
A Survey of Optimization Techniques Targeting Low Power VLSI Circuits

Srinivas Devadas Sharad Malik
Massachusetts Institute of Technology Princeton University

Department of EECS Department of EE

Abstract—We survey state-of-the-art optimization methods
that target low power dissipation in VLSI circuits. Optimizations
at the circuit, logic, architectural and system levels are considered.

Keywords—low power, optimization, synthesis

I. INTRODUCTION

Power dissipation has emerged as an important design parameter in
the design of microelectronic circuits, especially in portable computing
and personal communication applications. In this paper, we survey
state-of-the-art optimization methods that target low power dissipation
in VLSI circuits. Optimizations at the circuit, logic, architectural and
system levels are considered.

Sources of power dissipation in CMOS devices are summarized by
the following expression:

P =
1
2
�C �V 2

DD � f �N + QSC �VDD � f �N + Ileak �VDD (1)

where P denotes the total power, VDD is the supply voltage, and f is
the frequency of operation.

The first term represents the power required to charge and discharge
circuit nodes. Node capacitances are represented byC. The factor N
is the switching activity, i.e., the number of gate output transitions per
clock cycle.

The second term in Eqn. 1 represents power dissipation during
output transitions due to current flowing from the supply to ground.
This current is often called short-circuit current. The factor QSC

represents the quantity of charge carried by the short-circuit current
per transition.

The third term in Eqn. 1 represents static power dissipation due
to leakage current Ileak. Device source and drain diffusions from
parasitic diodes with bulk regions. Reverse bias currents in these
diodes dissipate power. Subthreshold transistor currents also dissipate
power. In the sequel, we will refer to the three terms above as switching
activity power, short-circuit power and leakage current power.

Most of the optimizations described in the following sections con-
centrate on minimizing switching activity power at various levels
of abstraction. In VLSI circuits that use well-designed logic-gates,
switching activity power accounts for over 90% of the total power
dissipation [8].

II. CIRCUIT LEVEL

We survey optimizations that reduce switching activity power of
individual logic-gates and transistor-level combinational circuits in
this section.

A. Complex Gate Design

In the design of complex gates, e.g., f = (a+ b) � c, choices
regarding the placement of individual transistors in the gate can be
made. For example, in the N part of the CMOS gate implementing the
above function f , the parallel transistor pair a + b can be connected
to the gate output or the transistor driven by c can be connected to the
gate output. Similarly, given g = a � b � c, any serial ordering of a, b
and c can be chosen in the N part of a CMOS gate implementing g.

It is well known that late arriving signals should be placed closer to
the output to minimize gate propagation delay. However, the average
power dissipated is dependent on the transition probabilities of the
gate inputs and the internal node capacitances. (Internal node capaci-
tance is due to parasitic drain and source capacitance and interconnect
capacitance.)

Ordering of gate inputs will affect both power and delay. In [32]
and [42] methods to optimize the power and/or delay of logic-gates
based on transistor reordering are given. Moderate improvements in
power and delay can be obtained by a judicious ordering of transistors
within individual complex gates.

B. Transistor Sizing

Transistor sizing in a combinational gate circuit can have significant
impact on circuit delay and power dissipation. If the transistors in a
given gate are increased in size, then the delay of the gate decreases,
however, power dissipated in the gate increases. Further, the delay of
the fanin gates increases because of increased load capacitance.

Given a delay constraint, finding an appropriate sizing of transis-
tors that minimizes power dissipation is a computationally difficult
problem. A typical approach to the problem is to compute the slack at
each gate in the circuit, where the slack of a gate corresponds to how
much the gate can be slowed down without affecting the critical delay
of the circuit. Subcircuits with slacks greater than zero are processed,
and the sizes of the transistors reduced until the slack becomes zero, or
the transistors are all minimum size. Variants of the above approach
are presented in [42] and [3].

III. LOGIC LEVEL

We survey optimizations that reduce switching activity power of
logic-level combinational and sequential circuits in this section.

