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Abstract: Spatial operations such as spatial join combine two 

objects on spatial predicates. It is different from relational 

join because objects have multi dimensions and spatial join 

consumes large execution time. Recently, many researches 

tried to find methods to improve the execution time. Parallel 

spatial join is one method to improve the execution time. 

Comparison between objects can be done in parallel. Spatial 

datasets are large. R-Tree data structure can improve the 

performance of spatial join. 

      In this paper, a parallel spatial join on Graphic processor 

unit (GPU) is introduced. The capacity of GPU which has 

many processors to accelerate the computation is exploited. 

The experiment is carried out to compare the spatial join 

between a sequential implementation with C language on 

CPU and a parallel implementation with CUDA C language 

on GPU. The result shows that the spatial join on GPU is 

faster than on a conventional processor.  

 

Keyword: Spatial Join, Spatial Join with R-tree, Graphic 

processing unit 

I. INTRODUCTION 

      

      The evolution of Graphic Processing Unit is driven by 

the demand for real time, high-definition and 3-D 

graphics. The requirement for an efficient and fast 

computation has been met by parallel computation [1]. In 

addition, GPU architecture that supports parallel 

computation is programmable to solve other problems. 

This new trend is called General Purpose computing on 

Graphic processors (GPGPU). Developers can use the 

capacity of GPU to solve other problem beside graphics 

and can improve the execution time by parallel 

computation. In a spatial database, storing and managing 

complex and large datasets such as Graphic Information 

system (GIS) and Computer-aided design (CAD) are time 

consuming. A spatial database characteristic is different 

from a relational database because of data type. Spatial 

data types are point, line and polygon. The type of data 

depends on the characteristic of objects, for example a 

road is represented by a line or a city is represented by a 

polygon. An object shape is created by x, y and z 

coordinates. Therefore, spatial operations in a spatial 

database are not the same as operations in a relational 

database. There are specific techniques for spatial 

operations. 

      Spatial join combines between two objects on spatial 

predicates, for example, find intersection between two 

objects. It is an expensive operation because spatial  

 

 

datasets can be complex and very large. Their processing 

cost is very high. To solve this problem R-Tree is used to 

improve the performance for accessing data in spatial join. 

Spatial objects are indexed by spatial indexing [2] [3]. 

The objects are represented by minimum bounding 

rectangles which cover them. An internal node points to 

children nodes that are covered by their parents. A leaf 

node points to real objects. The join with R-Tree begins 

with a minimum bounding rectangle. The test for an 

overlap is performed from a root node to a leaf node. It is 

possible that there are overlaps in sub-trees too.  

      The previous work [4] introduces a technique for 

spatial join that can be divided into two steps. 

• Filter Step: This step computes an approximation of 

each spatial object, its minimum bounding rectangle. This 

step produces rectangles that cover all objects.  

 • Refinement Step: In this step, spatial join predicates 

are performed over each object. 

      Recently, spatial join techniques have been proposed 

in many works. In a survey [5], many techniques to 

improve spatial join are described. One technique shows a 

parallel spatial join that improves the execution time for 

this operation.       

      This paper presents a spatial join with R-Tree on 

Graphic processing units. The parallel step is executed for 

testing an overlap. The paper is organized as follow. 

Section 2 explains the background and reviews related 

works. Section 3 describes the spatial join with R-Tree on 

Graphic processing units. Section 4 explains the 

experiment. The results are presented in Section 5. 

Section 6 concludes the paper. 

