Chapter 3

Transport Layer

Kultida Rojviboonchai, Ph.D.
Dept. of Computer Engineering

Faculty of Engineering
Chulalongkorn University

Computer Networking:
A Top Down Approach
4th edition.

Jim Kurose, Keith Ross
Addison-Wesley, July
2007.

A note on the use of these ppt slides:

The notes used in this course are substantially based on slides copyrighted

by J.F Kurose and K.W. Ross 1996-2007

Transport Layer 3-1

Chapter 3: Transport Layer

Our goals:

O understand principles
behind transport
layer services:

O multiplexing/demultipl
exing

O reliable data transfer

o flow control

O congestion control

learn about transport
layer protocols in the
Internet:

o UDP: connectionless
transport

o TCP: connection-oriented
transport

O TCP congestion control

Transport Layer 3-2

Chapter 3 outline

0 3.1 Transport-layer
services

0 3.2 Multiplexing and
demultiplexing

0 3.3 Connectionless
transport: UDP

0 3.4 Principles of
reliable data transfer

3 3.5 Connection-oriented
transport: TCP
O segment structure
O reliable data transfer
o flow control
O connection management
3 3.6 Principles of
congestion control

0 3.7 TCP congestion
control

Transport Layer 3-3

Transport services and protocols

O provide /ogical communication
between app processes
running on different hosts

O transport protocols run in
end systems

O send side: breaks app
messages into segments,
passes to network layer

O rcv side: reassembles
segments into messages,
passes to app layer

O more than one transport
protocol available to apps

o Internet: TCP and UDP

application

transrort

PN
transport

physical

Transport Layer 3-4

Transport vs. network layer

O network layer: logical
communication
between hosts

O transport layer: logical
communication
between processes

O relies on, enhances,
network layer services

Household analogy:

12 kids sending letters to
12 kids

O processes = kids

O app messages = letters
in envelopes

3 hosts = houses

3 transport protocol =
Ann and Bill

O network-layer protocol
= postal service

Transport Layer 3-5

Internet transport-layer protocols

O reliable, in-order
delivery (TCP)
O congestion control
o flow control
O connection setup
O unreliable, unordered
delivery: UDP

o no-frills extension of
“best-effort” IP

O services not available:
O delay guarantees
O bandwidth guarantees

application
ansp

networl
data linl
= physical

«®

k

d
phy:

5 >

) network }
data _Imk 5>
Mhysical

networkeg
| data link
physical

Q
wol

data linkee
physical

networl

data link

physical

ation
network b

anspo
data link | Eretess

) 5C !
il —— e physical data link
3 @ ﬂ physical
<

p=pe]

Transport Layer 3-6

Chapter 3 outline

0 3.1 Transport-layer
services

0 3.2 Multiplexing and
demultiplexing

0 3.3 Connectionless
transport: UDP

0 3.4 Principles of
reliable data transfer

3 3.5 Connection-oriented
transport: TCP
O segment structure
O reliable data transfer
o flow control
O connection management
3 3.6 Principles of
congestion control

0 3.7 TCP congestion
control

Transport Layer 3-7

Multiplexing/demultiplexing

Demultiplexing at rcv host:

delivering received segments
to correct socket

Multiplexing at send host:

gathering data from multiple
sockets, enveloping data with
header (later used for

demultiplexing)

[1 =socket O = process
application (P3) (P1) application < (P4 application
[[]
transport ‘F'mspﬁ transport
network network network
link link link
physical physicat physical
host 1 host 2 host 3

Transport Layer 3-8

How demultiplexing works

O host receives IP datagrams

O each datagram has source
IP address, destination IP
address

O each datagram carries 1
transport-layer segment

O each segment has source,
destination port number

«— 32 bits

source port #| dest port #

other header fields

O host uses IP addresses & port application
numbers to direct segment to data
appropriate socket (message)

TCP/UDP segment format

Transport Layer 3-9

Connectionless demultiplexing

O Create sockets with port
numbers:

DatagramSocket mySocketl = new
DatagramSocket(12534);
DatagramSocket mySocket2 = new

DatagramSocket(12535);

O UDP socket identified by
two-tuple:

(des’r IP address, dest port number)

0 When host receives UDP
segment:

O checks destination port
number in segment

o directs UDP segment to
socket with that port
number

0 IP datagrams with
different source IP
addresses and/or source
port numbers directed
to same socket

Transport Layer 3-10

Connectionless demux (cont)

DatagramSocket serverSocket = new DatagramSocket(6428);

SP: 6428 SP: 6428
DP: 9157 DP: 5775

SP: 9157 SP: 5775

client DP: 6428 server DP: 6428 Client

IP: A IP: C P8

SP provides “return address”

Transport Layer 3-11

Connection-oriented demux

0 TCP socket identified
by 4-tuple:
o source IP address
O source port number
O dest IP address
O dest port number

O recv host uses all four
values to direct
segment to appropriate
socket

O Server host may support

many simultaneous TCP
sockets:

O each socket identified by
its own 4-tuple

0 Web servers have

different sockets for
each connecting client

O non-persistent HTTP will
have different socket for
each request

Transport Layer 3-12

Connection-oriented demux

(cont)

DD
SP: 5775
DP: 80
S-IP: B
D-IP:C
L
SP: 9157 SP: 9157
client | DP:80 <erver DP: 80 Client
IP: A S-IP: A IP: C S-IP: B IP:B
D-IP:C D-IP:C

Transport Layer 3-13

Connection-oriented demux:

Threaded Web Server

i
SP: 5775
DP: 80
S-IP: B
D-IP:C
V4
SP: 9157 SP: 9157
client DP: 80 server bP: 80 Client
IP: A S-IP: A IP: C S-IP: B IP:B
D-IP:C D-IP:C

Transport Layer 3-14

Chapter 3 outline

0 3.1 Transport-layer 0 3.5 Connection-oriented
services transport: TCP

0 3.2 Multiplexing and O segment structure
demultiplexing o reliable data transfer

0 3.3 Connectionless o flow control
transport: UDP O connection management
3 3.4 Principles of 9 3.6 Principles of

reliable data transfer congestion control
0 3.7 TCP congestion

control

Transport Layer 3-15

UDP: User Datagram Protocol [RFC 768]

d “no frills,” "bare bones”
Internet transport
protocol

O “best effort” service, UDP
segments may be:

o lost

O delivered out of order
to app

O connectionless:

O ho handshaking between
UDP sender, receiver

o each UDP segment

Why is there a UDP?