A. Combinational

Combinational logic optimization has traditionally been decom-
posed into two phases: technology-independent optimization and
technology-dependent optimization. In the first phase logic equa-
tions are manipulated to reduce area, delay or power dissipation. In
the second phase the equations are mapped to a particular technol-
ogy library using technology mapping algorithms, again optimizing
for area, delay or power. For a comprehensive treatment of combi-
national logic synthesis methods targeting area and delay, see [13].
In this section we will survey recently proposed methods to optimize
combinational circuits for low power dissipation.

32nd ACM/IEEE Design Automation Conference
Permission to copy without fee all or part of this material is granted, provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission. 1995 ACM 0-89791-756-1/95/0006 $3.50

A.1 Don’t-care Optimization

Any gate in a combinational circuit has an associated controllability
and observability don’t-care set. The controllability don’t-care set
corresponds to the input combinations that never occur at the gate
inputs. The observability don’t-care set corresponds to collections of
input combinations that produce the same values at the circuit outputs.
Methods to reduce circuit area and improve delay exploiting don’t-
care sets have been presented (e.g., [37]). The power dissipation of
a gate is dependent on the probability of the gate evaluating to a 1 or
a 0. This probability can be changed by utilizing the don’t-care sets.
A method of don’t-care optimization to reduce switching activity and
therefore power dissipation was presented in [38]. This method was
improved upon in [19] where the effect of don’t-care optimization of
a particular gate on the gates in its transitive fanout is considered.

A.2 Path Balancing

Spurious transitions account for between 10% and 40% of the
switching activity power in typical combinational logic circuits [16].
In order to reduce spurious switching activity, the delays of paths that
converge at each gate in the circuit should be roughly equal. By selec-
tively adding unit-delay buffers to the inputs of gates in a circuit, the
delays of all paths in the circuit can be made equal. This addition will
not increase the critical delay of the circuit, and will effectively elim-
inate spurious transitions. However, the addition of buffers increases
capacitance which may offset the reduction in switching activity.

Methods to reduce rather than completely eliminate spurious
switching activity, while adding a minimal number of unit-delay
buffers have been proposed. The design of a multiplier with tran-
sition reduction circuitry that accomplishes glitch reduction by path
balancing is described in [25].

A.3 Factorization

A primary means of technology-independent optimization is the
factoring of logical expressions. For example, the expression a � c+
a � d + b � c + b � d can be factored into (a + b) � (c + d) reducing
transistor count considerably. Common subexpressions can be found
across multiple functions and reused. Kernel extraction is a commonly
used algorithm to perform multilevel logic optimization for area [5].
In this algorithm, the kernels of the given expressions are generated
and kernels that maximally reduce literal count are selected. When
targeting power dissipation, the cost function is not literal count but
switching activity. Modified kernel extraction methods that target
switching activity power are described in [35].

B. Technology Mapping

Once optimized logic equations have been obtained, the task re-
mains to map the equations into a target library that contains optimized
logic-gates in the chosen technology. A typical library will contain
hundreds of gates with different transistor sizes. Modern technol-
ogy mapping methods use a graph covering formulation, originally
presented in [20], to target area and delay cost functions.

The graph covering formulation of [20] has been extended to the
power cost function. Under the zero delay model, the optimal mapping
of a tree can be determined in polynomial time, by extending the
algorithm of [20]. Various approaches to technology mapping that
assume different delay models and target minimal power dissipation
have been described [43] [48] [26].

C. Sequential

We survey methods to optimize sequential circuits for low power
in this section. Sequential logic optimization methods work at two
levels of abstraction; 1) at the State Transition Graph level and 2) at
the logic-gate and flip-flop level.

C.1 Encoding

State encoding for minimal area is a well-researched problem [2].
These methods have to be modified to target a power cost function,
namely, weighted switching activity. Intuitively, if a state s has a
large number of transitions to state q, then the two states should be
given uni-distant codes, so as to minimize switching activity at the
flip-flop outputs. However, the complexity of the combinational logic
resulting from a state assignment should not be ignored. Methods to
encode State Transition Graphs to produce two-level and multilevel
implementations with minimal power are described in [35] and [47]. A
method to re-encode logic-level sequential circuits to minimize power
dissipation is presented in [18].