 

II.   BACKGROUND AND RELATED WORK 

 

A.   Spatial join with R-Tree 

     Spatial join combines two objects with spatial 

predicates. Objects have multi-dimension so it is 

important to efficiently retrieve data. In a survey [5], 

techniques of spatial join are presented. Indexing data 

such as R-Tree is one method which improves I/O time. In 

[6], R-Tree is used for spatial join. Before executing a 

spatial join predicate in the leaf level, an overlap between 

two objects from parent nodes is tested.  When parent 

nodes are overlapped the search is continue into sub-trees 

that are covered by its parents. The sub-trees which are 

not overlapped from parent nodes are ignored. The reason 

is that the overlapped parent nodes are probably 



overlapped with leaf nodes too. The next step, the overlap 

function test is called with sub-trees recursively. This 

algorithm is shown in Figure 1 

 

SpatialJoin(R,S): 

For (all ptrS  S) Do 

For (all ptrR ∈  R with ptrR.rect ∩  ptrS.rect ≠∅) Do 

 If (R is a leaf node) Then  

  Output (ptrR , ptrS ) 

 Else 

  Read (ptrR.child); Read (ptrS.child) 

  SpatialJoin(ptrR.child, ptrS.child) 

 End 

End 

End SpatialJoin; 

 
Figure 1 Spatial join with R-Tree 

  

     The work [6] presents a spatial join with R-Tree that 

improves the execution time. However, this algorithm is 

designed for a single-core processor. The proposed 

algorithm is based on this work but the implementation is 

on Graphics Processing Units. 

B.  Parallel spatial join with R-Tree  

      To reduce the execution time of a spatial join, a 

parallel algorithm can be employed.  The work in [7] 

describes a parallel algorithm for a spatial join. A spatial 

join has two steps: filter step and refinement step. The 

filter step uses an approximation of the spatial objects, 

e.g. the minimum bounding rectangle (MBR).  

      The filter admits only objects that are possible to 

satisfy the predicate. A spatial object is defined in the 

form {MBRi,IDi} where i is a key-pointer data for the 

object. The output of this step is the set 

[{MBRi,IDi},{MBRj,IDj}] if MBRi intersects with 

MBRj. Each pair is called a candidate pair. The next step 

is the refinement step. Pair of candidate objects is 

retrieved from the disk for performing a join predicate. To 

retrieve data, it reads the pointers from IDi and IDj. The 

algorithm creates tasks for testing an overlap in the filter 

step in parallel. For example in Figure 2, R and S denote 

spatial relations.  

     The set {R1,R2,R3,R4,R5,R6,…,RN} is in R root and 

the set {S1,S2,S3,S4,S5,S6,…,SN} is in S root. In the 

algorithm described here the filter step is done in parallel. 

 
Root R 

                                          

                                                           Root S                

                                             

 

 

 

 

 

 

 
  R root = {R1, R2, R3, R4, R5} 

 S root = {S1, S2, S3, S4 } 

 Task1 (R1,S1) Task2(R1,S2) 

 Task3 (R1,S3) Task4(R1,S4)              Task created 

                       …  

                   TaskN (RN,SN) TaskN(RN,SN) 

 
Figure 2 Filter task creation and distribution  

in Parallel for R-tree join 

     The algorithm is designed for parallel operation on a 

CPU. In this paper we use the same idea for the algorithm 

but it is implemented on a GPU. 

     In other research [8], R-Tree is used in parallel search. 

The algorithm distributes objects to separate sites and 

creates index data objects from leaves to parents. Every 

parent has entries to all sites. A search query such as 

windows query can perform search in parallel. 

 

C.  Spatial query on GPU 

     For a parallel operation in GPU, the work in [9] 

implements a spatial indexing algorithm to perform a 

parallel search. A linear-space search algorithm is 

presented that is suitable for the CUDA [1] programming 

model. Before the search query begins, a preparation of 

data array is required for the R-Tree. This is done on 

CPU. Then the data array is loaded into device memory. 

The search query is launched on GPU threads. The data 

structure has two data arrays represented in bits. The 

arithmetic at bit level is exploited. The first array stores 

MBR co-ordinate referred to the bottom-left and top-right 

co-ordinates of the i MBR in the index. The second array 

is an array of R-Tree nodes. R-Tree nodes store the set 

{MBRi, childNode|t|}. ChildNode|t| is an index into the 

array representing the children of the node i. When the 

search query is called, the GPU kernel creates threads to 

execute the tasks. Then copy two data arrays to memory 

on device. Finally the main function in GPU is called. The 

algorithm is shown in Figure 3. The result is copied back 

to CPU when the execution on GPU is finished. 

