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The Art of Memory System 
Design

Processor

$

MEM

Memory

reference stream 
<op,addr>, <op,addr>,<op,addr>,<op,addr>, . . .

op: i-fetch, read, write

Optimize the memory system organization
to minimize the average memory access time
for typical workloads

Workload or
Benchmark
programs

• Two issues:
– How do we know if a data item is in the 

cache?
– If it is, how do we find it?

• Our first example:
– block size is one word of data
– "direct mapped"
For each item of data at the lower level, 
there is exactly one location in the cache 
where it might be.
e.g., lots of items at the lower level share locations 
in the upper level

Cache
• Mapping:  address is modulo the number 

of blocks in the cache

Direct Mapped Cache
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• For MIPS:
Direct Mapped Cache (cont.)

A d d r e s s  ( s h o w i n g  b i t  p o s i t i o n s )

2 0 1 0

B y t e  
o f f s e t

V a l i d T a g D a t aI n d e x
0
1
2

1 0 2 1
1 0 2 2
1 0 2 3

T a g

I n d e x

H i t D a t a

2 0 3 2

3 1  3 0        1 3  1 2  1 1        2  1  0 • Taking advantage of spatial locality:
Direct Mapped Cache (cont.)

Address (showing bit positions)

16 12 Byte 
offset

V Tag Data

Hit Data

16 32

4K 
entries

16 bits 128 bits

Mux

32 32 32

2

32

Block offsetIndex

Tag

31      16 15           4 3 2 1 0

Extreme Example: single big line

• Cache Size = 4 bytes
Block Size = 4 bytes
– Only ONE entry in the cache

0

Cache DataValid Bit

Byte 0Byte 1Byte 3

Cache Tag

Byte 2

Extreme Example: single big 
line (cont.)

• If an item is accessed, likely  that it will 
be accessed again soon
– But it is unlikely that it will be accessed 

again immediately!!!
– The next access will likely to be a miss 

again
• Continually loading data into the cache but

discard (force out) them before they are used 
again

• Worst nightmare of a cache designer: Ping Pong 
Effect



• Increasing the block size tends to 
decrease miss rate:

Performance
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• Use split caches because there is more 
spatial locality in code:

Performance (cont.)

Program
Block size in 

words
Instruction 
miss rate

Data miss 
rate

Effective combined 
miss rate

gcc 1 6.1% 2.1% 5.4%
4 2.0% 1.7% 1.9%

spice 1 1.2% 1.3% 1.2%
4 0.3% 0.6% 0.4%

Block Size Tradeoff
• In general, larger block size take 

advantage of spatial locality BUT:
– Larger block size means larger miss 

penalty:
• Takes longer time to fill up the block

– If block size is too big relative to cache 
size, miss rate will go up
• Too few cache blocks

• In general, Average Access Time: 
– = Hit Time x (1 - Miss Rate)  +  Miss Penalty 

x Miss Rate

Block Size Tradeoff (cont.)
Miss
Penalty

Block Size

Miss
Rate Exploits Spatial Locality

Fewer blocks: 
compromises
temporal locality

Block Size

Average
Access
Time

Increased Miss Penalty
& Miss Rate

Block Size



• Read hits
– this is what we want!

• Read misses
– stall the CPU, fetch block from memory, 

deliver to cache, restart 

Hits vs. Misses
• Write hits:

– can replace data in cache and memory 
(write-through)

– write the data only into the cache (write-
back the cache later)

• Write misses:
– read the entire block into the cache, then 

write the word

Hits vs. Misses (cont.)

Direct Mapped Cache and 
Conflict Misses

• Conflict Misses are misses caused by:
– Different memory locations  mapped to the 

same cache index
• Solution 1: make the cache size bigger 
• Solution 2: Multiple entries for the same Cache 

Index

Decreasing miss ratio with 
associativity
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An implementation
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Another Extreme Example: Fully 
Associative

• Fully Associative Cache
– Forget about the Cache Index
– Compare the Cache Tags of  all cache 

entries in parallel
– Example: Block Size = 32 B blocks, we need 

N 27-bit comparators
• By definition: Conflict Miss = 0 for a 

fully associative cache

Another Extreme Example: Fully 
Associative (cont.)

:

Cache Data

Byte 0

0431

:

Cache Tag (27 bits long)

Valid Bit

:

Byte 1Byte 31 :

Byte 32Byte 33Byte 63 :

Cache Tag

Byte Select

Ex: 0x01

X

X

X

X

X

A Two-way Set Associative Cache
• N-way set associative: N entries for 

each Cache Index
– N direct mapped caches operates in parallel

• Example: Two-way set associative cache
– Cache Index selects a “set” from the cache
– The two tags in the set are compared in 

parallel
– Data is selected based on the tag result



A Two-way Set Associative 
Cache (cont.)