O no connection
establishment (which can
add delay)

O simple: no connection state
at sender, receiver
O small segment header

O no congestion control: UDP
can blast away as fast as
desired

handled independently
of others

Transport Layer 3-16

UDP: more

O often used for streaming

multimedia apps «—— 32bits

O loss tolerant Length, in |Source port #| dest port #
O rate sensitive bytes of UDP [~ length checksum
segment
0 other UDP uses infmdmé
o DNS header
O SNMP
O reliable transfer over UDP: Application
add reliability at data
application layer (message)
o application-specific

error recovery!
UDP segment format

Transport Layer 3-17

UDP checksum

Goal: detect "errors” (e.g., flipped bits) in transmitted
segment

Sender: Receiver:
O treat segment contents O compute checksum of
as sequence of 16-bit received segment
integers O check if computed checksum
O checksum: addition (1's equals checksum field value:
complement sum) of o NO - error detected
segment contents o YES - no error detected.
O sender pUTS checksum But maybe errors
;{1"[’;« into UDP checksum nonetheless? More later
ie

Transport Layer 3-18

Internet Checksum Example

3 Note

O When adding numbers, a carryout from the
most significant bit needs to be added to the
result

0 Example: add two 16-bit integers

111001100110

01 0
11010101010101 1

1
0

wr'apar'ound@IOI1101110111011

sum 1011101110111 100
checksum 0100010001 0000O011

Transport Layer 3-19

Chapter 3 outline

0 3.1 Transport-layer 0 3.5 Connection-oriented
services transport: TCP

0 3.2 Multiplexing and O segment structure
demultiplexing O reliable data transfer

0 3.3 Connectionless > flow control
’rr‘anspor‘ +: UDP O connection management

0 3.4 Principles of 0 3.6 Principles of

reliable data transfer congestion control
0 3.7 TCP congestion

control

Transport Layer 3-20

Principles of Reliable data transfer

O important in app., fransport, link layers
O top-10 list of important networking topics!

layer
g
o3
08
2a

Jreliable channel

transport |application
layer

(a) provided service

O characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

Transport Layer 3-21

Principles of Reliable data transfer

O important in app., transport, link layers
O top-10 list of important networking topics!

c

o

o0

o a* sending

& _— process

8

= Jreliable channel
o X}

25

g2

_—
[Junreliable channel J

(a) provided service (b) service implementation

O characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

Transport Layer 3-22

Principles of Reliable data transfer

O important in app., tfransport, link layers
3 top-10 list of important networking topics!

c

o]

00

O a* sending

& = process

o

= felbechanma)l “iatend i) el pxen
8 5 reliable data reliable data

g 9o transfer protocol transfer protocol

g O (sending side) (receiving side)

udt_send 0} frae_revo

[Junrelioble channel J

Reliable data transfer: getting started

rdt_send(): called from above,
(e.g., by app.). Passed data to

deliver_data(): called by
rdt to deliver data to upper

deliver to receiver upper layer /
rdt_send() [gaic]|deliver data()
send |[elicble data reliable data receive
sid trcmsﬁ_er prp‘rocol transfer protocol id
Ide |isending side) (receiving side) Side
udt_send (}jt | packet | l packet l Irdt_rcv 9]

1‘—-Ounrelicﬂ::le channel)J

(a) provided service

(b) service implementation

O characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

Transport Layer 3-23

udt_send(): called by rdt,
to transfer packet over
unreliable channel to receiver

rdt_rcv(): called when packet
arrives on rcv-side of channel

Transport Layer 3-24

Reliable data transfer: getting started

we'll:
0 incrementally develop sender, receiver sides of
reliable data transfer protocol (rdt)
O consider only unidirectional data transfer
O but control info will flow on both directions!
0 use finite state machines (FSM) to specify

sender, receiver
event causing state transition

actions taken on state transition

state: when in this
"state” next state
uniquely determined
by next event

Transport Layer 3-25

Rdt1.0: reliable transfer over a reliable channel

3 underlying channel perfectly reliable

O no bit errors
O no loss of packets

0 separate FSMs for sender, receiver:
O sender sends data into underlying channel
O receiver read data from underlying channel

“*AWait for rdt_send(data)
call from

above

packet = make_pkt(data)
udt_send(packet)

sender

%/ Wait for

rdt_rcv(packet)
call from
below

extract (packet,data)
deliver_data(data)

receiver

Transport Layer 3-26

Rdt2.0: channel with bit errors

0 underlying channel may flip bits in packet
O checksum to detect bit errors
O the question: how to recover from errors:

O acknowledgements (ACKs): receiver explicitly tells sender
that pkt received OK

O negative acknowledgements (NAKs): receiver explicitly
tells sender that pkt had errors

O sender retransmits pkt on receipt of NAK
O new mechanisms in rdt2.0 (beyond rdt1.0):

O error detection
O receiver feedback: control msgs (ACK,NAK) rcvr->sender

Transport Layer 3-27

rdt2.0: FSM specification

rdt_send(data)
snkpkt = make_pkt(data, checksum)

receiver
udt_send(sndpkt)
rdt_rcv(rcvpkt) &&
isSNAK(rcvpkt)
—_ rdt_rcv(rcvpkt) &&
call from udt_send(sndpkt) corrupt(rcvpkt)

above

rdt_rcv(rcvpkt) && isACK(rcvpkt)
A

sender

udt_send(NAK)

Wait for
call from
below

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)
extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

Transport Layer 3-28

rdt2.0: operation with no errors

rdt_send(data)
snkpkt = make_pkt(data, checksum)

call from
above

rdt_rcv(rcvpkt) && isACK(rcvpkt)
A

rdt_rcv(rcvpkt) &&
iSNAK(rcvpkt)

rdt_rcv(rcvpkt) &&

udt_send(sndpkt) corrupt(rcvpkt)

udt_send(NAK)

Wait for
call from
below

\rdt_rcv(revpke) &&
notcorrupt(rcvpkt)

extract(rcvpkt,data)

deliver_data(data)
udt_send(ACK)

Transport Layer 3-29

rdt2.0: error scenario

rdt_send(data)

snkpkt = make_pkt(data, checksum)
udt send(sndpkt

< t_rcv(rcvpkt) &&
~ . . isN
Wait for Wait for rdt_rcv(rcvpkt) &&
call from ACK or udt_send(sndpkt) corrupt(rcvpkt)
above NAK _—
udt_send(NAK)

rdt_rcv(rcvpkt) && isACK(rcvpkt)
A

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)

extract(rcvpkt,data)

deliver_data(data)
udt_send(ACK)

Transport Layer 3-30

rdt2.0 has a fatal flaw!

