
Online Robot Learning by Reward and Punishment for a Mobile Robot

Dejvuth Suwimonteerabuth, Prabhas Chongstitvatana

Department of Computer Engineering
Chulalongkorn University, Bangkok, Thailand

prabhas@chula.ac.th

Abstract

The existing robot learning methods required
specifically defined goals. We aim to produce a
more plastic behavior. We present our work which
a human observer can influence the robot behavior.
The robot learns from reward and punishment from
a human in real-time. To examine the developed
approach, we evolved a control system for a color-
following task as an example. A physical robot is
used to perform the experiments. Experimental
results show the emergence of learned behaviors.
We discussed the factors that influence the learning
process.

1. Introduction

In the field of Evolutionary Robotics, researchers
have mainly tried to show the validity of their
approaches by evolving some pre-specified
behaviors. For example, the example-based
approach is used for evolving robot controllers in
the collision avoidance task [1]. The locally
weighted learning (LWL) algorithms is applied on
the learning of devil-sticking, pole-balancing of a
humanoid robot arm, and inverse-dynamic learning
for a seven degree-of-freedom robot [2]. The task
primitives in robot learning from observation are
employed to play a virtual and an actual air hockey
game [3]. Genetic programming is also utilized to
evolve the behavior primitives and behavior
arbitrators for box-pushing task [4, 5]. A perceptron
is required in evolving the exploration and homing
behavior [6]. In these works, the desired task of
robot must be clearly defined.

In contrast, this paper proposes a different
approach: the desired behavior of robot is not
obtained from prior knowledge but from knowledge
that is given after learning process begins. Such
knowledge is directly acquired from a human

observer using reward and punishment. We aim to
realize a robot controller that make robot perform
the behavior that will receive reward and avoid the
behavior that will receive punishment. Therefore,
no prior knowledge about the desired task is
needed. This approach is very advantageous to the
learning problems since it is realized that building a
robot behavior by iteratively dealing with the robot-
environment interactions is a tough and tedious job.
Especially when the complexity increases, it would
go beyond a designer’s capability to construct all
the behaviors. Our work is similar to "robot
shaping" [7, 8] that we use learning to translate
feedback from an external observer into a control
strategy. The strategy that we used is comparable
to a simple case of reinforcement learning [9].

The robot used in this work is illustrated in Figure
1. The robot is capable of detecting color of the
floor and able to receive reward and punishment
signal from a remote transmitter. Furthermore, as
another important feature, the robot must move
around the designated area without colliding walls.
This is accomplished by using front and rear
infrared sensor.

Figure 1: The mobile robot used in this work

A Finite-State Machine (FSM) is used as robot
controller, which determines the behavior of robot.

A method for synthesizing a FSM from sequences
of partial input/output is based on Genetic
Algorithms (GA) [10, 11]. GA is a search and
optimization algorithm that simulates the natural
evolution. GA performs search in a population, a
set of individuals that represents points in the
search space. At each generation, a sequence of
genetic operations called selection, reproduction,
crossover, and mutation transforms the existing
individuals into a new set of solutions. The quality
of solution is evaluated in terms of fitness in which
fitness function must be defined for each problem.
The individuals are probabilistically selected to the
next generation proportional to their fitness.
Examples of using GA to synthesize FSM can be
found in [12, 13].

Learning using a physical robot takes a long time
because of its limit on mechanical speed. To help
speed up parameter tuning process we wrote a
simulator and use this simulator to find out the
appropriate parameters for GA. The physical robot
is used online in real time to study the learning
characteristics and the robot behaviors with
feedback from a human trainer.

Moreover, we study a number of factors that are
relevant to the quality of learning. The relevant
factors are: no reward/punishment, start position,
maximum number of reward/punishment, size of
population, and the person that give
reward/punishment signals. All details will be
described later.

2. The Experiments

2.1 Tasks

The environment experienced by the robot is a plain
rectangular floor, size 1.5 × 2.2 m., surrounded by
walls. The robot is able to detect walls and stays
inside the designated floor all the time. The floor is
painted with two colors: black and white; which is
divided exactly at the middle of the floor. The goal
of this experiment is that the robot will learn to stay
in the color, which reward signals are presented,
and also learn to move out of the color which
punishment signals are given. For example, if the
robot receives rewards when it is on a white floor,
and receives punishments when it is on a black
floor, the robot will eventually learn to stay in the
white floor and move out of the black floor.