Encoding to reduce switching activity in datapath logic has also
been the subject of attention. A method to minimize the switching on
buses is proposed in [39]. In this technique, an extra lineE is added to
the bus which signifies if the value being transferred is the true value
or needs to be bitwise complemented upon receipt. Depending on the
value transferred in the previous cycle, a decision is made to either
transfer the true current value or the complemented current value, so as
to minimize the number of transitions on the bus lines. For example, if
the previous value transferred was 0000, and the current value is 1011,
then the value 0100 is transferred instead, and the lineE is asserted to
signify that the value 0100 has to be complemented at the other end.
Other methods of bus coding are also proposed in [39].

Methods to implement arithmetic units other than in standard two’s
complement arithmetic are also being investigated. A method of one-
hot residue coding to minimize switching activity of arithmetic logic
is presented in [11].

C.2 Retiming

Retiming [24] is a well-known optimization method that reposi-
tions the flip-flops in a synchronous sequential circuit so as to minimize
the required clock period. Polynomial-time algorithms for minimum-
delay retiming and minimum-register retiming have been developed.

It has been observed that the switching activity at flip-flop outputs
in a synchronous sequential circuit can be significantly less than the
activity at the flip-flop inputs. This is because there may be many
spurious transitions at the inputs to the flip-flops which are filtered out
by the clock. A retiming method that exploits the above observation
and targets the power dissipation of a sequential circuit is described in
[29].

C.3 Gated Clocks

Large VLSI circuits such as processors contain register files, arith-
metic units and control logic. The register file is typically not accessed
in each clock cycle. Similarly, in an arbitrary sequential circuit, the
values of particular registers need not be updated in every clock cycle.
If simple conditions that determine the inaction of particular registers
can be determined, then power reduction can be obtained by gating the
clocks of these registers [9]. When these conditions are satisfied, the
switching activity within the registers is reduced to negligible levels.

The same method can be applied to “turn off” or “power down”
arithmetic units when these units are not in use in a particular clock

C > D

R1

R3

LE

R2

C<n−1>

D<n−1>

C<n−2>

D<n−2>

C<0>

D<0>

R1 R2C > D

(a)

(b)

Fig. 1. Precomputation Applied to a Comparator

cycle. For example, when a branch instruction is being executed
by a CPU, a multiply unit may not be used. The input registers to
the multiplier are maintained at their previous values, ensuring that
switching activity power in the multiplier is zero for this clock cycle.

C.4 Precomputation

The gated clock paradigm of the previous section can be carried
much further. Given a logic-level circuit and a particular input stim-
ulus, if idling subcircuits can be detected which do not contribute to
the computation of the output response for this input stimulus, power
reduction can be obtained by “turning off” the idling subcircuits. A
technique called precomputation, originally presented in [1], achieves
data-dependent power down at the sequential logic or combinational
logic level.

In a sequential precomputation architecture, the output logic values
of a circuit are selectively precomputed one clock cycle before they
are required, and these precomputed values are used to reduce internal
switching activity in the succeeding clock cycle. An example of one
such architecture applied to a comparator circuit is shown in Figure 1,
taken from [1].

The circuit of Figure 1(a) is an n-bit comparator that compares
two n-bit numbers C and D and computes the function C > D. The
circuit with additional precomputation logic is shown in Figure 1(b).
The precomputation logic is the logic that is connected to the load
enable signal of the registers marked LE.