What happens if
ACK/NAK corrupted?

O sender doesn't know what
happened at receiver!

O can't just retransmit:
possible duplicate

Handling duplicates:

O sender retransmits current
pkt if ACK/NAK garbled

O sender adds seguence
number to each pkt

O receiver discards (doesn't
deliver up) duplicate pkt

stop and wait

Sender sends one packet,
then waits for receiver
response

Transport Layer 3-31

rdt2.1: sender, handles garbled ACK/NAKs

rdt_send(data)

sndpkt = make_pkt(0, data, checksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
isNAK(rcvpkt))

udt_send(sndpkt)

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& iISACK(rcvpkt)

A

rdt_rcv(rcvpkt)
&& notcorrupt(revpkt)
&& iSACK(rovpkt)

rdt_rcv(rcvpkt) &&

(corrupt(rcvpkt) ||

iSNAK (rcvpkt)) rdt_send(data)

udt_send(sndpk) sndpkt = make_pkt(1, data, checksum)
- udt_send(sndpkt)

Transport Layer 3-32

rdt2.1: receiver, handles garbled ACK/NAKs

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seq0(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

\
\

rdt_rev(revpkt) && (corrupt(revpkt) \\ rdt_rcv(rcvpkt) && (corrupt(rcvpkt)

sndpkt = make_pkt(NAK, chksum)
udt_send(sndpkt)

sndpkt = make_pkt(NAK, chksum) \
)

udt_send(sndpkt) Q

rdt_rcv(rcvpkt) &&
not corrupt(rcvpkt) && (
has_seql(rcvpkt)

sndpkt = make_pkt(ACK, chksum)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
not corrupt(rcvpkt) &&
has_seqO(rcvpkt)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seql(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

Transport Layer 3-33

rdt2.1: discussion

Sender: Receiver:
0 seq # added to pkt O must check if received
O two seq. #'s (0,1) will packet is duplicate
suffice. Why? O state indicates whether
3 must check if received Sezr; 's expected pkt
AC_K/ NAK corrupted O note: receiver can not
O twice as many states know if its last
o state must "remember” ACK/NAK received OK

whether “current” pkt

has O or 1 seq. # af sender

Transport Layer 3-34

rdt2.2: a NAK-free protocol

0 same functionality as rdt2.1, using ACKs only

0 instead of NAK, receiver sends ACK for last pkt
received OK
O receiver must explicitly include seq # of pkt being ACKed
O duplicate ACK at sender results in same action as
NAK: retransmit current pkt

Transport Layer 3-35

rdt2.2: sender, receiver fragments

rdt_send(data)

sndpkt = make_pkt(0, data, checksum)

. Udt% rdt_rcv(rcvpkt) &&

s (corrupt(rcvpkt) ||
iSACK(rcvpkt,1))
udt_send(sndpkt)

Wait for
ACK
0

Wait for
call 0 from
above

sender FSM

fragment rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
rdt_rcv(rovpkt) &8 && isACK(rcvpkt,0)
(corrupt(rcvpkt) || A
has_seql(rcvpkt)),

receiver FSM
fragment

udt_send(sndpkt)

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seql(rcvpkt)
extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(ACK1, chksum)
udt_send(sndpkt) Transport Layer 3-36

rdt3.0: channels with errors andloss

New assumption:
underlying channel can
also lose packets (data
or ACKs)

O checksum, seq. #, ACKs,

retransmissions will be
of help, but not enough

Approach: sender waits
“reasonable” amount of
time for ACK

O retransmits if no ACK
received in this time
if pkt (or ACK) just delayed
(not lost):

O retransmission will be
duplicate, but use of seq.
#'s already handles this

rdt3.0 sender

rdt_send(data)

rdt_rcv(rcvpkt) &&

v sndpkt = make_pkt(0, data, checksum) (corrupt(rcvpkt) ||

\ udt_send(sndpkt)

rdt_rcv(rcvpkt) \ start_timer

A

Wait for
call Ofrom
above
rdt_rcv(rcvpkt)

&& notcorrupt(rcvpkt)
&& isACK(rcvpkt,1)

stop_timer

tlmeout
udt ._send(sndpkt) C

start_timer (/

iSACK(rcvpkt,1))
A

timeout
udt_send(sndpkt)
start_timer

rdt_rcv(rcvpkt)

&& notcorrupt(rcvpkt)
&& isACK(rcvpkt,0)
stop_timer

Wait for
call 1 from
above

rdt_rcv(rcvpkt)
A

O receiver must specify seq
of pkt being ACKed

rdt_send(data)

rdt_rcv(rcvpkt) &&

O requires countdown timer

Transport Layer 3-37

(corrupt(rcvpki) || sndpkt = make_pkt(1, data, checksum)
iSACK(rcvpkt,0)) udt_send(sndpkt)
—A start_timer

Transport Layer 3-38

rdt3.0 in action

sender receiver
sender receiver i
send pkiQ N0
send pka P P rcv pkio
Ry AC send ACKO
CK send ACKO \CK g
ACKO % rcv ACKO
rev
send pkil send pkil \
\ (loss)
rcv pkil
ACK send ACK]
revACK] _
send pki0 Iggeer?gtpm okt
rcv pkt0
)’ send ACKO rev pkil

(@) operation with no loss

ACK send ACK1
revACK1
send pki0 ekt
C ki0

(b) lost packet

Transport Layer 3-39

rdt3.0 in action

sender receiver sender receiver
pkt Dkt o
sena P T, rovpro send pki0 T rovpK0
ACK w send ACKO ACK send ACKO
rcv ACKO] rev ACKO
send pkil send pkil
rcv pkil rcv pkil
ACK send ACK1 send ACK1
(loss) X
timeout
timeout pkt 1 resend pktl
resend pkil \LICV pktl rcv pkil
ACK (detect duplicate) revACK]1 (detect duplicate]
S = send ACK1 send pki0 send ACK]
cv
send pkio ot rcv pkto
ACK rev pkio send ACKO
o send ACKO
(c) lost ACK (d) premature timeout

Transport Layer 3-40

Performance of rdt3.0

0 rdt3.0 works, but performance stinks
0 ex: 1 Gbps link, 15 ms prop. delay, 8000 bit packet:

L 8000bits
"R 10°bps

O U paer Utilization - fraction of time sender busy sending

=8 microseconds

L/R _ 008
sender RTT+L/R ~ 30.008

O 1KB pkt every 30 msec -> 33kB/sec thruput over 1 Gbps link
o network protocol limits use of physical resources!

