Size

Average
Access
Time

Increased Miss Penalty
& Miss Rate

Block Size

• Read hits
– this is what we want!

• Read misses
– stall the CPU, fetch block from memory,

deliver to cache, restart

Hits vs. Misses
• Write hits:

– can replace data in cache and memory
(write-through)

– write the data only into the cache (write-
back the cache later)

• Write misses:
– read the entire block into the cache, then

write the word

Hits vs. Misses (cont.)

Direct Mapped Cache and
Conflict Misses

• Conflict Misses are misses caused by:
– Different memory locations mapped to the

same cache index
• Solution 1: make the cache size bigger
• Solution 2: Multiple entries for the same Cache

Index

Decreasing miss ratio with
associativity

T a g D a ta T a g D a ta T a g D a ta T a g D a ta T a g D a ta T a g D a ta T a g D a ta T a g D a ta

E ig h t -w a y se t a s so c ia t iv e (fu l ly a ss o c ia tive)

T a g D a ta T a g D a ta T a g D a ta T a g D a ta

F o u r-w a y s e t a s s o c ia tiv e

S e t

0

1

T a g D a ta

O n e w a y se t a ss o c ia t iv e
(d ire c t m a p p e d)

B lo c k

0

7

1

2

3

4

5

6

T a g D a ta

T w o - w a y se t a ss o c ia t iv e

S e t

0

1

2

3

T a g D a ta

An implementation
2 2 8

V T a gIn d e x
0
1
2

2 5 3
2 5 4
2 5 5

D a ta V T a g D a ta V T a g D a ta V T a g D a ta

3 22 2

4 - to - 1 m u ltip le xo r

H it D a ta

123891 01 11 23 03 1 0

Another Extreme Example: Fully
Associative

• Fully Associative Cache
– Forget about the Cache Index
– Compare the Cache Tags of all cache

entries in parallel
– Example: Block Size = 32 B blocks, we need

N 27-bit comparators
• By definition: Conflict Miss = 0 for a

fully associative cache

Another Extreme Example: Fully
Associative (cont.)

:

Cache Data

Byte 0

0431

:

Cache Tag (27 bits long)

Valid Bit

:

Byte 1Byte 31 :

Byte 32Byte 33Byte 63 :

Cache Tag

Byte Select

Ex: 0x01

X

X

X

X

X

A Two-way Set Associative Cache
• N-way set associative: N entries for

each Cache Index
– N direct mapped caches operates in parallel

• Example: Two-way set associative cache
– Cache Index selects a “set” from the cache
– The two tags in the set are compared in

parallel
– Data is selected based on the tag result

A Two-way Set Associative
Cache (cont.)

Cache Data

Cache Block 0

Cache TagValid

:: :

Cache Data

Cache Block 0

Cache Tag Valid

: ::

Cache Index

Mux 01Sel1 Sel0

Cache Block

Compare
Adr Tag

Compare

OR

Hit

Performance

0 %

3 %

6 %

9 %

1 2 %

1 5 %

E ig h t-w a yF o u r-w a yT w o -w a yO n e -w a y

1 K B
2 K B
4 K B
8 K B

M
is

s
ra

te

A s so c ia t iv ity 1 6 K B
3 2 K B
6 4 K B
1 2 8 K B

Disadvantage of Set Associative
Cache

• N-way Set Associative Cache versus
Direct Mapped Cache:
– N comparators vs. 1
– Extra MUX delay for the data
– Data comes AFTER Hit/Miss decision and

set selection
• In a direct mapped cache, Cache Block

is available BEFORE Hit/Miss:
– Possible to assume a hit and continue.

Recover later if miss.

Decreasing miss penalty with
multilevel caches

• Add a second level cache:
– often primary cache is on the same chip as

the processor
– use SRAMs to add another cache above

primary memory (DRAM)
– miss penalty goes down if data is in 2nd

level cache

A Summary on Sources of Cache
Misses

• Compulsory (cold start or process
migration, first reference): first access
to a block
– “Cold” fact of life: not a whole lot you can do

about it
– Note: If you are going to run “billions” of

instruction, Compulsory Misses are
insignificant

A Summary on Sources of Cache
Misses (cont.)