LE = Chn� 1i
 Dhn� 1i

where
 stands for the exclusive-nor operator.
When the XNOR gate evaluates to a 0, the load enable signal for the

registers connected to Chn � 2 : 0i and Dhn � 2 : 0i is turned off.
This means that the outputs of these registers do not switch in the next
cycle. The correct value for the output is computed even though these
input hold possibly erroneous values because either:

� Chn � 1i = 1 and Dhn � 1i = 0 in which case the output is a
1 regardless of Chn� 2 : 0i and Dhn� 2 : 0i, or

� Chn � 1i = 0 and Dhn � 1i = 1 in which case the output is a
0 regardless of Chn� 2 : 0i and Dhn� 2 : 0i.

The reduction in power dissipation is a function of the probability
that the XNOR gate evaluates to a 0. Other inputs can be added to the
precomputation logic to increase power reduction.

If transparent latches are used in the place of flip-flops, the transfor-
mation of Figure 1(b) is applicable to combinational circuits. Various
sequential and combinational architectures described in [1] have been
developed further. Given a combinational circuit, algorithms to deter-
mine the subcircuits to be turned off, and the logic required to perform
the disabling are presented in [30] and [44]. The techniques of [30]
use universal quantification to determine the subcircuits and those of
[44] use observability don’t-care sets to determine the subcircuits.

A method to reduce switching activity in finite state machines by
checking for loop-edges in the State Transition Graph of the machine,
and disabling the computation of the next state for these edges is
presented in [4].

IV. ARCHITECTURE OR BEHAVIOR LEVEL

We survey power analysis methods and optimizations for low
power at the architecture level in this section.

A. Architecture Level Power Analysis

The estimation or analysis of the power consumption of a design
is a first step towards incorporating power optimization techniques in
a synthesis system. Without adequate analysis techniques, it is im-
possible to evaluate the various designs in the solution space explored
during synthesis. Even outside of synthesis, power analysis tools
can be of great use to designers, by helping them explore the design
space manually. A direct method for power analysis is to translate the
given high-level architecture description to the gate, circuit, or physi-
cal level; at which point reasonably accurate low-level power analysis
tools can be utilized. (For a survey of available tools at the gate level
see [31].) This method is obviously infeasible if a large number of
design alternatives have to be evaluated, which is the case in synthesis.
Reasonable power models, however, can be built if the final lower level
circuit style, module and gate library, etc., are fixed, or at the least,
restricted in some way. The lower level analysis tools can then be
used to create power models for the underlying architecture primitives
such as datapath execution units, control units, memory elements, and
interconnect. The power models are obtained by characterizing the
estimated capacitance that would switch when the given module is
activated. This approach is used in [15]. In [21], [22], known signal
statistics are used to obtain models that are more accurate than those
obtained from using random input streams. What is needed for this
is an estimate of the activity for each module. Activity factors for
the modules can be obtained from functional simulation over typical
input streams, or from statistical/analytical models that are built where
possible. An alternate simulation based approach is described in [36]
where average power costs are assigned to individual modules, in iso-
lation from other modules. During simulation, the power costs of the
modules involved in the given computation are added up. This method
ignores the correlations between the activities of different modules.

Other specialized approaches for architecture-level power estima-
tion have been developed. These tend to be less accurate than the above
methods, but may be acceptable since they are intended to provide only
rough predictions. A model for estimating the power consumption of
CMOS chips using gate counts, memory size, logic styles, and layout

styles is described in [41]. A power model to evaluate the power
cost of cache options, and multiple function units is developed in [6]
and [12], respectively.

Several of the synthesis methods surveyed in the following sections
use power models or estimation methods that have been tailored to their
application domain and search method.

B. Power Optimizations in Behavioral Synthesis

Behavioral synthesis refers to the process of mapping a high-level
specification of a problem into a register-transfer level design. The
high-level specification is typically in the form of a data-flow graph
and a control-flow graph or a combination of the two. There has been
some recent work that has addressed the optimizations for low-power
that are possible at this level.

