
Arithmetic Coding Differential Evolution with Tabu
Search

Orawan Watchanupaporn
Department of Computer Science

Kasetsart University Sriracha Campus, Thailand
Email: orawan.liu@gmail.com

Worasait Suwannik
Department of Computer Science

Kasetsart University, Thailand
Email: worasait.suwannik@gmail.com

Prabhas Chongstitvatana
Department of Computer Engineering
Chulalongkorn University, Thailand

Email: prabhas@chula.ac.th

Abstract—This paper combines Arithmetic Coding Differen-
tial Evolution (ACDE) with Tabu Search. ACDE is a population
based binary optimization algorithm. Tabu Search is a local
search algorithm. The proposed algorithm can solve very difficult
problems reliably and quickly. From the experiment, it can always
find an optimum solution for 120-bit Trap, 256-bit HIFF, and 243-
bit hTrap in 23, 367, and 60 milliseconds respectively on Intel
Core i7. The number of evaluation, assumed being in a polynomial
class, is about O(n2.10), O(n2.45), and O(n1.92), where n is a
problem size.

Keywords—local search, population based search, binary opti-
mization.

I. INTRODUCTION

Search algorithms can be categoried into two classes: local
and population-based search. For each iteration in a local
search algorithm, neighbors of a point in a search space are
explored. For binary optimization problem, a point in a search
space is a binary string. Its neighbor is another binary string
with one bit difference. Examples of local search algorithms
are Hill Climbing, Simulated Annealing, and Tabu Search.
In contrast, for each iteration in a population based search
algorithm, several (unrelated or seemingly unrelated) points
in the search space are explored. Populations based search
algorithms includes Genetic Algorithm, Genetic Programming,
and Differential Evolution. The first one is a binary optimizer.

This paper proposes a hybrid of local and population-
based search algorithms. The goal is to solve difficult binary
optimization problems quickly. We combine Tabu Search with
an extension of Differential Evolution to solve 3 difficult binary
optimization problems: Trap, HIFF, and hTrap. From a prelim-
inary experiment, Tabu Search or Differential Evolution alone
cannot solve Trap problems reliably. However, a combination
can find the optimal solutions.

II. LITERATURE REVIEW

A. Estimation of Distribution Algorithms

Estimation of Distribution Algorithms (EDAs) is a new
class of Evolutionary Algorithm (EA). EDA evolves a popula-
tion in more principle manner than Genetic Algorithm (GA) [1]
[2], which is its predecessor. EDA builds a probabilistic model
of highly-fit chromosomes and generates a new population
from the model. EDAs can be categorized by the relationship
between variables: independent variable, bivariate dependen-
cies, and multiple dependencies [3]. For example, Compact

Genetic Algorithm (cGA) is a univariate EDA because it does
not model a relationship between variables [4]. MIMIC model
dependencies between two variables [5]. BOA [6], iBOA [7],
and hBOA [8] are multivariate EDA. The main advantage of
iBOA over BOA is that iBOA does not need to maintain a
population of candidate solutions thus memory requirement is
lower. hBOA is suitable for a hierarchical problem.

In this paper, we compare the performance of the proposed
algorithm with BOA, iBOA, hBOA. BOA and its successors
are considered as representative of state of the art binary
optimizers.

B. Arithmetic Coding Differential Evolution

Differential Evolution (DE) is an evolutionary algorithm
designed for solving real value optimization problems [9].
DE is a population-based algorithm. The first generation of
population is created randomly. A new generation is created
by the following methods. Each vector competes with its trial
vector. The one with less cost (i.e., the better one) is selected
to the next generation. A trial vector is created by combining
the original vector with a mutant vector. The combination is
similar to crossover in Genetic Algorithm. The mutant vector
is created by adding a random vector with a weight difference
of other two random vectors (hence the name Differential
Evolution). A pseudo of DE is shown in Figure 1. This code
is adapted from C code from [15].

DE performs very well in continuous optimization. DE is
adapted to solve binary optimization problem by using Arith-
metic Coding decompression algorithm [10]. The resulting
algorithm is called ACDE.