= 0.00027

Transport Layer 3-41

rdt3.0: stop-and-wait operation

sender receiver

first packet bit transmitted, t = 0 —xc------------ooooooo]
last packet bit transmitted, t =L /R

first packet bit arrives

RTT last packet bit arrives, send ACK

ACK arrives, send nex
packet,t =RTT+L/R

L/R _ .008

d = = = 0.00027
sender RTT+L/R 30008

Transport Layer 3-42

Pipelined protocols

Pipelining: sender allows multiple, “in-flight", yet-to-
be-acknowledged pkts
O range of sequence numbers must be increased
O buffering at sender and/or receiver

+— ACK packets

{a) @ stop-and-wail profocol in operalion (b) @ pipelined protocol in op

O Two generic forms of pipelined protocols: go-Back-N,
selective repeat

Transport Layer 3-43

Pipelining: increased utilization

sender receiver

first packet bit transmitted, t = 0 —jc---------ooooooooo-
last bit transmitted, t =L/ R

first packet bit arrives

last packet bit arrives, send ACK

last bit of 2" packet arrives, send ACK
—last bit of 3 packet arrives, send ACK

RTT

ACK arrives, send next|
packet, t=RTT + L/ R_—

Increase utilization
/ by a factor of 3!

__3*L/R _ .024
sender” RTT+L/R ~ 30008

= 0.0008

Transport Layer 3-44

Pipelining Protocols

Go-back-N: big picture:

Selective Repeat: big pic

0 Sender can have up to
N unacked packets in
pipeline

O Revr only sends
cumulative acks

o Doesn't ack packet if
there's a gap

O Sender has timer for
oldest unacked packet

O If timer expires,
retransmit all unacked
packets

O Sender can have up to
N unacked packets in
pipeline

O Revr acks individual
packets

O Sender maintains
timer for each
unacked packet

o When timer expires,
retransmit only unack
packet

Transport Layer 3-45

Selective repeat: big picture

0 Sender can have up to N unacked packets
in pipeline

O Revr acks individual packets

0 Sender maintains timer for each unacked
packet

O When timer expires, retransmit only unack
packet

Transport Layer 3-46

Go-Back-N

Sender:
O k-bit seq # in pkt header

0 “window" of up to N, consecutive unack'ed pkts allowed

send_base nextsegnum

already usable, not
ack'ed yet sent

IRV TTTNEROO00000 [semtoets [rorosace
£

window sze —#4
N

O ACK(n): ACKs all pkts up to, including seq # n - “cumulative ACK"
O may receive duplicate ACKs (see receiver)

O timer for each in-flight pkt

3O timeout(n): retransmit pkt n and all higher seq # pkts in window

Transport Layer 3-47

GBN: sender extended FSM

rdt_send(data)

if (nextseqnum < base+N) {
sndpkt[nextseqnum] = make_pkt(nextsegnum,data,chksum)
udt_send(sndpkt[nextseqnum])
if (base == nextsegnum)
start_timer
nextseqnum-++
... }
A else
e refuse_data(data)

nextsegnum=1 ., C) fimeout
imeou

hy start_timer
udt_send(sndpkt[base])
O udt_send(sndpkt[base+1])

rdt_rcv(rcvpkt)
&& corrupt(rcvpkt)
— udt_send(sndpkt[nextseqnum-1])
rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)

base = getacknum(rcvpkt)+1
If (base == nextsegnum)
stop_timer
else

start_timer Transport Layer 3-48

GBN: receiver extended FSM

default
udt_send(sndpkt) rdt_rcv(rcvpkt)

S~a (D && notcurrupt(rcvpkt)
&& hassegnum(rcvpkt,expectedsegnum)

A T=~o

L S— -

expectedseqnum=1 AQextra(:t(rcvpkt,d.a\tal)
sndpkt = deliver_data(data)

make_pkt(expectedseqnum,ACK,chksum) sndpkt = make_pkt(expectedseqnum,ACK,chksum)
udt_send(sndpkt)
expectedsegnum++

ACK-only: always send ACK for correctly-received pkt
with highest /n-order seq #
O may generate duplicate ACKs
O heed only remember expectedsegnum

0 out-of-order pkt:
o discard (don't buffer) -> no receiver buffering!
O Re-ACK pkt with highest in-order seq #
Transport Layer 3-49

GBN in
action

¥ send pkt2

sender receiver

send pki0
send pkt

-\(|“oss)
send pkitd
(wait)

¥

rcv ACKO
send pktd

rcv ACK]

send pkt5 \

= pkt2 fimeout /

send pki?Z

send pkt3 %:

send pkid
send pkib \

rcv pkio
send ACKO

rcv pkfl
send ACK]

rcv pktd, discard
send ACK]

rcv pkt4, discard
send ACKI]

ki5, discard
sena AGKT

rcv pkt2, deliver

send ACK?Z
rcv pki3, deliver

send ACK3

Transport Layer 3-50

Selective Repeat

O receiver /ndividually acknowledges all correctly
received pkts

O buffers pkts, as needed, for eventual in-order delivery
to upper layer

0 sender only resends pkts for which ACK not
received
O sender timer for each unACKed pkt
0 sender window
O N consecutive seq #'s
O again limits seq #s of sent, unACKed pkts

Transport Layer 3-51

Selective repeat: sender, receiver windows

send_base

dlready
ack’'ed
II Il IIIIII | i
‘ yet ack’ed
ndow size —4

Jnaqnong

nextsegnum

(a) sender view of sequence numbers

out of order

usable, not
yet sent

[I not usable

acceptable

(buffered) but ferirlagon
ready aciced (within window)