The input high-level specification can be modified through specific
transformations that potentially lead to power reduction. The most im-
portant transformations for fixed throughput systems are those which
reduce the number of control steps. Slower clocks can then be used
for the same throughput, enabling the use of lower supply voltages.
The quadratic decrease in power consumption can compensate for the
additional capacitance introduced due to transformations that increase
concurrency. Transformations that reduce the amount of resources
needed to implement a given graph can be extended to reduce the
amount of capacitance that switches. A number of these transforma-
tions are used in an automated system as described in [7]. The trans-
formations are guided by a power estimation method that is based on
the parameters of the given data/control flow specification, such as
the number of operations of each kind, number of edges, etc. [27].
Specific transformations for DSP circuits are studied in [10].

After the initial specification (data/control flow graph) has been
transformed, the individual operations have to be assigned control
steps (scheduling) and execution units or modules (allocation and as-
signment). If a number of modules, with a range of power/delay costs,
is available for implementing the given operations types, an appro-
priate choice of modules can lead to lower power costs for the same
performance [17]. The allocation and assignment processes map op-
erations in the control/data flow graph to functional units, variables
to registers, and define the interconnect between them in terms of
multiplexers and buses. The decisions made during these processes,
including the extent of hardware sharing and the sequence of opera-
tions (variables) mapped to each functional unit (register), affect the
total switched capacitance in the data path. The problem of mini-
mizing this switched capacitance, while accounting for correlations
between signals is addressed in [33], [34].

The power consumed in memories can be a major part of the system
power consumption. This problem is addressed in [14] in the context
of multi-dimensional signal processing subsystems. It is noted that the
memories impact power in two ways. First, memory accesses consume
a lot of power, especially if the access is off-chip, and second, the
greater the size of memory, the greater is the capacitance that switches
per access. Control flow transformations, such as loop reordering are
presented to try to minimize the memory component of the overall
system power consumption.

Several specific design examples illustrate some of the architectural
and algorithmic tradeoffs and optimizations that can be used for low
power designs. Besides recent issues of the various journals and
proceedings that deal with VLSI circuit design, the proceedings of
the 1994 IEEE Symposium on Low Power Electronics and the 1994
International Workshop on Low-Power Design are a good source for
these design examples.

V. SYSTEM AND SOFTWARE LEVEL

An increasing fraction of applications are now being implemented
as embedded systems. These systems consist of a hardware and a soft-
ware component. The software component is application-specific soft-
ware running on a dedicated microprocessor/application specific pro-
cessor (ASP), while the hardware component consists of application-
specific circuits. Hardware-based power estimation and optimization
approaches are not completely applicable here, since a major part of
the functionality is in the form of instructions as opposed to gates.
This motivates the need to consider the power consumption in micro-
processors from the point of view of software. This has largely been
neglected until recently, since accurate power analysis tools existed
only at the circuit or gate level. It is either impractical or impossible
to use these to analyze the power consumption over large programs; a
preliminary step in alleviating these difficulties is taken in [28] where
sequential circuit estimation methods have been extended to handle
the case of processors executing specific programs.

These problems can be overcome if the current being drawn by
the CPU during the execution of a program is physically measured.
An inexpensive and practical technique in this regard has been devel-
oped [46] for analyzing the power cost of programs for a given CPU.
It has been successfully applied to develop instruction-level power
models for some commercial CPUs. While the measurement based
technique can only be applied to existing CPUs, its basic methodol-
ogy can be adapted to use architecture-level power simulators, some
of which were described in Section IV-A.

Given the ability to evaluate programs in terms of their
power/energy costs, it is possible to search the design space in software
power optimization. The choice of the algorithm used can impact the
power cost since it determines the runtime complexity of a program.
This issue is explored in [49]. Automated tools for synthesizing the
optimum algorithm, however, are not available, and this is a very dif-
ficult problem. The process of compilation or code-generation can
also impact the power cost, since there exist many mappings from
a high-level source program into machine code. If power costs of
individual instructions are available, an appropriate choice of instruc-
tions in the generated code can lead to a reduction in the power cost.
This aspect has been studied in the context of specific CPUs [45].
An important lesson learned here is that faster code almost always
implies lower energy code. In addition, register allocation can have a
significant affect on the power consumed, since register operands are
much cheaper than memory operands. This implies that optimizations
and transformations aimed at improving performance, and reducing
memory accesses will lead to energy efficient code.