Arithmetic coding compression algorithm represents a bi-
nary string by two real numbers ranged between [0, 1) [11].
The first number is the probability that zero will occurs in the
binary string. The second number is the compressed message.
The first number is denoted by p and the second number is
denoted by c. The coding is best explained by an illustration.
The following example demonstrates a decompression of (p,
c) = (0.4, 0.6) to a 4-bit binary string. As shown in Figure 2,
p divides the interval [0, 1) into 2 sub-intervals: [0, 0.4) and
[0.4, 1). Since the compressed message c is in the second
sub-interval, the algorithm outputs 1. Next, the algorithm
partitions the second interval [0.4, 1) into two sub-intervals
proportional to p. The resulting subintervals are [0.4, 0.64)
and [0.64, 1). Since the compressed message c is in the
first sub-interval, the algorithm outputs 0. Then, the algorithm

while (!terminate()) {
for (i = 0; i < NP; i++) {

(a, b, c) = randomDifferentInts(NP)

j = randomInt(D)
for (k = 1; k <= D; k++) {

if (random() < CR || k == D)
trial[j] = x1[c][j] +

F*(x1[a][j]-x1[b][j])
else

trial[j] = x1[i][j]
j = (j+1) % D

}
score = evaluate(trial)
if (score <= cost[i]) {

cost[i] = score;
x2[i][j] = copyFrom(trial[j])

} else {
x2[i][j] = copyFrom(x1[i][j])

}
}
swapArray(x1, x2)

}

where
• randomDifferentInts(n)

returns random integers in [0, n). The returned numbers are
distinct.

• randomInt(n)
returns a random integer in [0, n).

• random()
returns a real number in [0, n).

Fig. 1. Differential Evolution pseudo code

partitions the first interval [0.4, 0.64) into two sub-intervals
proportional to p. The resulting sub-intervals are [0.4, 0.496)
and [0.496, 0.64). Since the compressed message c is in
the second sub-interval, the algorithm outputs 1. Finally, the
algorithm partitions the second interval [0.496, 0.64) into two
sub-intervals proportional to p. The resulting sub-intervals are
[0.496, 0.5536) and [0.5536, 0.64). Since the message c is in
the second sub-interval, the algorithm outputs 1.

The difference between ACDE and DE is in the evaluation
of a real-value vector. In ACDE, a real-value vector is an
array of c’s in Arithmetic Coding. p is not used in order to
reduce the dimension of the problem by half. A real value is
decompressed to a fixed-length binary string using Arithmetic
Coding. After that, all binary strings are concatenated. Then,
the resulting string is evaluated its fitness is returned to DE.
As a result, ACDE is an algorithm that evolves a population of
binary strings. A pseudo code of ACDE evaluation is shown
in Figure 3.

In this paper, we propose a combination of ACDE and Tabu
Search.

C. Tabu Search

Tabu Search [12] is a local search method. A local search
method starts from an initial candidate solution. After that,
it moves from the candidate solution to one of its neighbors.
Generating the list of neighbors is problem dependent. For
example, in Traveling Salesperson Problem (TSP), a neighbor
can be generated by swapping two cities in the path. Our

Fig. 2. Decompressing 4 bits from (p, c)=(0.4, 0.6). The output is 1011

acdeEvaluation(realVector) {
binaryString = decompress(realVector)
return evaluate(binaryString)

}

Fig. 3. The pseudo code of ACDE evaluation

TabuSearch {
sol = initial solution
while (not terminate())

neighbors = generate_neighbors(sol)
sol = select(neighbors,

tabu_list,
aspiration_criteria)

update(tabu_list)
update(aspiration_criteria)

return sol
}

Fig. 4. Tabu Search pseudo code

interested is to solve a generic binary optimization problem.
Thus, we generated a neighbor by flipping one bit in the binary
string. For example, suppose the current solution is 0100. Its
neighbors are 1100, 0000, 0110, and 0101.

Local search methods are varied by a neighbor selection
method. Hill Climbing selects the better neighbor with the best
objective value. If no such neighbor can be found, the search is
terminated. Simulated Annealing may select inferior neighbor
based on the objective value and period of the search. This
strategy can help avoiding a local optima. Tabu Search select
the best neighbor that is not restricted (hence the name tabu
search). The restriction avoid repetition and induces the search
to explore new region of search space. However, Tabu Search
may select a neighbor that is restricted if it meets an aspiration
criteria. An example of the criteria is the best solution ever
found during the search period. The pseudo code of Tabu
Search is shown in Figure 4.

In this paper, we use OpenTS framework of as an im-
plementation Tabu Search algorithm [13]. The framework is
written in Java, which is platform-independent and has large
amount of libraries. The framework provides both single and
multithreaded search. We use the single threaded search in this
paper.