N

rev_base

(b) receiver view of sequence numbers

al
IIIIIIIIIIIIIHI]I]
yet received

t window size—*

Transport Layer 3-52

Selective repeat

—sender

data from above :

0 if next available seq # in
window, send pkt

timeout(n):

O resend pkt n, restart timer

ACK(n) in [sendbase sendbase+N]:

O mark pkt n as received

0 if n smallest unACKed pkft,
advance window base to
next unACKed seq #

— receiver

Selective repeat in action

ka nin [rcvbase, rcvbase+N-1]
0 send ACK(n)
O out-of-order: buffer

0O in-order: deliver (also
deliver buffered, in-order
pkts), advance window to
next not-yet-received pkt

ka nin [rcvbase-N,rcvbase-1]
O ACK(n)

otherwise:

O ignore

Transport Layer 3-53

pktl sent

0123456783 q_j—_ﬁ__j__‘-* pktl rovd. delivered. ACKD sent

pktl =sent
0123456 789

pkt2 =ent

—[otLz3las6 789 X

(loss)
pkt3 =ent, window full

01234567879

ACKD rovd. pktd sent
0f1 2 3 4(56 7 879

ACK]l rcwd. pkt5 sent

0 1|2 3 45| 7859

— pkt2 TIHEOUT, pkt2 resent

01]2 3 45|6 7879

ACK3 rocwd, nothing sent

01|23 465|67879

0123 4|56 789
pktl rovd, delivered. ACKL sent

01]2 3 45|/6 7879

pkt3 rocwd, buffered. ACK3 sent

0123 4 5|6 7879

pktd rcvd, buffered, ACK4 =ent
0 1|2 3 4 5/6 7879

pktS rovd, buffered. ACKS sent

01]2 3 45|/6 7879

pkt2 rovd. pkt2. pkt3.pktd. pkth
delivered. ACK2 ssnt

012345783

“t Layer 3-54

Selective repeat:

(after receipt)

receiver window

(after receipt)

sender window

. ofz3]o12
CKO

dilemma 3o-.,pm v © 1 2

bizsoaz .0 1 2B

Example:
0 seq#'s:0,1,2,3
O window size=3

O receiver sees no
difference in two
scenarios!

O incorrectly passes
duplicate data as new

in (a)

Q: what relationship
between seq # size
and window size?

timeout
retransmit pkt

kO ——— receive packet
with seq number Q

receiver window

(after receipt)

sender window

(after receipt)

-301\. -"._123012
Eidlso " EEd
o131 2
pkt2 CK1
[Ciz]so12 ACK20122
ofiz3]or
oilz3ch % receive packet

with seq number O

(b)

Transport Layer 3-55

Chapter 3 outline

0 3.1 Transport-layer
services

0 3.2 Multiplexing and
demultiplexing

0 3.3 Connectionless
transport: UDP

3 3.4 Principles of
reliable data transfer

3 3.5 Connection-oriented
transport: TCP
O segment structure
o reliable data transfer
o flow control
O cohnection management
0 3.6 Principles of
congestion control
0 3.7 TCP congestion
control

Transport Layer 3-56

TCP: Overview

3 point-to-point:

O one sender, one receiver
O reliable, in-order byte

steam.

O no “"message boundaries”
O pipelined:

O TCP congestion and flow

control set window size

O send & receive buffers

socket
door

RFCs: 793, 1122, 1323, 2018, 2581

0 full duplex data:

o bi-directional data flow
in same connection

O MSS: maximum segment
Size

O connection-oriented:

o handshaking (exchange
of control msgs) init's
sender, receiver state
before data exchange

O flow controlled:

wse O sender will not

door

overwhelm receiver

Transport Layer 3-57

TCP segment structure

32 bits

URG: urgent data
(generally not used)™_ source port # | dest port #

ACK: ACK # sequence number

valid\\mmedgement number

PSH: push data now W RIS|F| Receive window
(generally not used)—" /chzel@n Urg data pnter

counting

by bytes

of data

(not segments!)

bytes
rcvr willing
to accept

RST, SYN, FIN:—| Optiens (variable length)
connection estab

(setup, teardown
commands)

application
Internet / . data
checksum (variable length)
(as in UDP)

Transport Layer 3-58

TCP seq. #'s and ACKs

Seq. #'s:
O byte stream
“number” of first fse"
byte in segment's ybes
data

ACKs:

O seq # of next byte
expected from

other side host ACKs
O cumulative ACK r];eceri‘p'rd
Q: how receiver handles ° e.cc. o¢

out-of-order segments
O A: TCP spec doesn't
say, - up to
implementor

Seq=42
 ACK=
W

host ACKs

_ receipt of
. qata=S— 'C, echoes
A back 'C

Seq=43, ACK:BO
time

simple telnet scenario l

Transport Layer 3-59

TCP Round Trip Time and Timeout

Q: how to estimate RTT?
0 SampleRTT: measured time from
segment transmission until ACK

Q: how to set TCP
timeout value?
O longer than RTT

o but RTT varies r‘ec.elp'r o
A too short: premature O ignore retransmissions
timeout 0 SampleRTT will vary, want

estimated RTT “smoother”

O average several recent
measurements, not just
current SampleRTT

O unnecessary
retransmissions

O too long: slow reaction
to segment loss

Transport Layer 3-60

TCP Round Trip Time and Timeout

EstimatedRTT = (1- a)*EstimatedRTT + a*SampleRTT
O Exponential weighted moving average

0 influence of past sample decreases exponentially fast
O typical value: a =0.125

Transport Layer 3-61

Example RTT estimation:

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

350 ~

300 -

N
a
S

RTT (milliseconds)

N
=1
3

150

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106
time (seconnds)

—&— SampleRTT —&— Estimated RTT

Transport Layer 3-62

TCP Round Trip Time and Timeout

Setting the timeout

0 EstimtedRTT plus “safety margin”
O large variation in EstimatedRTT -> larger safety margin

0 first estimate of how much SampleRTT deviates from
EstimatedRTT:

DevRTT = (1-B)*DevRTT +
B*|SampleRTT-EstimatedRTT]|

(typically, B = 0.25)