It has been noted that the order of instructions can also have an
impact on power since it determines the internal switching in the CPU.
A scheduling technique has been presented to reduce the estimated
switching in the control path of the CPU [40]. Experiments reveal that
this may not be an important issue for large general purpose CPUs [46].
However, scheduling of instructions does have an impact in the case of
a smaller DSP processor [23]. An additional optimization applicable
for this and similar processors is the ability to compact the instruction
stream through pairing of instructions.

VI. SUMMARY

We have surveyed power optimizations applicable at various levels
of abstraction, namely the circuit, logic, architecture and system level.
This survey is not comprehensive, rather we have focused a few typical
optimizations at each level of abstraction. Further, device-level and

layout-level optimizations to reduce power have not been presented.
Lowering power dissipation at all abstraction levels is a focus of

intense academic and industrial research. These methods are being in-
corporated into state-of-the-art Computer-Aided Design frameworks.

REFERENCES

[1] M. Alidina, J. Monteiro, S. Devadas, A. Ghosh, and M. Pa
paefthymiou. Precomputation-Based Sequential Logic Opti-
mization for Low Power . IEEE Transactions on VLSI Systems,
2(4):426–436, December 1994.

[2] P. Ashar, S. Devadas, and A. R. Newton. Sequential Logic
Synthesis. Kluwer Academic Publishers, Boston, Massachusetts,
1991.

[3] R. I. Bahar, H. Cho, G. D. Hachtel, E. Macii, and F. Somenzi.
A Symbolic Method to Reduce Power Consumption of Circuits
Containing False Paths. In Proceedings of the Int’l Conference
on Computer-Aided Design, pages 368–371, November 1994.

[4] L. Benini and G. De Micheli. Transformation and Synthesis
of FSMs for Low Power Gated Clock Implementation. In Pro-
ceedings of the Int’l Symposium on Low Power Design, April
1995.

[5] R. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, and A. Wan
g. MIS: A Multiple-Level Logic Optimization System. IEEE
Transactions on Computer-Aided Design of Integrated Circuits,
CAD-6(6):1062–1081, November 1987.

[6] J. Bunda, W. Athas, and D. Fussell. Evaluating power implica-
tions of CMOS microprocessor design decisions. In Proceedings
of the International Workshop on Low Power Design, pages 147–
152, Napa, CA, Apr. 1994.

[7] A. Chandrakasan, M. Potkonjak, R. Mehra, J. Rabaey, and
R. Brodersen. Optimizing power using transformations. IEEE
Transactions on Computer-aided Design, 14(1), January 1995.

[8] A. Chandrakasan, T. Sheng, and R. W. Brodersen. Low
Power CMOS Digital Design. Journal of Solid State Circuits,
27(4):473–484, April 1992.

[9] Anantha P. Chandrakasan. Low-Power Digital CMOS Design.
PhD thesis, University of California at Berkeley, UCB/ERL
Memorandum No. M94/65, August 1994.

[10] A. Chatterjee and R. Roy. Synthesis of low power linear DSP
circuits using activity metrics. In International Conference on
VLSI Design, India, Jan. 1994.

[11] W. A. Chren. Low Delay-Power Product CMOS Design Using
One-Hot Residue Coding. In Proceedings of the Int’l Symposium
on Low Power Design, April 1995.

[12] T. Conte, K. Menezes, and S. Sathaye. The impact of power
and area efficieny on superscalar processor design. University
of South Carolina, Computer Architecture Research Laboratory.

[13] S. Devadas, A. Ghosh, and K. Keutzer. Logic Synthesis. McGraw
Hill, New York, NY, 1994.

[14] F. Catthoor et al. Global communication and memory optimizing
transformations for low power signal processing systems. In
IEEE workshop on VLSI signal processing, La Jolla, CA, Oct.
1994.