III. PROPOSED ALGORITHM

The proposed algorithm, ACDETS, is almost the same
as ACDE except at the end of each iteration. At that point,
ACDETS sends the best vector to Tabu Search as an initial

bestRealVector = getBestRealVector()
binaryString = decompress(bestRealVector)
binaryString = tabuSearch(binaryString,

objectiveFn)
bestRealVector = compress(binaryString)

Fig. 5. The pseudo code of ACDETS at the end of each iteration

solution. After that, the result from Tabu Search is compressed
and replaces the best vector. The extra code is shown in Figure
5.

IV. EXPERIMENT

A. Test Problems

1) Trap: We compare the performance using Trap problem.
Trap problem is a binary optimization problem. The problem
is designed to resist Hill Climbing search. To calculate an
objective value, a binary string is decomposed to groups of
k bits. Each group may contain contiguous or noncontiguous
bits. Trap problems with contiguous and noncontiguous bit
groups are referred to as Trapc and Trapnc respectively. The
equation of Trapc (group size 5) is defined as:

trapc(X) =

|X|/5∑
i=1

f(u(block(X, i)))

where

• block(X ,i) returns the ith block of X . Each block has
5 bits.

• u(X) =
∑

b∈X b

• f (n) returns 4, 3, 2, 1, 0, 5 when n is 0, 1, 2, 3,
4, 5 respectively. This function fools a hill climbing
algorithm to return all 0’s but a better solution is all
1’s.

The optimal solution of Trapc is all 1’s. In [7], Trapc is
the only benchmark problem for comparing the performance of
iBOA and BOA. However, in this paper, we do not use Trapc
because Tabu Search can solve Trapc much more efficiently
than iBOA and BOA (see Table IV).

The optimal solution of Trapnc is also all 1’s. ACDE
uses compression algorithm which has bias towards regular
solution. Therefore, we use Trapr, a random version of
Trapnc problem. The optimal solution is randomly generated
for each run. The function u is replaced by a function that
counts the number of bits in a candidate solution that match
the corresponding bit in the optimal solution.

2) HIFF: HIFF (hierarchical if and only if) is a binary
optimization problem with a hierarchical structure [14]. The
problem is designed to have strong dependencies and have
a recursive property. Hill Climbing algorithm cannot find
optimal solution of this problem. The problem size is 2k,
where k ≥ 2. Each bit in a binary string is a value of a leaf
of a perfect binary tree. The tree is evaluated bottom up. A
leaf node contribute to the objective value by 1. Another node
contributes by 2h where h is its height. It will contribute if
its children are both 0’s or 1’s. The value of an interior node

is 1 if both children are 1 (and same for 0). Otherwise, its
value will be neither 0 nor 1 (represented by -). The objective
value of the whole string is summation of contribution from
all nodes. The HIFF is defined as:

hiff(X) =

{
1, if c1
hiff(XL) + hiff(XR) + |X|, if c2
hiff(XL) + hiff(XR), otherwise

where

• c1 is |X| = 1

• c2 is |X| > 1 and (∀b∈X(b = 0) or (∀b∈X(b = 1))

• X = XL||XR and |XL| = |XR|

In this paper, we use a random version of HIFF, which
is called HIFFr. Calculating an objective value is the same
as HIFF except for a parent of a leaf node. The parent will
contribute if both or neither children match the corresponding
part of optimal solution, which is randomly generated for each
run. If both leaves match the corresponding part, its parent will
be 1. If neither match, its parent will be 0. Otherwise, its parent
is -.

3) hTrap: hTrap (hierarchical Trap) is similar to HIFF
problem [8]. However, its structure is a perfect k-ary tree. In
this paper, k=3 is used. An interior node contribute by 3h

multiply by a value return from a trapother function. For
k=3, the returned value is 1.0, 0.5, 0.0, or 1.0 if there are 0,
1, 2, or 3 children that are 1’s. The root will contribute using
multiplication of 3h and a value returned from a traproot
function. For k=3, the returned value is 0.90, 0.45, 0.00, or
1.00 if there are 0, 1, 2, or 3 children that are 1’s. A node will
not contribute if it has a child with -.

The hTrap is defined as:

ht(X) =

{
0, if c1
ht(XL) + ht(XC) + ht(XR) + f(X), if c2
ht(XL) + ht(XC) + ht(XR), otherwise

where

• c1 is |X| = 1

• c2 is |X| > 1 and (∀p∈{L,C,R}∀b∈Xp
(b = 0)

or (∀p∈{L,C,R}∀b∈Xp(b = 1))

• X = XL||XC ||XR and |XL| = |XC | = |XR|
• f(X) = trap(g(X), |X|)

• g(X) = u(X)

3log3|X|−1

• trap(C, S) =

{
traproot(C), if S = problem size
trapother(C), otherwise

• traproot(C) = 0.90, 0.45, 0.00, or 1.00 if C = 0, 1,
2, or 3 respectively.