Then set timeout interval:

TimeoutInterval = EstimatedRTT + 4*DevRTT

Transport Layer 3-63

Chapter 3 outline

0 3.1 Transport-layer 0 3.5 Connection-oriented
services transport: TCP

0 3.2 Multiplexing and O segment structure
demultiplexing O reliable data transfer

0 3.3 Connectionless > flow control
fr‘anspor‘ +: UDP O connection management

0 3.6 Principles of
congestion control

0 3.7 TCP congestion
control

3 3.4 Principles of
reliable data transfer

Transport Layer 3-64

TCP reliable data transfer

0 TCP creates rdt
service on top of IP's
unreliable service

0 Pipelined segments
0 Cumulative acks

O TCP uses single
retransmission timer

O Retransmissions are
triggered by:
O timeout events
O duplicate acks
3 Initially consider
simplified TCP sender:

O ignore duplicate acks

O ignore flow control,
congestion control

TCP sender events:

data rcvd from app:

O Create segment with
seq #

0 seq # is byte-stream
number of first data
byte in segment

3 start timer if not
already running (think
of timer as for oldest
unacked segment)

0 expiration interval:

timeout:

O retransmit segment
that caused timeout

O restart timer

Ack rcvd:

O If acknowledges
previously unacked
segments

O update what is known to
be acked

o start timer if there are

Ti meOut I nte rval OUfSTGnding SegmenTS
Transport Layer 3-65 Transport Layer 3-66
NextSegNum = InitialSegNum
SendB = InitialSegN
Fndbase = infiaBeqtium TCP TCP: retransmission scenarios

loop (forever) {
switch(event)

Sender‘ ﬂ;‘) Host A Host B@ @Hosf A
event: data received from application above =
create TCP segment with sequence number NextSegNum ! Slmpllfled ! Seq=go T_
if (timer currently not running) [.8 bytes datg 5
start timer S
pass segment to |P Comment: = 400 £
NextSegNum = NextSegNum + length(data) G conARne Srz:lndBase—l‘ last § O §
N * = X n
e o
event: timer timeout cum‘ula‘nvely loss &
retransmit not-yet-acknowledged segment with ack'ed byte s
smallest sequence number Example: ©9=92, g bytes ¢ Sendbase
start timer - SendBase-1 = 71; ata =100 %
4 ' ' y= 73, so the revr 53_"‘:5853 g
evgnt: ACK received, with ACK field value of y wants 73+ : A0 = 5
if (y > SendBase) { > SendBase. so pek o
SendBase =y \‘{hcn‘ new data is 5
if (there are currently not-yet-acknowledged segments) SendBase N
start timer acked =100 Se_mlﬂBase _L
} =120] premature timeout
time time

} /* end of loop forever */ lost ACK scenario

Transport Layer 3-67

Transport Layer 3-68

SendBase

TCP retransmission scenarios (more)

@ Host A Host B @

Seq:
92, 8 bytes dats

A0
Seg= o
q: 100Y 20 P\s .
atg
X

loss
420
AP@/

time
Cumulative ACK scenario

=120

«— timeout——

Transport Layer 3-69

TCP ACK generation [RFc 1122, RFC 2581]

Event at Receiver

TCP Receiver action

Arrival of in-order segment with
expected seq #. All data up to
expected seq # already ACKed

Delayed ACK. Wait up to 500ms
for next segment. If no next segment,
send ACK

Arrival of in-order segment with
expected seq #. One other
segment has ACK pending

Immediately send single cumulative
ACK, ACKing both in-order segments

Arrival of out-of-order segment
higher-than-expect seq. # .
Gap detected

Immediately send duplicate ACK,
indicating seq. # of next expected byte

Arrival of segment that
partially or completely fills gap

Immediate send ACK, provided that
segment starts at lower end of gap

Transport Layer 3-70

Fast Retransmit

0 Time-out period often
relatively long:
O long delay before
resending lost packet
0 Detect lost segments
via duplicate ACKs.

O Sender often sends
many segments back-to-
back

O If segment is lost,

there will likely be many
duplicate ACKs.

O If sender receives 3
ACKs for the same
data, it supposes that
segment after ACKed
data was lost:

o fast retransmit: resend
segment before timer
expires

Transport Layer 3-71

Host A

timeout

time

188enq ong
Segrnen
t

Figure 3.37 Resending a segment after triple duplica{g AGK: Layer 372

Fast retransmit algorithm:

event: ACK received, with ACK field value of y
if (y > SendBase) {
SendBase =y
if (there are currently not-yet-acknowledged segments)
start timer
}
else {
increment count of dup ACKs received for y
if (count of dup ACKs received fory = 3) {
resend segment with sequence number y

}

a duplicate ACK for
already ACKed segment

fast retransmit

Transport Layer 3-73

Chapter 3 outline

0

0

a

0

3.1 Transport-layer
services

3.2 Multiplexing and
demultiplexing

3.3 Connectionless
transport: UDP

3.4 Principles of
reliable data transfer

0 3.5 Connection-oriented
transport: TCP

O segment structure

O reliable data transfer
o flow control

O connection management

0 3.6 Principles of
congestion control

0 3.7 TCP congestion
control

Transport Layer 3-74

TCP Flow Control

flow control
sender won't overflow
receiver's buffer by
transmitting oo much,
too fast

0 receive side of TCP
connection has a
receive buffer:

#— RevWindow —

0 speed-matching
application . .
> process service: matching the
send rate to the
receiving app's drain
rate

data from
P

#——— RevBuffer ————+

O app process may be
slow at reading from
buffer

Transport Layer 3-75

TCP Flow control: how it works

data from
P

— RevWindow —

7
L application
v AR

//7 e . process
i
b——— RevBuffer ————#

(Suppose TCP receiver

0

discards out-of-order
segments)

spare room in buffer
RcvWindow

RcvBuffer-[LastByteRcvd -
LastByteRead]

O Revr advertises spare
room by including value
of RevWindow in

segments
O Sender limits unACKed
data to RcvWindow

O guarantees receive
buffer doesn't overflow

Transport Layer 3-76

Chapter 3 outline

0 3.1 Transport-layer 3 3.5 Connection-oriented
services transport: TCP

0 3.2 Multiplexing and O segment structure
demultiplexing o reliable data transfer