• Conflict (collision):
– Multiple memory locations mapped

to the same cache location
– Solution 1: increase cache size
– Solution 2: increase associativity

• Capacity:
– Cache cannot contain all blocks access by the

program
– Solution: increase cache size

• Invalidation: other process (e.g., I/O)
updates memory

Sources of Cache Misses
Direct Mapped N-way Set Associative Fully Associative

Compulsory Miss

Cache Size

Capacity Miss

Invalidation Miss

Big Medium Small

Note:
If you are going to run “billions” of instruction, Compulsory Misses are
insignificant.

Same Same Same

Conflict Miss High Medium Zero

Low Medium High

Same Same Same

Improving Cache Performance: 3
general options

1. Reduce the miss rate,
2. Reduce the miss penalty, or
3. Reduce the time to hit in the cache.

4 Questions for Memory
Hierarchy

• Q1: Where can a block be placed in the
upper level? (Block placement)

• Q2: How is a block found if it is in the
upper level?
(Block identification)

• Q3: Which block should be replaced on a
miss?
(Block replacement)

• Q4: What happens on a write?
(Write strategy)

Q1: Where can a block be
placed in the upper level?

• Block 12 placed in 8 block cache:
– Fully associative, direct mapped, 2-way set

associative
– S.A. Mapping = Block Number Modulo

Number Sets

Q2: How is a block found if it is
in the upper level?

• Tag on each block
– No need to check index or block offset

• Increasing associativity shrinks index,
expands tag

Q3: Which block should be
replaced on a miss?

• Easy for Direct Mapped
• Set Associative or Fully Associative:

– Random
– LRU (Least Recently Used)

Associativity: 2-way 4-way 8-way
Size LRU Random LRU Random LRU Random
16 KB 5.2% 5.7% 4.7% 5.3% 4.4% 5.0%
64 KB 1.9% 2.0% 1.5% 1.7% 1.4% 1.5%
256 KB 1.15% 1.17% 1.13% 1.13% 1.12% 1.12%

Q4: What happens on a write?

• Write through—The information is
written to both the block in the cache and
to the block in the lower-level memory.

• Write back—The information is written
only to the block in the cache. The
modified cache block is written to main
memory only when it is replaced.
– is block clean or dirty?

Q4: What happens on a write?
(cont.)

• Pros and Cons of each?
– WT: read misses cannot result in writes
– WB: no writes of repeated writes

• WT always combined with write buffers so
that don’t wait for lower level memory

Write Buffer for Write Through

• A Write Buffer is needed between the
Cache and Memory
– Processor: writes data into the cache and

the write buffer
– Memory controller: write contents of the

buffer to memory

Processor
Cache

Write Buffer

DRAM

Write Buffer for Write Through
(cont.)

• Write buffer is just a FIFO:
– Typical number of entries: 4
– Works fine if: Store frequency (w.r.t. time)

<< 1 / DRAM write cycle
• Memory system designer’s nightmare:

– Store frequency (w.r.t. time) -> 1 / DRAM
write cycle

– Write buffer saturation

Write Buffer Saturation

• Store frequency (w.r.t. time) -> 1 /
DRAM write cycle
– If this condition exist for a long period of

time (CPU cycle time too quick and/or too
many store instructions in a row):
• Store buffer will overflow no matter how big you

make it
• The CPU Cycle Time <= DRAM Write Cycle

Time

Processor
Cache

Write Buffer

DRAM

Write Buffer Saturation (cont.)
• Solution for write buffer saturation:

– Use a write back cache
– Install a second level (L2) cache:

Processor

Cache

Write Buffer

DRAM
L2

Cache

Write-miss Policy: Write
Allocate versus Not Allocate

• Assume: a 16-bit write to memory
location 0x0 and causes a miss
– Do we read in the block?

• Yes: Write Allocate
• No: Write Not Allocate

Write-miss Policy: Write Allocate
versus Not Allocate (cont.)