• trapother(C) = 1.00, 0.50, 0.00, or 1.00 if C = 0, 1,
2, or 3 respectively.

In this paper, hTrapr, a random version of hTrap, is used.

TABLE I. ACDETS PARAMETERS FOR Trapr

Parameter
Problem size (bit)

15 30 60 120

NP 300 600 1200 2400
Tenure size 12 25 50 100

Iteration 15 30 60 120

TABLE II. ACDETS PARAMETERS FOR HIFFr

Parameter
Problem size (bit)
64 128 256

NP 80 160 320
Tenure size 40 70 130

Iteration 40 70 130

TABLE III. ACDETS PARAMETERS FOR hTrapr

Parameter
Problem size (bit)
27 81 243

NP 30 90 270
Tenure size 8 15 30

Iteration 27 50 100

B. Description of Experiment

We run the experiment 100 times. The number of the run is
used as a seed to random the optimal solution of each run. The
experiment focus on the number of successful runs, number
of evaluations, and running time. ACDETS is implemented in
Java. The program runs on 2.3GHz Intel Core i7 with 4GB
1333MHz DDR3. The operating system is Mac OS X 10.9.2.

1) Arithmetic Coding Parameter: The number of de-
compressed bit per DE real value is 5, 9, and 8 for Trapr,
HIFFr, and hTrapr respectively. Those numbers divides
problem sizes in the experiment. This parameter affects the
size of DE real vector and DE population size. For example, a
120-bit Trapr problem requires 24 real numbers in a DE real
value vector. Note that, even though this parameter for Trapr
is equal to the size of a group in Trapr problem, this would
not help finding the solution. This is because bits in a group
is not usually located contiguously.

2) Differential Evolution Parameters: For all prob-
lems, NP (i.e., DE population size) is set to 10 times the size
of real value vector (see Table I to III). F (i.e., a DE weight)
and CR (i.e., probability that a real value in DE is from a noisy
random vector) are set to 0.5. Those parameters are suggested
in [15]. The maximum number of generation is 100, which is
enough to find the optimal solution.

3) Tabu Search Parameters: The number of TS itera-
tions has significant effect on the performance of the overall
algorithm. A single ACDE iteration evaluates NP real vectors,
which is not more than twice the problem size (in bits).
However, each TS iteration evaluates all neighbors of a binary
string, which number is equal to the problem size (in bits). A
number of iterations and tenure size are obtained by trial and
error (see Table I to III).

V. RESULT

We compare the performance of each optimization algo-
rithm which are BOA, iBOA, and ACDETS based on the num-
ber of evaluations. Optimization will stop when the optimum is

TABLE IV. TABU SEARCH ON VARIOUS 120-BIT TRAP PROBLEMS

Problem No. of evaluations Avg. best fitness (%found) Time (ms)

Trapc 16909.00 −120.00 (100) 6.72
Trapnc - −100.30 (0) -
Trapr - −100.36 (0) -

TABLE V. PERFORMANCE OF VARIOUS ALGORITHMS TESTED ON
120-BIT Trapr PROBLEM

Algorithm Avg. best fitness (%found) Time (ms)

TS −114.47 (0) -
ACDE −74.55 (0) -
ACDETS −120.00 (100) 29.21

TABLE VI. PERFORMANCE OF BOA IN SOLVING Trapc PROBLEM

Problem size Evaluations Time (ms)

15 4550 15.16
30 13300 88.68
60 36400 748.67
120 95200 8579.34

found. The numbers of BOA and iBOA are estimation obtained
from [7].

For DE, the lower objective value means the better solution.
Thus, the result from each objective function is multiplied by
-1.

A. Trapr

Table V shows the average best fitness and running time
of TS, ACDE, and ACDETS on 120-bit Trapr problem. The
number in the parenthesis is the percentage of success. TS
and ACDE cannot find the optimal solution of Trap. However,
their combination (ACDETS) can solve the problem reliably
and efficiently. This shows that local search can improve the
performance of ACDE.