A 3.3 Connectionless o flow control
transport: uUDP QO connection management
7 3.4 Principles of 7 3.6 Principles of

reliable data transfer congestion control
0 3.7 TCP congestion

control

Transport Layer 3-77

TCP Connection Management

Recall: TCP sender, receiver
establish "connection”
before exchanging data
segments

O initialize TCP variables:

O seq. #s

o buffers, flow control
info (e.g. RevWindow)
O client: connection initiator
Socket clientSocket = new
Socket(""hostname",""port
number'™) ;

O server: contacted by client

Socket connectionSocket =
welcomeSocket.accept();

Three way handshake:

Step 1. client host sends TCP
SYN segment to server
o specifies initial seq #
O ho data
Step 2: server host receives
SYN, replies with SYNACK
segment
o server allocates buffers
O specifies server initial
seq. #
Step 3: client receives SYNACK,

replies with ACK segment,
which may contain data

Transport Layer 3-78

TCP Connection Management (cont.)

Closing a connection: 1 client server [@)

. close
client closes socket: FIN

clientSocket.close();
cK
/ close
/
k

Step 1: client end system
sends TCP FIN control

segment to server

-

Step 2: server receives E
FIN, replies with ACK. 3
Closes connection, sends g
FIN. closed ™

Transport Layer 3-79

TCP Connection Management (cont.)

Step 3: client receives FIN,
replies with ACK.

o Enters “timed wait" -
will respond with ACK
to received FINs

Step 4: server, receives

ACK. Connection closed.

Note: with small
modification, can handle
simultaneous FINs.

serveri;;
closin
9 FiN
K .
B closing
/
+—
'S ACk
2
3 closed
£
+
closed ™

Transport Layer 3-80

TCP Connection Management (cont)
o[o < \M.ﬂ'.' T 7Eh comacton

Y, send SN
o SYN_SENT
recesve EN eive SYN & ACH

FIN_WAIT 2 ESIM:!SHED TCP server
; T .
| cncsppesion lifecycle
envd NOthing m._.- send FIN o] cLosen .. "-\\.m';I::;T::I:‘::::“
TCP client g |
lifecycle '
! o]

[y
send FIN
CLOSE_WAIT

| ESTABLISHED

Transport Layer 3-81

Chapter 3 outline

0 3.1 Transport-layer
services

0 3.2 Multiplexing and
demultiplexing

0 3.3 Connectionless
transport: UDP

3 3.4 Principles of
reliable data transfer

0 3.5 Connection-oriented
transport: TCP
O segment structure
O reliable data transfer
o flow control
O connection management
0 3.6 Principles of
congestion control

0 3.7 TCP congestion
control

Transport Layer 3-82

Principles of Congestion Control

Congestion:
0 informally: "“too many sources sending Yoo much
data too fast for network to handle”

0 different from flow controll
O manifestations:
O lost packets (buffer overflow at routers)
O long delays (queueing in router buffers)
0 a top-10 problem!

Transport Layer 3-83

Causes/costs of congestion: scenario 1

O two senders, two
receivers
Host B

0 one router, [

infinite buffers |

O no retransmission

Host A s

| Ain : original data |:°“‘

unlimited shared
output link buffers

-

O large delays

Cl2 — -
2 § when congested
< O maximum
achievable
throughput

C/2
A

1
l C/2
in
Transport Layer 3-84

Causes/costs of congestion: scenario 2

0 one router, finite buffers
O sender retransmission of lost packet

Host A

Ain - Original Aout
data
P L, - original data, plus X \
retransmitted data
Host B finite shared output
° link buffers

LT
JJ Sahiaax)

Transport Layer 3-85

Causes/costs of congestion: scenario 2
m] always A= k (goodput)
"perfect” rr]e‘rmnsmassmn only when loss: 7\, > 7\‘

O retransmission of delayed (not lost) packe‘r makes 7»
(than perfect case) for same

larger

RI2

“costs” of congestion:
O more work (retrans) for given “"goodput”
O unneeded retransmissions: link carries multiple copies of pkt

Transport Layer 3-86

Causes/costs of congestion: scenario 3

] four'.sender's Q: what happens as ?\.
0 multihop paths and k’ mcr'ease ?

O timeout/retransmit

Host A

_ My, © original data Pou
<), : original data, plus b
in - Org p
retransmitted data [

finite shared output
lipk buffers

Host B

o
[[a9]
Q’ =N

Transport Layer 3-87

Causes/costs of congestion: scenario 3

C/24

7\‘oqu

KI
in
Another "cost” of congestion:

O when packet dropped, any "upstream transmission
capacity used for that packet was wasted!

Transport Layer 3-88

Approaches towards congestion control

Two broad approaches towards congestion control:

End-end congestion Network-assisted
control: congestion control:

O no explicit feedback from O routers provide feedback
network to end systems

O congestion inferred from O single bit indicating
end-system observed loss, congestion (SNA,
delay DECDbit, TCP/IP ECN,

7 approach taken by TCP ATM)

o explicit rate sender
should send at

Transport Layer 3-89

Case study: ATM ABR congestion control

ABR: available bit rate: RM (resource management)
0 “elastic service" cells:
0 if sender’'s path O sent by sender, interspersed
"underloaded": with data cells
O sender should use O bits in RM cell set by switches
available bandwidth ("network-assisted”)
0 if sender’'s path o NI bit: no increase in rate
congested: (mild congestion)
O sender throttled to O CI bit: congestion
minimum guaranteed indication
rate 7 RM cells returned to sender by

receiver, with bits intact

Transport Layer 3-90

Case study: ATM ABR congestion control

I RM cells
source]:l data cells destination
e N
: Switch Switch ﬁ—
r_
21111 Byq il il Tyqlll

i i1 0

O two-byte ER (explicit rate) field in RM cell

O congested switch may lower ER value in cell

O sender’ send rate thus maximum supportable rate on path
0 EFCI bit in data cells: set to 1 in congested switch

o if data cell preceding RM cell has EFCT set, sender sets CI
bit in returned RM cell

Transport Layer 3-91

Chapter 3 outline

0 3.1 Transport-layer 0 3.5 Connection-oriented
services transport: TCP

0 3.2 Multiplexing and O segment structure
demultiplexing O reliable data transfer

3 3.3 Connectionless o flow control

transport: UDP O connection management
0 3.4 Principles of 0 3.6 Principles of

reliable data transfer congestion control
0 3.7 TCP congestion

control

Transport Layer 3-92

TCP congestion control: additive increase,
multiplicative decrease
O Approach: increase transmission rate (window size),
probing for usable bandwidth, until loss occurs
O additive increase: increase CongWin by 1 MSS
every RTT until loss detected

o multiplicative decrease: cut CongWin in half after
loss

24 Kbytes —

Saw tooth
behavior: probing
for bandwidth

16 Kbytes —{

8 Kbytes —

congestion window size

time

Transport Layer 3-93

TCP Congestion Control: details

O sender limits transmission:
LastByteSent-LastByteAcked

< CongWin
3 Roughly,
_ CongWin
rate = RTT Bytes/sec

0 CongWin is dynamic, function
of perceived network
congestion

How does sender
perceive congestion?