Cache Data

Cache Block 0

Cache TagValid

:: :

Cache Data

Cache Block 0

Cache Tag Valid

: ::

Cache Index

Mux 01Sel1 Sel0

Cache Block

Compare
Adr Tag

Compare

OR

Hit

Performance
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Disadvantage of Set Associative 
Cache

• N-way Set Associative Cache versus 
Direct Mapped Cache:
– N comparators vs. 1
– Extra MUX delay for the data
– Data comes AFTER Hit/Miss decision and 

set selection
• In a direct mapped cache, Cache Block 

is available BEFORE Hit/Miss:
– Possible to assume a hit and continue.  

Recover later if miss.

Decreasing miss penalty with 
multilevel caches

• Add a second level cache:
– often primary cache is on the same chip as 

the processor
– use SRAMs to add another cache above 

primary memory (DRAM)
– miss penalty goes down if data is in 2nd 

level cache



A Summary on Sources of Cache 
Misses

• Compulsory (cold start or process 
migration, first reference): first access 
to a block
– “Cold” fact of life: not a whole lot you can do 

about it
– Note: If you are going to run “billions” of 

instruction, Compulsory Misses are 
insignificant

A Summary on Sources of Cache 
Misses (cont.)

• Conflict (collision):
– Multiple  memory locations  mapped

to the same cache location
– Solution 1: increase  cache size
– Solution 2: increase associativity

• Capacity:
– Cache cannot contain all blocks access by the 

program
– Solution: increase cache size

• Invalidation: other process (e.g., I/O) 
updates memory 

Sources of Cache Misses
Direct Mapped N-way Set Associative Fully Associative

Compulsory Miss

Cache Size

Capacity  Miss

Invalidation  Miss

Big Medium Small

Note:
If you are going to run “billions” of instruction, Compulsory Misses are 
insignificant.

Same Same Same

Conflict Miss High Medium Zero

Low Medium High

Same Same Same

Improving Cache Performance: 3 
general options

1. Reduce the miss rate, 
2. Reduce the miss penalty, or
3. Reduce the time to hit in the cache. 



4 Questions for Memory 
Hierarchy

• Q1: Where can a block be placed in the 
upper level? (Block placement)

• Q2: How is a block found if it is in the 
upper level?
(Block identification)

• Q3: Which block should be replaced on a 
miss? 
(Block replacement)

• Q4: What happens on a write? 
(Write strategy)

Q1: Where can a block be 
placed in the upper level? 

• Block 12 placed in 8 block cache:
– Fully associative, direct mapped, 2-way set 

associative
– S.A. Mapping = Block Number Modulo 

Number Sets

Q2: How is a block found if it is 
in the upper level?

• Tag on each block
– No need to check index or block offset

• Increasing associativity shrinks index, 
expands tag

Q3: Which block should be 
replaced on a miss?

• Easy for Direct Mapped
• Set Associative or Fully Associative:

– Random
– LRU (Least Recently Used)

Associativity: 2-way 4-way 8-way
Size LRU  Random LRU Random   LRU Random
16 KB 5.2% 5.7% 4.7% 5.3% 4.4% 5.0%
64 KB 1.9% 2.0% 1.5%   1.7% 1.4% 1.5%
256 KB 1.15% 1.17% 1.13% 1.13% 1.12% 1.12%



Q4: What happens on a write?

• Write through—The information is 
written to both the block in the cache and 
to the block in the lower-level memory.

• Write back—The information is written 
only to the block in the cache. The 
modified cache block is written to main 
memory only when it is replaced.
– is block clean or dirty?

Q4: What happens on a write? 
(cont.)

• Pros and Cons of each?
– WT: read misses cannot result in writes
– WB: no writes of repeated writes

• WT always combined with write buffers so 
that don’t wait for lower level memory

Write Buffer for Write Through

• A Write Buffer is needed between the 
Cache and Memory
– Processor: writes data into the cache and 

the write buffer
– Memory controller: write contents of the 

buffer to memory

Processor
Cache

Write Buffer

DRAM

Write Buffer for Write Through 
(cont.)

• Write buffer is just a FIFO:
– Typical number of entries: 4
– Works fine if:  Store frequency (w.r.t. time) 

<< 1 / DRAM write cycle
• Memory system designer’s nightmare:

– Store frequency (w.r.t. time)   ->  1 / DRAM 
write cycle

– Write buffer saturation



Write Buffer Saturation

• Store frequency (w.r.t. time)   ->  1 / 
DRAM write cycle
– If this condition exist for a long period of 

time (CPU cycle time too quick and/or too 
many store instructions in a row):
• Store buffer will overflow no matter how big you 

make it
• The CPU Cycle Time   <=  DRAM Write Cycle 

Time

Processor
Cache

Write Buffer

DRAM

Write Buffer Saturation (cont.)
• Solution for write buffer saturation:

– Use a write back cache
– Install a second level (L2) cache:

Processor

Cache

Write Buffer

DRAM
L2

Cache

Write-miss Policy: Write 
Allocate versus Not Allocate

• Assume: a 16-bit write to memory 
location 0x0 and causes a miss
– Do we read in the block?