We cannot find the report on the running time of BOA and
hBOA. Therefore, we conduct a small experiment to measure
a BOA running time. We used the C++ BOA code written
by Martin Pelikan [16]. The population sizes are 700, 1400,
2800, and 5600 for 15-, 30-, 60-, and 120-bit problems. The
seed is set to 123. The result is shown in Table VI. The average
running time for BOA is in O(n3.05) seconds while the average
running time for ACDETS is in O(n1.61) seconds. To solve
a 120-bit problem, BOA takes 0.09012 ms per evaluation on
average while ACDTS takes 0.00067 ms per evaluation (135
times faster). hBOA code is not available for download.

B. HIFF

Table VIII shows the average number of evaluations re-
quired by hBOA and ACDETS to solve HIFF and HIFFr

problems respectively. We do not have the data of number of
generation and running time for hBOA. Therefore, we only
compare the average number of evaluations of hBOA and
ACDETS. The result show that hBOA outperforms ACDETS
in terms of the number of evaluation. However, in terms of
running time per one objective evaluation, ACDETS should
be faster due to its simplicity.

TABLE VII. PERFORMANCE OF ACDETS (ON Trapr) AND BOA (ON
Trapc). NOTE THAT THE NUMBERS OF BOA AND IBOA ARE ROUGH

ESTIMATION OBTAINED FROM [7]

Problem size Algorithm No. of evaluations Gen. Time (ms)

15 ACDETS 429.21 1.71 0.81
BOA 3000.00 - -
iBOA 8000.00 - -

30 ACDETS 1837.22 2.12 1.43
BOA 10000.00 - -
iBOA 20000.00 - -

60 ACDETS 7782.01 2.41 4.33
BOA 50000.00 - -
iBOA 60000.00 - -

120 ACDETS 34086.28 2.68 22.97
BOA - - -
iBOA - - -

TABLE VIII. PERFORMANCE OF ACDETS (ON HIFFr) AND HBOA
(ON HIFF). NOTE THAT THE NUMBERS OF HBOA ARE ROUGH

ESTIMATION OBTAINED FROM [8]

Problem size Algorithm No. of evaluations Gen. Time (ms)

64 ACDETS 8592.32 3.52 5.94
hBOA 7000.00 - -

128 ACDETS 46665.86 5.38 42.47
hBOA 25000.00 - -

256 ACDETS 257006.28 7.88 368.86
hBOA 85000.00 - -

TABLE IX. PERFORMANCE OF ACDETS (ON hTrapr) AND HBOA
(ON HTRAP). NOTE THAT THE NUMBERS OF HBOA ARE ROUGH

ESTIMATION OBTAINED FROM [8]

Problem size Algorithm Fitness Evaluation Gen. Time (ms)

27 ACDETS −27.00 685.34 1.16 0.92
hBOA 3000.00 - -

81 ACDETS −108.00 5525.37 1.89 4.02
hBOA 30000.00 - -

243 ACDETS −405.00 46151.31 2.10 59.81
hBOA 200000.00 - -

TABLE X. THE PERFORMANCE OF TS ON hTrapr PROBLEM

Problem size Tenure Iteration Evaluation

27 10 100 690.85
81 15 200 4859.38
243 20 300 44370.37

C. hTrap

ACDETS outperforms hBOA in hTrap in terms of the
number of evaluations (see Table IX). In fact, TS alone can
outperform hBOA (see Table X). The result is surprising
because hTrap is supposed to be the most difficult problem
in this experiment.

VI. DISCUSSION

We conduct another experiment to see the interaction
between Tabu Search and ACDE. At the end of each iteration,
ACDETS selects the best solution and uses it as initial solution
for Tabu Search. Table XI to XIII shows how much Tabu
Search can improve the best solution of each ACDE iteration
in solving 120-bit Trapr 256-bit HIFFr, and 243-bit hTrapr
problem. The column Run shows the number of runs that

TABLE XI. IMPROVEMENT OF THE BEST SOLUTION OF EACH
ITERATION OBTAINED FROM ACDE IN 120-BIT Trapr PROBLEM BY TABU

SEARCH

Generation Improvement Run

1 56.13 100
2 3.74 100
3 1.11 79
4 1.00 1

TABLE XII. IMPROVEMENT OF THE THE BEST SOLUTION OF EACH
ITERATION OBTAINED FROM ACDE IN 120-BIT HIFFr PROBLEM BY

TABU SEARCH

Generation Improvement Run

1 524.06 100
2 299.90 100
3 196.72 100
4 141.60 100
5 124.08 98
6 113.43 87
7 163.32 77
8 202.43 61
9 212.31 39

10 231.83 23
11 248.00 11
12 278.40 5
13 384.00 1

TABLE XIII. IMPROVEMENT OF THE BEST SOLUTION OF EACH
ITERATION OBTAINED FROM ACDE IN 120-BIT hTrapr PROBLEM BY

TABU SEARCH

Generation Improvement Run

1 122.38 100
2 216.63 100
3 124.7 14

reach the corresponding generation. Note that for Trap problem
changing objective value from 119 to 120 (i.e., the optimal
solution), Tabu Search has to change at least 5 bits.