2.2 Control programs

The program used to control the robot has a single
input, which is the color of the floor. Zero means
the robot is on white floor and one means the robot
is on black floor. Two-bit output is used to control
motions of robot, as described in Table 1.

Table 1: Outputs of program and their

corresponding motions.

Output Motions
00
01
10
11

Move forward
Turn left

Turn right
Move backward

2.3 Genetic Algorithms

The learning behaviors of robot are based on GA.
The algorithm slightly adapted from [14] using
combined rank to promote diversity. The rank
constant is 0.6666. Due to real time requirement
we set the population size quite small (any smaller
population causes GA to get stuck at local minima).
The population size is 20. We use elitism and
recombine 6 individuals. The mutation is
performed on 13 individuals with the probability
0.01.

2.4 Encoding Scheme

Each individual represents an FSM by its state
transition diagram. The state transition diagram is
represented by concatenating all of the outputs
followed by the next states to form a fixed length
binary string. Figure 2 shows an example. Since we
assume no prior knowledge about the tasks, the
number of internal states needed to produce a
complete solution is unknown. Thus, we let the
number of states of an individual to be larger than
the minimum required by the task, as 8 states are
used. The solution may contain redundant states
and unreachable states. A conventional method can
be used to optimize them.

2.5 Fitness Function

The fitness of an individual is evaluated by the
following steps:

fitness, ƒ = 0
Reset individual (FSM) to start state
Initialize time, τ = 1000
While τ > 0 Do

 If a reward detected, ƒ = ƒ + 1
 If a punishment detected, ƒ = ƒ - 1
 Move the robot according to current FSM
 τ = τ -1
End while

Each state machine has about 30 seconds execution
time in the real world during which the robot
behavior is evaluated by a human trainer. The
human observer who gives reward and punishment
signals is directly control the fitness value.
Therefore, that person must clearly understand the
promising behaviors in order to teach the robot to
accomplish the desired tasks. Some important
reward and punishment giving techniques can be
used to accelerate the learning tendency, such as
• If robot is on a white floor and moving in the

way that will not go to the black floor, give
more rewards.

• If robot is on a black floor and moving in the
way that will go out of the black floor, also
give some rewards.

S0
[01]

S1
[11]

S2
[11]

S3
[00]

S4
[00]

S5
[10]

S6
[00]

S7
[10]

0,1

0,1

0

1

0

1

0

1

0

1

0

1

0

1

Figure 2: An example FSM representing “01 11 11

00 00 10 00 10 101101 101101 110100 001010
110000 100110 011110 111110”.

2.6 Details of the Experiments

The experiments were carried out in order to study
factors that are relevant to the quality of learning.
The experiments are divided into 6 problems, that
is, giving no reward/punishment, changing the start

position, maximum number of reward/punishment,
size of population, and the person who give reward/
punishment signals. Assume that we want the robot
to stay in the white floor and move out of the black
floor.

For each problem, unless otherwise stated,
experiments are performed a couple of times, 60
minutes each. The measurement of how good the
robot performed it task is the time that it stays in
the designated color. A result is logged every 5
minutes, which is the time the robot stays in the
white floor. Dividing this number by 5 results in a
robot-on-white-floor ratio indicating the learning
tendency in the last 5 minutes. Consequently, the
learning behavior is illustrated by a graph, which x-
axis represents time and y-axis represents robot-on-
white-floor ratio. Full details of each problem are
described along with its results.

3. The Experimental Results

3.1 Learning behavior when giving no
reward/punishment

The purpose of this experiment is to show that the
learning behavior does not exist when giving no
reward/punishment. Since GA use fitness function
to determine the quality of each individuals, in this
case, all individuals’ fitness are equal to zero. As a
result, no learning occurs. Figure 3 indicates the
result that was experimented 3 times, 40 minutes
each.

0

0.5

1

1.5

5 10 15 20 25 30 35 40
Time (Minutes)

Ro
bo

t-o
n-w

hit
e-a

rea
 ra

tio

Figure 3: The learning behavior when giving no
reward/punishment.

3.2 Learning behavior when start position is in
white area

Figure 4 shows the learning result when normally
given reward/punishment, and the robot starts

learning on the white floor. The average value of 3-
times experiments is also provided. At first, the
robot stayed mostly on the white floor, but for some
later time (about 15 minutes), it moved and stayed
mostly on the black floor. This behavior is caused
by the initial randomness of FSM. When some
more time had passed (about 25-30 minutes), the
learning behavior was arisen. The learning process
continued until about the minute 45 the robot
completed its learning and stayed in the white floor
almost all the time.