• Yes: Write Allocate
• No: Write Not Allocate

Write-miss Policy: Write Allocate 
versus Not Allocate (cont.)

Cache Index

0
1
2
3

:

Cache Data
Byte 0

0431

:

Cache Tag Example: 0x00
Ex: 0x00

0x00
Valid Bit

:
31

Byte 1Byte 31 :

Byte 32Byte 33Byte 63 :

Byte 992Byte 1023 :

Cache Tag

Byte Select
Ex: 0x00

9



Recall: Levels of the Memory 
Hierarchy

CPU Registers
100s Bytes
<10s ns

Cache
K Bytes
10-100 ns
$.01-.001/bit

Main Memory
M Bytes
100ns-1us
$.01-.001

Disk
G Bytes
ms
10   - 10 cents-3 -4

Capacity
Access Time
Cost

Tape
infinite
sec-min
10-6

Registers

Cache

Memory

Disk

Tape

Instr. Operands

Blocks

Pages

Files

Staging
Xfer Unit

prog./compiler
1-8 bytes

cache cntl
8-128 bytes

OS
512-4K bytes

user/operator
Mbytes

Upper Level

Lower Level

faster

Larger

Virtual Memory
• Main memory can act as a cache for the 

secondary storage (disk)

• Advantages:
– illusion of having more physical memory
– program relocation 
– protection

P h y s ic a l a d d re s s e s

D is k  a d d re s s e s

V ir t u a l a d d re s s e s
A d d re s s  tra n s la t io n

Basic Issues in Virtual Memory 
System Design

• Size of information blocks that are transferred 
from secondary to main storage (M)

• Block of information brought into M, and M is 
full, then some region of M must be released to 
make room for the new block --> replacement 
policy

• Which region of M is to hold the new block -->  
placement policy 

• Missing item fetched from secondary memory 
only on the occurrence of a fault  -->  demand 
load policy

Basic Issues in Virtual Memory 
System Design (cont.)

Paging Organization

virtual and physical address space partitioned into blocks of equal size

page frames

pages

pages

reg

cache
mem disk

frame



Pages:  virtual memory blocks
• Page faults:  the data is not in memory, 

retrieve it from disk
– huge miss penalty, thus pages should be 

fairly large (e.g., 4KB)
– reducing page faults is important (LRU is 

worth the price)
– can handle the faults in software instead of 

hardware
– using write-through is too expensive so we 

use writeback

Address Map
V = {0, 1, . . . , n - 1}   virtual address space
M = {0, 1, . . . , m - 1}  physical address space

MAP:  V -->  M  U  {0}  address mapping function

n > m

MAP(a)  =  a'  if data at virtual address a is present in physical 
address a' and  a' in M

=  0  if data at virtual address a is not present in M

Processor

Name Space V

Addr Trans
Mechanism

fault
handler

Main
Memory

Secondary
Memory

a

a
a'

0

missing item fault

physical address OS performs
this transfer

Paging Organization

Address Mapping

VA page no. disp
10

Page Table

index
into
page
table

Page Table
Base Reg

V Access
Rights PA +

table located
in physical
memory

physical
memory
address

actually, concatenation 
is more likely

frame 0
1

7

0
1024

7168

P.A.

Physical
Memory

1K
1K

1K

Addr
Trans
MAP

page 0
1

31

1K
1K

1K

0
1024

31744

unit of 
mapping

also unit of
transfer from
virtual to
physical 
memory

Virtual Memory

V.A.
Page Tables
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Virtual Address and a Cache
CPU Trans-

lation Cache Main
Memory

VA PA miss

hit
data

• It takes an extra  memory access to translate VA to PA

• This makes cache access very expensive, and this is the 
"innermost loop" that you want to go as fast as possible

• ASIDE:  Why access cache with PA at all?  VA caches 
have a problem!

•synonym  / alias problem: two different virtual 
addresses map to same physical address  =>  two 
different cache entries holding data for the same 
physical address!  
(For example, shared pages)

Virtual Address and a Cache 
(cont.)