O loss event = timeout or
3 duplicate acks

0 TCP sender reduces
rate (CongWin) after
loss event

three mechanisms:
o AIMD
o slow start

O conservative after
timeout events

Transport Layer 3-94

TCP Slow Start

0 When connection begins, O When connection begins,
CongWin =1 MSS increase rate
o Example: MSS = 500 exponentially fast until
bytes & RTT = 200 msec first loss event
o initial rate = 20 kbps
O available bandwidth may
be >> MSS/RTT

O desirable to quickly ramp
up to respectable rate

Transport Layer 3-95

TCP Slow Start (more)

3 When connection
begins, increase rate
exponentially until
first loss event:

O double CongWin every
RTT

O done by incrementing
CongWin for every ACK
received

3 Summary: initial rate
is slow but ramps up
exponentially fast

time

Transport Layer 3-96

Refinement: inferring loss

0 After 3 dup ACKs:
o CongWin is cut in half
O window then grows
linearly
0 But after timeout event:
o CongWin instead set to
1 MSS;

O window then grows
exponentially

O to a threshold, then

— Philosophy:

0 3 dup ACKs indicates
network capable of
delivering some segments
O timeout indicates a
“more alarming”
congestion scenario

Refinement

Q: When should the
exponential
increase switch to 145
linear?

A: When CongWin
gets to 1/2 of its
value before
timeout. 2

_| Threshold

Transmission round

TCP Series 2 Reno

T
12 3456 7 8

ImplemenTaTion: Transrrission
O Variable Threshold

O At loss event, Threshold is
set to 1/2 of CongWin just
before loss event

grows linearly

Transport Layer 3-97

171 1T T 11
9 10 11 1213 14 15
round

Transport Layer 3-98

Summary: TCP Congestion Control

0 When CongWin is below Threshold, sender in
slow-start phase, window grows exponentially.

0 When CongWin is above Threshold, sender is in
congestion-avoidance phase, window grows linearly.

0 When a triple duplicate ACK occurs, Threshold
set to CongWin/2 and CongWin set to
Threshold.

3 When timeout occurs, Threshold set to
CongWin/2 and CongWin is set to 1 MSS.

Transport Layer 3-99

TCP sender congestion control

State Event TCP Sender Action Commentary
Slow Start ACK receipt | CongWin = CongWin + MSS, Resulting in a doubling of
(SS) for previously | If (CongWin > Threshold) CongWin every RTT
unacked set state to “Congestion
data Avoidance”
Congestion ACK receipt | CongWin = CongWin+MSS * Additive increase, resulting
Avoidance for previously | (MSS/CongWin) in increase of CongWin by
(CA) unacked 1 MSS every RTT
data
SSorCA Loss event Threshold = CongWin/2, Fast recovery,
detected by | CongWin = Threshold, implementing multiplicative
triple Set state to “Congestion decrease. CongWin will not
duplicate Avoidance” drop below 1 MSS.
ACK
SSor CA Timeout Threshold = CongWin/2, Enter slow start
CongWin =1 MSS,
Set state to “Slow Start”
SSorCA Duplicate Increment duplicate ACK count | CongWin and Threshold not
ACK for segment being acked changed

Transport Layer 3-100

TCP throughput

0 What's the average throughout of TCP as a
function of window size and RTT?
o Ignore slow start

O Let W be the window size when loss occurs.
0 When window is W, throughput is W/RTT

0 Just after loss, window drops to W/2,
throughput to W/2RTT.

0 Average throughout: .75 W/RTT

Transport Layer 3-101

TCP Futures: TCP over "“long, fat pipes”

0 Example: 1500 byte segments, 100ms RTT, want 10
Gbps throughput

O Requires window size W = 83,333 in-flight
segments

O Throughput in terms of loss rate:
1.22-MSS
RTTVL
0 -5 L=2101° Wow
O New versions of TCP for high-speed

Transport Layer 3-102

TCP Fairness

Fairness goal: if K TCP sessions share same
bottleneck link of bandwidth R, each should have
average rate of R/K

TCP connection 1

bottleneck
router

connection 2 capacity R

Transport Layer 3-103

Why is TCP fair?

Two competing sessions:
O Additive increase gives slope of 1, as throughout increases
O multiplicative decrease decreases throughput proportionally

equal bandwidth share

loss: decrease window by factor of 2
congestion avoidance: additive increase

loss: decrease window by factor of 2
congestion avoidance: additive increase

Connection 2 throughput o

Connection 1 throughput R

Transport Layer 3-104

Fairness (more)

Fairness and UDP

O Multimedia apps often
do not use TCP

o do not want rate
throttled by congestion
control

O Instead use UDP:

O pump audio/video at
constant rate, tolerate
packet loss

O Research area: TCP
friendly

Fairness and parallel TCP

connections

3 nothing prevents app from
opening parallel
connections between 2
hosts.

O Web browsers do this
O Example: link of rate R
supporting 9 connections;

O new app asks for 1 TCP, gets
rate R/10

O new app asks for 11 TCPs,
gets R/2|

Transport Layer 3-105

Chapter 3: Summary

3 principles behind transport
layer services:

O multiplexing,
demultiplexing

o reliable data transfer

o flow control Next:
O congestion control 0 leaving the network
0 instantiation and “edge" (application,
implementation in the transport layers)
Internet 0 into the network
o UDP “core”
o TCP

Transport Layer 3-106