During the experiments, we observed that some
robot movements result in few displacements, such
as moving forward and backward repeatedly. If
such movements had appeared when the robot was
on the black floor, it would not have tried to move
out of the unwanted black floor, and, of course,
decreased the robot-on-white-floor ratio (the minute
15). Many punishments were given in this case;
therefore, in some later time (the minute 30), the
movement was altered in the way that more
displacements were conducted, such as
continuously moving forward. On the other hand,
we want the robot to stay in the white floor, so we
gave more rewards to individuals that tended to
exhibit less displacement. The task was finally
achieved when the robot’s displacement was
approaching zero when it was on the white floor
(the minute 45).

0
0.2
0.4
0.6
0.8

1
1.2

5 10 15 20 25 30 35 40 45 50 55 60
Time (Minutes)

Ro
bo

t-o
n-

wh
ite

-ar
ea

 ra
tio

1st2nd3rdAverage

Figure 4: The learning behavior when start
position is in white area.

3.3 Learning behavior when start position is in
black area

Experiments were carried out 2 times, as depicted
in Figure 5. In the first time, the learning behavior
was rapidly come into view because of some
random individuals in the initial population exhibit
such behavior. The second time was dissimilar.

The learning still took place, but in slower manner
than first run. The explanation is that the robot only
learned to escape the black area in the former part
of experiment, but not learned to stay in the white
area. The learning progressed gradually in the latter
part.

0
0.2
0.4
0.6
0.8

1
1.2

5 10 15 20 25 30 35 40 45 50 55 60
Time (Minutes)

Ro
bo

t-o
n-w

hit
e-a

rea
 ra

tio

1st2st

 Figure 5: The learning behavior when start
position is in black area.

3.4 Learning behavior when limiting maximum
number of reward/punishment

As stated above, the reward and punishment
directly control fitness value, and thus, the learning
behavior must be changed if the number of reward
and punishment are changed. This experiment was
performed twice, varying the maximum number
that each individual will receive reward and
punishment to 3 and 6 times compared with the
average in problem B in which no limit is
presented. If a individual received more than the
indicated value, its fitness value is left unchanged.

The results are explained in Figure 6, pointing out
that the rate of learning is reduced when the
maximum number of reward and punishment is
decreased. Consequently, when limit equals to six
the quality of learning is better than when limit
equals to three, but no better than when no limit
defined.

3.5 Learning behavior when varying size of
population

Size of population has an effect on the diversity of
all individuals. The larger population increases the
sample size of finding good solutions. This
experiment is performed twice, varying the size of
population to 5 and 10 individuals compared with
the average in problem B that use 20 individuals.

Figure 7 illustrated the results. In the case of 5
individuals, the learning quality was low, but still
can partially learned in the latter part of experiment.
The size of population used here is too small, hence
good solutions cannot be maintained even when
GA can find ones.

However, when the size of population is 10, the
result was much better. The learning rate is better
than the case of 20 individuals whereas the size is
half of it. The reason is that when the size of
population is appropriately reduced, time used for
searching solutions in each generation is
accordingly decreased. The appearance of good
solutions and the disappearance of bad solutions are
faster. For example, if the current solution makes
the robot exhibits undesired behavior (receive many
punishments), this solution will be wiped out in a
short period of time.

0
0.2
0.4
0.6
0.8

1
1.2

5 10 15 20 25 30 35 40 45 50 55 60
Time (Minutes)

Ro
bo

t-o
n-w

hit
e-a

rea
 ra

tio

LIMIT = 3LIMIT = 6NO LIMIT

 Figure 6: The learning behavior when limiting
number of reward/punishment.

0
0.2
0.4
0.6
0.8

1
1.2

5 10 15 20 25 30 35 40 45 50 55 60
Time (Minutes)

Ro
bo

t-o
n-w

hit
e-a

rea
 ra

tio

10 individuals5 individuals20 individuals

Figure 7: The learning behavior when varying size

of population.