Cache Index

0
1
2
3

:

Cache Data
Byte 0

0431

:

Cache Tag Example: 0x00
Ex: 0x00

0x00
Valid Bit

:
31

Byte 1Byte 31 :

Byte 32Byte 33Byte 63 :

Byte 992Byte 1023 :

Cache Tag

Byte Select
Ex: 0x00

9

Recall: Levels of the Memory
Hierarchy

CPU Registers
100s Bytes
<10s ns

Cache
K Bytes
10-100 ns
$.01-.001/bit

Main Memory
M Bytes
100ns-1us
$.01-.001

Disk
G Bytes
ms
10 - 10 cents-3 -4

Capacity
Access Time
Cost

Tape
infinite
sec-min
10-6

Registers

Cache

Memory

Disk

Tape

Instr. Operands

Blocks

Pages

Files

Staging
Xfer Unit

prog./compiler
1-8 bytes

cache cntl
8-128 bytes

OS
512-4K bytes

user/operator
Mbytes

Upper Level

Lower Level

faster

Larger

Virtual Memory
• Main memory can act as a cache for the

secondary storage (disk)

• Advantages:
– illusion of having more physical memory
– program relocation
– protection

P h y s ic a l a d d re s s e s

D is k a d d re s s e s

V ir t u a l a d d re s s e s
A d d re s s tra n s la t io n

Basic Issues in Virtual Memory
System Design

• Size of information blocks that are transferred
from secondary to main storage (M)

• Block of information brought into M, and M is
full, then some region of M must be released to
make room for the new block --> replacement
policy

• Which region of M is to hold the new block -->
placement policy

• Missing item fetched from secondary memory
only on the occurrence of a fault --> demand
load policy

Basic Issues in Virtual Memory
System Design (cont.)

Paging Organization

virtual and physical address space partitioned into blocks of equal size

page frames

pages

pages

reg

cache
mem disk

frame

Pages: virtual memory blocks
• Page faults: the data is not in memory,

retrieve it from disk
– huge miss penalty, thus pages should be

fairly large (e.g., 4KB)
– reducing page faults is important (LRU is

worth the price)
– can handle the faults in software instead of

hardware
– using write-through is too expensive so we

use writeback

Address Map
V = {0, 1, . . . , n - 1} virtual address space
M = {0, 1, . . . , m - 1} physical address space

MAP: V --> M U {0} address mapping function

n > m

MAP(a) = a' if data at virtual address a is present in physical
address a' and a' in M

= 0 if data at virtual address a is not present in M

Processor

Name Space V

Addr Trans
Mechanism

fault
handler

Main
Memory

Secondary
Memory

a

a
a'

0

missing item fault

physical address OS performs
this transfer

Paging Organization

Address Mapping

VA page no. disp
10

Page Table

index
into
page
table

Page Table
Base Reg

V Access
Rights PA +

table located
in physical
memory

physical
memory
address

actually, concatenation
is more likely

frame 0
1

7

0
1024

7168

P.A.

Physical
Memory

1K
1K

1K

Addr
Trans
MAP

page 0
1

31

1K
1K

1K

0
1024

31744

unit of
mapping

also unit of
transfer from
virtual to
physical
memory

Virtual Memory

V.A.
Page Tables

P a g e o ffs e tV ir tu a l p a g e n u m b e r

V irtu a l a d d re s s

P a g e o ffs e tP h y s ic a l p a g e n u m b e r

P h y s ic a l a d d re s s

P h y s ic a l p a g e n u m b e rV a lid

If 0 th e n p a g e is n o t
p re s e n t in m e m o ry

P a g e ta b le re g is te r

P a g e ta b le

2 0 1 2

1 8

3 1 3 0 2 9 2 8 2 7 1 5 1 4 1 3 1 2 1 1 1 0 9 8 3 2 1 0

2 9 2 8 2 7 1 5 1 4 1 3 1 2 1 1 1 0 9 8 3 2 1 0

Virtual Address and a Cache
CPU Trans-

lation Cache Main
Memory

VA PA miss

hit
data

• It takes an extra memory access to translate VA to PA

• This makes cache access very expensive, and this is the
"innermost loop" that you want to go as fast as possible

• ASIDE: Why access cache with PA at all? VA caches
have a problem!

•synonym / alias problem: two different virtual
addresses map to same physical address => two
different cache entries holding data for the same
physical address!
(For example, shared pages)

Virtual Address and a Cache
(cont.)