CPU Trans-
lation Cache Main

Memory

VA PA miss

hit
data

•for update:  must update all cache entries with same 
physical address or memory becomes inconsistent

•determining this requires significant hardware, 
essentially an associative lookup on the physical address 
tags to see if you have multiple hits

Making Address Translation 
Fast

• A cache for address translations:  
translation lookaside buffer

V a l i d

1
1
1
1
0
1
1
0
1
1
0
1

P a g e  t a b l e

P h y s i c a l  p a g e  
a d d r e s sV a l id

T L B

1
1
1
1
0
1

T a g
V i r t u a l  p a g e

n u m b e r

P h y s i c a l  p a g e  
o r  d is k  a d d r e s s

P h y s ic a l  m e m o r y

D is k  s to r a g e

TLBs
A way to speed up translation is to use a special cache 
of recently used page table entries  -- this has many 
names, but the most frequently used is Translation 
Lookaside Buffer or TLB

Virtual Address   Physical Address   Dirty   Ref   Valid   Access

TLB access time comparable to cache access time
(much less than main memory access time)



Translation Look-Aside Buffers
Just like any other cache, the TLB can be organized as fully 
associative, set associative, or direct mapped

TLBs are usually small, typically not more than 128 - 256 
entries even on high end machines.  This permits fully 
associative lookup on these machines.  Most mid-range 
machines use small n-way set associative organizations.

CPU TLB
Lookup Cache Main

Memory

VA PA miss

hit

data

Trans-
lation

hit

miss

20 tt1/2 t

Translation
with a TLB

TLBs and caches

Yes

Deliver data 
to the CPU

Write?

Try to read data 
from cache

Write data into cache, 
update the tag, and put 

the data and the address 
into the write buffer

Cache hit?Cache miss stall

TLB hit?

TLB access

Virtual address

TLB miss 
exception

No

YesNo

YesNo

Write access 
bit on?

 

YesNo

Write protection 
exception

Physical  address

Reducing Translation Time
Machines with TLBs go one step further 

to reduce # cycles/cache access

They overlap the cache access with the 
TLB access

Works because high order bits of the VA 
are used to look in the TLB

while low order bits are used as index 
into cache

Overlapped Cache & TLB Access

TLB Cache

10 2
00

4 bytes

index 1 K

page # disp
20 12

assoc
lookup32

PA Hit/
Miss PA Data Hit/

Miss

=

IF cache hit AND (cache tag = PA) 
then deliver data to CPU
ELSE IF [cache miss OR (cache tag = PA)] and TLB hit 

THEN access memory with the PA from the TLB
ELSE do standard VA translation



Problems With Overlapped TLB 
Access

Overlapped access only works as long as the address bits 
used to index into the cache do not change as the result of 
VA translation

This usually limits things to small caches, large page sizes, 
or high n-way set associative caches if you want a large 
cache

Example:  suppose everything the same except that the 
cache is increased to 8 K bytes instead of 4 K:

11 2
00

virt page # disp
20 12

cache 
index

This bit is changed
by VA translation, but
is needed for cache
lookup

Problems With Overlapped TLB 
Access (cont.)

Solutions:
go to 8K byte page sizes;
go to 2 way set associative cache; or
SW guarantee VA[13]=PA[13]

1K
4 4

10
2 way set assoc cache

Summary
• The Principle of Locality:

– Program likely to access a relatively small 
portion of the address space at any instant 
of time.
• Temporal Locality: Locality in Time
• Spatial Locality: Locality in Space

Summary (cont.)
• Three Major Categories of Cache 

Misses:
– Compulsory Misses: sad facts of life.  

Example: cold start misses.
– Conflict Misses:  increase cache size and/or 

associativity.
Nightmare Scenario: ping pong 

effect!
– Capacity Misses: increase cache size



Summary: The Cache Design 
Space

• Several interacting dimensions
– cache size
– block size
– associativity
– replacement policy
– write-through vs write-back
– write allocation

Associativity

Cache Size

Block Size

Summary: The Cache Design 
Space (cont.)

• The optimal choice is a compromise
– depends on access characteristics

• workload
• use (I-cache, D-cache, TLB)

– depends on technology / cost
• Simplicity often wins

Summary: TLB, Virtual Memory
• Caches, TLBs, Virtual Memory all 

understood by examining how they deal 
with 4 questions: 

1) Where can block be placed?
2) How is block found? 
3) What block is repalced on miss? 
4) How are writes handled?

• Page tables map virtual address to 
physical address

Summary: TLB, Virtual Memory 
(cont.)

• TLBs are important for fast translation
• TLB misses are significant in processor 

performance



Summary: Memory Hierachy
• Virtual memory was controversial at the 

time: 
can SW automatically manage 64KB 
across many programs?
– 1000X DRAM growth removed the 

controversy
• Today VM allows many processes to 

share single memory without having to 
swap all processes to disk

Summary: Memory Hierachy
(cont.)

• Today CPU time is a function  of (ops, 
cache misses) vs. just f(ops):
What does this mean to Compilers, Data 
structures, Algorithms?