Clear memory array  (in parallel).  

For each thread 

if Search[i] is: 

    For each search[i] overlaps with the query MBR node j: 

           If the child node j is a leaf, mark it as part of the  

           output. 

           If the child node j is not a leaf, mark it in the    

           Next Search array. 

Sync Threads 

Copy next Search array into Search[i] (in parallel). 
 

Figure 3 R-Tree Searches on GPU 

 

 

III.  IMPLEMENTATION  

 

A. Overview of the algorithm 

      Most works have focused on the improvement of the 

filter step. The first filter step assumes that the 

computation is done with MBR of the spatial objects. In 

this paper, this step is performed on CPU and the data set 

is assumed to be in the data arrays. The algorithm begins 

by parallel filtering objects on GPU. The steps of the 

algorithm are as follows. 

     • Step 1:  The data arrays required for the R-Tree are 

mapped to the device memory. The data arrays are 

prepared on CPU before sending them to device. 
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     • Step 2:  Filtering step, a function to find an overlap 

between two MBR objects is called. Threads are created 

on GPU for execution in parallel. The results are the set of 

MBRs which are overlapping. 

     • Step 3: Find leaf nodes, the results of step 2, the set 

of MBRs, are checked whether they are in the leaf nodes 

or not. If they are the leaf nodes, return the set as the 

result and send them to the host. If they are not the leaf 

nodes and then they are used as input again recursively 

until reaching leaf nodes. 

 

B. Data Structure in the algorithm 

     Assume MBRs objects are stored in a table or a file. In 

the join operation, there are two relations denote as R and 

S.  MBRs structure (shown in C language syntax) are in 

the form: 
 

Struct MBR_object { 

int min_x,max_x,min_y,max_y; 

}; 

/*x, y coordinate rectangle of object*/ 

 

Struct MBR_root { 

int min_x,max_x,min_y,max_y; 

child[numberOfchild]; 

}; 

/*x, y coordinate rectangle of root*/ 

 

MBR_root  rootR [numberOfrootR]; 

MBR_root  rootS [numberOfrootS]; 

/*Array of rootR and rootS relation*/ 

 

MBR_object  objectR [numberOfobjectR]; 

MBR_object  objectS [numberOfobjectS]; 

/*Array of objectR and objectS relation*/ 

 

C.  R-Tree Indexing 

     An R-Tree is similar to a B-Tree which the index is 

recorded in a leaf node and it points to the data object [4].  

All minimum bounding rectangles are created by x, y 

coordinates of objects. The index of data is created by 

packing R-Tree technique [10]. The technique is divided 

into three steps: 

     1)  Find the amount of objects per pack. The number of 

child is between a lower bound (m) and an upper bound 

(M) values. 

     2)  Sort the data on x or y coordinates of rectangle. 

     3)  Assign rectangles from the sort list to the pack 

successively, until the pack is full.  Then, find min x, y 

and max x, y for each pack to create the root node. 

 

  

 

 

 

 

 

 

 

 
Figure 4 MBRs before split node R-Tree 

      

 

       

      An example is shown in Figure 4. It has five 

rectangles of objects. The objects are ordered according to 

x-coordinate of the rectangle. The sorted list is {A, D, B, 

E, C}. Define objects per pack as three. The assignments 

of objects into packs are: 

  Pack1 = {A, D, B}  

  Pack2 = {C, E} 

      In the next step, a root is created.  Compute min x, 

min y and max x, max y.  

 

                             Pack1                                 Pack2 

 Max y 

                R1                                           R2 

 

 

 

 

 

 

 

  Min y 

      

            Min x                               Max x 

 
 

Figure 5 MBRs after split node R-Tree 

 

      The root node of pack1 is R1 and the root node of 

pack2 is R2. R1 points to three objects: A, D and B. R2 

points to two objects: C and E. The root coordinate is 

computed from min x, min y max x, max y of all objects 

which the root covers them.  In the example, only one 

relation is shown. 