CPU Trans-
lation Cache Main

Memory

VA PA miss

hit
data

•for update: must update all cache entries with same
physical address or memory becomes inconsistent

•determining this requires significant hardware,
essentially an associative lookup on the physical address
tags to see if you have multiple hits

Making Address Translation
Fast

• A cache for address translations:
translation lookaside buffer

V a l i d

1
1
1
1
0
1
1
0
1
1
0
1

P a g e t a b l e

P h y s i c a l p a g e
a d d r e s sV a l id

T L B

1
1
1
1
0
1

T a g
V i r t u a l p a g e

n u m b e r

P h y s i c a l p a g e
o r d is k a d d r e s s

P h y s ic a l m e m o r y

D is k s to r a g e

TLBs
A way to speed up translation is to use a special cache
of recently used page table entries -- this has many
names, but the most frequently used is Translation
Lookaside Buffer or TLB

Virtual Address Physical Address Dirty Ref Valid Access

TLB access time comparable to cache access time
(much less than main memory access time)

Translation Look-Aside Buffers
Just like any other cache, the TLB can be organized as fully
associative, set associative, or direct mapped

TLBs are usually small, typically not more than 128 - 256
entries even on high end machines. This permits fully
associative lookup on these machines. Most mid-range
machines use small n-way set associative organizations.

CPU TLB
Lookup Cache Main

Memory

VA PA miss

hit

data

Trans-
lation

hit

miss

20 tt1/2 t

Translation
with a TLB

TLBs and caches

Yes

Deliver data
to the CPU

Write?

Try to read data
from cache

Write data into cache,
update the tag, and put

the data and the address
into the write buffer

Cache hit?Cache miss stall

TLB hit?

TLB access

Virtual address

TLB miss
exception

No

YesNo

YesNo

Write access
bit on?

YesNo

Write protection
exception

Physical address

Reducing Translation Time
Machines with TLBs go one step further

to reduce # cycles/cache access

They overlap the cache access with the
TLB access

Works because high order bits of the VA
are used to look in the TLB

while low order bits are used as index
into cache

Overlapped Cache & TLB Access

TLB Cache

10 2
00

4 bytes

index 1 K

page # disp
20 12

assoc
lookup32

PA Hit/
Miss PA Data Hit/

Miss

=

IF cache hit AND (cache tag = PA)
then deliver data to CPU
ELSE IF [cache miss OR (cache tag = PA)] and TLB hit

THEN access memory with the PA from the TLB
ELSE do standard VA translation

Problems With Overlapped TLB
Access

Overlapped access only works as long as the address bits
used to index into the cache do not change as the result of
VA translation

This usually limits things to small caches, large page sizes,
or high n-way set associative caches if you want a large
cache

Example: suppose everything the same except that the
cache is increased to 8 K bytes instead of 4 K:

11 2
00

virt page # disp
20 12

cache
index

This bit is changed
by VA translation, but
is needed for cache
lookup

Problems With Overlapped TLB
Access (cont.)

Solutions:
go to 8K byte page sizes;
go to 2 way set associative cache; or
SW guarantee VA[13]=PA[13]

1K
4 4

10
2 way set assoc cache

Summary
• The Principle of Locality:

– Program likely to access a relatively small
portion of the address space at any instant
of time.
• Temporal Locality: Locality in Time
• Spatial Locality: Locality in Space

Summary (cont.)
• Three Major Categories of Cache

Misses:
– Compulsory Misses: sad facts of life.

Example: cold start misses.
– Conflict Misses: increase cache size and/or

associativity.
Nightmare Scenario: ping pong

effect!
– Capacity Misses: increase cache size

Summary: The Cache Design
Space

• Several interacting dimensions
– cache size
– block size
– associativity
– replacement policy
– write-through vs write-back
– write allocation

Associativity

Cache Size

Block Size

Summary: The Cache Design
Space (cont.)

• The optimal choice is a compromise
– depends on access characteristics

• workload
• use (I-cache, D-cache, TLB)

– depends on technology / cost
• Simplicity often wins

Summary: TLB, Virtual Memory
• Caches, TLBs, Virtual Memory all

understood by examining how they deal
with 4 questions:

1) Where can block be placed?
2) How is block found?
3) What block is repalced on miss?
4) How are writes handled?

• Page tables map virtual address to
physical address

Summary: TLB, Virtual Memory
(cont.)

• TLBs are important for fast translation
• TLB misses are significant in processor

performance

Summary: Memory Hierachy
• Virtual memory was controversial at the

time:
can SW automatically manage 64KB
across many programs?
– 1000X DRAM growth removed the

controversy
• Today VM allows many processes to

share single memory without having to
swap all processes to disk

Summary: Memory Hierachy
(cont.)

• Today CPU time is a function of (ops,
cache misses) vs. just f(ops):
What does this mean to Compilers, Data
structures, Algorithms?