In this paper, we use simplest scheme of Tabu Search. The
scheme requires 2 parameters; number of iteration and tenure
size. Lowering the number of iterations will significantly
reduce number of overall evaluations. This is because, for 120-
bit Trapr experiment, Tabu Search evaluates 40 times more
than ACDE. However, when the number of iteration is changed
from 160 to 80, the solution can be found only 15%. Similarly,
when tenure size is changed from 100 to 50, the solution can
be found only 11%.

VII. CONCLUSION

This paper combines ACDE with Tabu Search. Each al-
gorithm alone cannot solve Trapr, and HIFFr problems.
However, the combination, ACDETS, can always find the
optimal solution for all test problems in the experiment. Its
speed is vary fast. However, to be successfully solving various
sizes of problems, adjusting Tabu Search parameter is required.

ACKNOWLEDGMENT

The authors would like to thank Thotsaporn Thanati-
panonda for suggesting how to calculate scalability.

REFERENCES

[1] D.E. Goldberg, Genetic Algorithms in Search, Optimization, and Ma-
chine Learning, Addison-Wesley, 1989.

[2] M. Mitchell, An Introduction to Genetic Algorithms, MIT Press, 1998.
[3] T.K. Paul and H. Iba, “Linear and Combinatorial Optimizations by

Estimation of Distribution Algorithms,” In Proceedings of 9th MPS
Symposium on Evolutionary Computation (IPSJ), 2002.

[4] G. Harik, F.G. Lobo, D.E. Golberg, “The compact genetic algorithm.” In
Proceedings of the IEEE Conference on Evolutionary Computation, pp.
523-528, 1998.

[5] J.S. De Bonet, C.L. Isbell, and P. Viola, “MIMIC: Finding optima
by estimating probability densities,” Advances in Neural Information
Processing Systems, 9, 1997.

[6] M. Pelikan, D.E. Goldberg, and E. Cantú-Paz, “BOA: The Bayesian
optimization algorithm,” In Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO), pp. 525-532, 1999.

[7] M. Pelikan, K. Sastry, and D.E. Goldberg, “iBOA: The Incremental
Bayesian Optimization Algorithm,” In Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO), ACM Press, pp. 455-
462, 2008.

[8] M. Pelikan and D.E. Goldberg, “Escaping hierarchical traps with compe-
tent genetic algorithms,” In Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO), pp. 511-518, 2001, Also IlliGAL
Report No. 2000020.

[9] R. Storn and K. Price, “Differential Evolution-A simple and ef-
ficient adaptive scheme for global optimization over continuous
spaces,”Technical Report TR-95-012, ICSI, March, 1995.

[10] O. Watchanupaporn and W. Suwannik, “Arithmetic Coding Differential
Evolution for Binary Encoding,” Advances in Information Technology
and Applied Computing (AITAC) ISSN 2251-3418, vol.1, pp. 155-158,
2012.

[11] J. Rissanen, “Generalized Kraft Inequality and Arithmetic Coding,”
IBM J. Res. Develop., vol. 20, pp. 198-203, 1976.

[12] F. Glover, Tabu Search: A Tutorial, Interface, pp. 74-94, 1990.
[13] R. Harder, OpenTS, http://www.coin-or.org/Ots, accessed April. 8.

2014.
[14] R. Watson, G.S. Hornby, and J.B. Pollack, “Modeling Building-Block

Interdependency,” In Parallel Problem Solving from Nature - PPSN V,
Lecture Notes in Computer Science, Springer, vol. 1498, pp.97-106,
1998.

[15] K. Price and R. Storn, “Differential Evolution,” Dr.Dobb’s Jour-
nal, http://www.drdobbs.com/database/differential-evolution/184410166,
1997, accessed April. 8. 2014.

[16] M. Pelikan, “A Simple Implementation of Bayesian Optimization Al-
gorithm in C++ (Version 1.0),” Illigal Report 99011, February 1999.