     R-Tree creation is done on CPU. The difference is in 

the spatial join operation.  The spatial join on CPU is 

sequential and on GPU is parallel. 

 

D. Spatial join on GPU 

     To parallelize a spatial join, the data preparation is 

carried out on CPU, such as MBRs calculation and 

splitting R-Tree nodes. In GPU, the overlap function and 

the intersection join function are executed in parallel.   

1) Algorithm  

 

• Overlap: This step is the filter step for testing the 

overlap between root nodes R and S. 

1. Load MBR data arrays (R and S) to GPU. 

2. Test the overlap Ri and Sj in parallel. 

3. The overlap function call is: 

 Overlap ((Sj.x_min < Ri.x_max)  

 and (Sj.x_max > Ri.x_min)  

 and (Sj.y_min < Ri.y_max)  

 and (Sj.y_max > Ri.y_min))  

4. For each Ri overlap Sj  

5. Find Ri and Sj children nodes. 

 

• Find children: Find children nodes which are covered 

by the root Ri and Sj. 

a) The information from MBRs indicates the children 

that are covered by the root. 

b) Load children data and send them to the overlap 

function.   

 



• Test intersection: This is the refinement step. Compute 

the join predicate on all children of Ri and Sj using the 

overlap function above.    

 

2) GPU Program Structure 

     CUDA C language is used. The language has been 

designed to facilitate graphic rendering on Graphics 

processing units. CUDA program has two phases [11]. In 

the first phase, the program on CPU, called host code, 

performs the data initialization and transfers data from 

host to device or from device to host. On the second 

phase, the program on GPU, called the device code, 

makes use of the CUDA runtime system to generate 

threads for execution of functions. All threads execute the 

same code but operate on different data at the same time. 

A CUDA function uses the keyword “__global__” to 

define function that is a kernel function. When the kernel 

function is called from the host, CUDA generates a grid of 

threads on the device.   

     In the spatial join, the overlap function is distributed to 

different blocks and is executed at the same time with 

different data objects. To divide the task, every block has 

a block identity calls blockIdx. 

 

For example: 

••••  Objects 
Relation R = {Robject0, Robject1, Robject2,..,RobjectN}, 

Relation S  = {Sobject0, Sobject1, Sobject2,…,SobjectN} 

 

••••  Overlap function: Compare all objects. Find x and y 

coordinates in the intersection predicate. 

      The sequential program on CPU executes only one 

pair of data at the one time.  

 Robject0 compare Sobject0 

 Robject0 compare Sobject1 

 Robject0 compare Sobject2 

                     ... 

 RobjectN compare SobjectN..timeN 

       

      On GPU, the CUDA code on device generates blocks 

for execution all data on different blocks. 

 Block0 = Robject0 compare Sobject0 

 Block1 = Robject0 compare Sobject1 

 Block2 = Robject0 compare Sobject2 

                     ... 

 BlockN = RobjectN compare SobjectN 

      

      The memory is allocated for execution between CPU 

and GPU. First, allocate memory for data structure of root 

R-Tree and MBRs of objects. Second, allocate memory of 

data arrays to store results. When the task is done copy 

data arrays back to host.   

      The nested loop is transformed to run in parallel. The 

rectangle of objects are mapped to 2D block on GPU. The 

outer loop is mapped to blockIdx.x and the inner loop is 

mapped to threadIdx.y.  

      The call to kernel function is:  

kernel<<<number of outer loop,number of inner loop>>>. 

CUDA kernel generates blocks and threads for execution. 

 

 

IV. EXPERIMENTATION 

 

A.   Platform 

      The spatial join is coded in C language for sequential 

version. CUDA C language is used in parallel version. 

Both versions run on Intel Core i3 530 DDR3 2.93 GHz   

2 GB memory. GPU NVIDIA GT440 1092 MHz.1024 

MB and CUDA 96 Cores. 