3.6 Learning behavior when changing person
who gives reward/punishment

Since the knowledge of person who gives reward
and punishment is an important factor for the
quality of learning, this experiment suggests how
the learning behavior is changed when the person
who gives reward and punishment changed as
illustrated in Figure 8. The experiment was
performed 3 times by three different human
teachers. Comparing the result with the average in
problem B. The result shows the promising learning
behavior in the first and second runs, but not in the
third run.

0
0.2
0.4
0.6
0.8

1
1.2

5 10 15 20 25 30 35 40 45 50 55 60
Time (Minutes)

Ro
bo

t-o
n-w

hit
e-a

rea
 ra

tio
1st2nd3rdAverage (Problem B)

 Figure 8: The learning behavior when changing
person who gives reward/punishment

4. Conclusions

This work proposes an empirical study of the
learning behavior using reward and punishment.
The goal of this work is that the robot must learn
the behavior that will receive reward and avoid the
behavior that will receive punishment. To verify the
proposed approach, we evolved controllers for a
color-following task and the preliminary results
show the promise of our approach. Moreover, this
work also presents the analysis of the quality of
learning when some learning-relevant factors are
changed.

The experiments use genetic algorithms in order to
find the controller in the form of a finite state
machine. At first, we adjusted all GA-relevant
parameters in a computer simulation, and used
these parameters in a real mobile robot. Then, we
studied the learning rate and motion characteristics
of a robot for each problem.

Our work presented here points to some prospects
of future research. The most obvious way is to use
the proposed approach to evolve controllers for
more complicated tasks to further examine its
generality.

5. References

[1] W.-P. Lee and S.-F. Lai. “An Example-Based

Approach for Evolving Robot Controllers”, In
Proceedings IEEE International Conference on
System, Man, and Cybernetics, 1999, Volume: 5, pp.
618-623.

[2] S. Schaal, C. G. Atkeson, and Vijayakumar. “Real-

Time Robot Learning With Locally Weighted
Statistical Learning”, In Proceeding IEEE
International Conference on ICRA '00., Volume: 1 ,
2000.

[3] D. C. Bentivegna, C. G. Atkeson. “Learning From

Observation Using Primitives”, In Proceedings IEEE
International Conference on 2001 ICRA, Volume: 2 ,
2001.

[4] W.-P. Lee, J. Hallam, H. H. Lund. “Applying Genetic

Programming to Evolve Behavior Primitives and
Arbitrators for Mobile Robots”, In Proceeding of
IEEE International Conference on Evolutionary
Computation , 1997, pp. 495-499.

[5] J. R. Koza and J. P. Rice, "Automatic programming

of robots using genetic programming", AAAI-92
Proc. 10th National Conf. on AI, 1992, pp. 194-201.

[6] H. H. Lund, J. Hallam. “Evolving Sufficient Robot

Controllers”, In Proceeding of IEEE International
Conference on Evolutionary Computation, 1997.

[7] M. Dorigo, "ALECSYS and the AutonoMouse:

Learning to control a real robot by distributed
classifier systems", Machine learning, vol. 19, 1995,
pp.209-240.

[8] M. Dorigo and M. Colombetti, “Robot shaping: an

experiment in behavior engineering”, MIT Press,
1998.

[9] L. P. Kaelbling and M. L. Littman and A. P. Moore,

"Reinforcement Learning: A Survey", Journal of
Artificial Intelligence Research, vol. 4, pp.237-285,
1996.

[10] D. E. Goldberg. Genetic Algorithm in search,

optimization, and machine learning. Addison-
Wesley, 1989.

[11] J. H. Holland, “Adaptation in natural and artificial

systems”, Ann Arbor, MI: University of Michigan
Press, 1975.

[12] P. Chongstitvatana and C. Aporntewan. “Improving

Correctness of Finite-State Machine Synthesis from
Multiple Partial Input/Output Sequences”. In
Proceedings of the first NASA/DoD Workshop on
Evolvable Hardware, , 1999, pp. 262-266.

[13] C. Aporntewan and P. Chongstitvatana. “An On-

Line Evolvable Hardware for Learning Finite-State
Machine”, Proc. of Int. Conf. on Intelligent
Technologies, Bangkok, December 13-15, 2000,
pp.125-134.

[14] P. H. Winston. Artificial Intelligence. Addision-

Wesley. 1992.

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	header:
	copyright: 0-7803-7398-7/02/$17.00 ©2002 IEEE
	01: 921
	02: 922
	03: 923
	04: 924
	05: 925
	06: 926