 

B. Dataset  

      In the experiment, the dataset is retrieved from R-Tree 

portal [12]. In the data preparation step the minimum 

bounding rectangles are pre-computed. The attributes in 

the dataset consist of Roads join River in Greece, Streets 

join Real roads in Germany. 

TABLE I DATASET IN EXPERIMENTATION 
 
 

Pair of dataset Amount 

MBRs 

Data size 

Greece   

Rivers join Roads 47,918 0.7 MB 

Germany   

Streets join Real roads  67,008 0.6 MB 

 

     Table 1 shows the number of MBRs and the size of 

dataset. All datasets are in text file. A C function is used 

to read data from a text file to data arrays. 
 

V. RESULT 

 

     Spatial join is tested with dataset in Table 1 with two 

functions (Overlap function of root nodes and Intersection 

function of children nodes). In the experiment, the time to 

read data from text files and stores them to data arrays is 

ignored. The execution time of spatial join operation 

between CPU and GPU is compared. The generation of R-

Tree is done on CPU in both sequential and parallel 

version. Only the spatial join operations are different. 
 

A. Performance comparison between sequential and 

parallel      

       The results are divided into two functions: overlap 

and intersect.  

TABLE II EXECUTION TIME ON GPU AND CPU 

 

Pair of 

dataset 

Overlap 

(ms)  

Intersection 

(ms) 

Total  

(ms) 

CPU GPU CPU GPU CPU GPU 

Greece       

Rivers 

join 

Roads 

18 4 72.67 22.33 90.67 26.33 

Germany       
Streets 

join Real 

roads  

5.33 4 74.00 39.67 79.33 43.67 

 

      The result in Table 2 shows that the execution time on 

GPU is faster than on CPU. For the dataset 1, the overlap 

function on GPU is 77.78% faster (4 ms versus 18 ms or 

about 4x); the intersection function is 69.27% faster (3x). 

The total execution time on GPU is 70.96% faster (3.4x). 

For the dataset 2, the overlap function on GPU is 25% 

faster (1.3x); the intersection function is 46.40%         



faster (1.8x). The total execution time on GPU is 44.96% 

faster (1.8x). The speedup depends on the data type as 

well. If data has larger numbers, the execution time is 

longer too. In the experiment, the dataset 1 is floating 

point data. It has six digits per one element. Execution 

time is higher than the dataset 2 because the dataset 2 has 

integer data. It has four digits per one element.                        

      The time to transfer data is significant. The data 

transfer time affected the execution time. The total 

running time in Table 2 includes the data transfer time 

from host to device and device to host. 

 
   
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 Transfer rate dataset 1, dataset 2 

 

       Figure 6 shows the data transfer rate on GPU. The 

dataset 1 has 47,918 records and its size is 0.7 MB. The 

data transfer time of this dataset is 59.53% of the 

execution time. The dataset 2 has 67,008 records and is 

0.6 MB. The data transfer time of this dataset is 76.83% 

of the execution time.          

 

VI. CONCLUSION 

       

      This paper describes how a spatial join operation with 

R-Tree can be implemented on GPU. It uses the multi-

processing units in GPU to accelerate the computation.  

The process starts with splitting objects and indexing data 

in R-Tree on the host (CPU) and copies them to the device 

(GPU). The spatial join makes use of the parallel 

execution of functions to perform the calculation over 

many processing units in GPU. 

      However using Graphic Processor Unit to perform 

general purpose task has limitations.  The symbiosis 

between CPU and GPU is complicate. There is a need to 

transfer data back and forth between CPU and GPU and 

the data transfer time is significant. Therefore, it may be 

the case that the data transfer time will dominate the total 

execution time if the task and the data are not carefully 

divided. 

      

      The future work will be on how to automate and 

coordinate the task between CPU and GPU. There are 

other database management functions that are suitable to 

be implemented in GPU too. It is worth the investigation 

as GPU becomes ubiquitous nowadays.   
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