[15] S. Powell et al. Estimating power dissipation of VLSI signal
processing chips: The PFA technique. VLSI Signal Processing
IV, pages 250–259, 1990.

[16] A. Ghosh, S. Devadas, K. Keutzer, and J. White. Estimation
of Average Switching Activity in Combinational and Sequen-
tial Circuits. In Proceedings of the 29th Design Automation
Conference, pages 253–259, June 1992.

[17] L. Goodby, A Orailoglu, and P. Chau. Microarchitectural syn-
thesis of performance-constrained, low-power VLSI designs. In
Proceedings of the International Conference on Computer De-
sign, pages 323–326, Boston, MA, Oct. 1994.

[18] G. D. Hachtel, M. Hermida, A. Pardo, M. Poncino, and
F. Somenzi. Re-Encoding Sequential Circuits to Reduce Power
Dissipation. In Proceedings of the Int’l Conference on Computer-
Aided Design, pages 70–73, November 1994.

[19] S. Iman and M. Pedram. Multi-Level Network Optimization for
Low Power. In Proceedings of the Int’l Conference on Computer-
Aided Design, pages 371–377, November 1994.

[20] K. Keutzer. DAGON: Technology Mapping and Local Optimiza-
tion. In Proceedings of the 24th Design Automation Conference,
pages 341–347, June 1987.

[21] P. Landman and J. Rabaey. Power estimation for high level
synthesis. In Proceedings of the European Design Automation
Conference, pages 361–366, Paris, Feb. 1993.

[22] P. Landman and J. Rabaey. Black-box capacitance models for
architectural power analysis. In Proceedings of the International
Workshop on Low Power Design, pages 165–170, Napa, CA,
April 1994.

[23] T. C. Lee, V. Tiwari, S. Malik, and M. Fujita. Power analysis and
low-power scheduling techniques for embedded DSP software.
Technical Report FLA-CAD-95-01, Fujitsu Labs of America,
March 1995.

[24] C. E. Leiserson, F. M. Rose, and J. B. Saxe. Optimizing Syn-
chronous Circuitry by Retiming. In Proceedings of 3rd CalTech
Conference on VLSI, pages 23–36, March 1983.

[25] C. Lemonds and S. S. Mahant Shetti. A Low Power 16 by 16
Multiplier Using Transition Reduction Circuitry. In Proceedings
of the Int’l Workshop on Low Power Design, pages 139–142,
April 1994.

[26] B. Lin. Technology Mapping for Low Power Dissipation. In
Proceedings of the Int’l Conference on Computer Design: VLSI
in Computers and Processors, October 1993.

[27] R. Mehra and J. Rabaey. Behavioral level power estimation and
exploration. In Proceedings of the International Workshop on
Low Power Design, pages 197–204, Napa, CA, April 1994.

[28] J. Monteiro and S. Devadas. Techniques for the Power Esti-
mation of Sequential Logic Circuits Under User-Specified Input
Sequences and Programs. In Proceedings of the Int’l Symposium
on Low Power Design, April 1995.

[29] J. Monteiro, S. Devadas, and A. Ghosh. Retiming Sequential
Circuits for Low Power. In Proceedings of the Int’l Conference
on Computer-Aided Design, pages 398–402, November 1993.

[30] J. Monteiro, J. Rinderknecht, S. Devadas, and A. Ghosh. Op-
timization of Combinational and Sequential Logic Circuits for
Low Power Using Precomputation. In Proceedings of the 1995
Chapel Hill Conference on Advanced Research on VLSI, March
1995.

[31] F. Najm. A Survey of Power Estimation Techniques in VLSI
Circuits (Invited Paper). IEEE Transactions on VLSI Systems,
2(4):446–455, December 1994.

[32] S. C. Prasad and K. Roy. Circuit Optimization for Minimization
of Power Consumption Under Delay Constraint. In Proceedings
of the Int’l Workshop on Low Power Design, pages 15–20, April
1994.

[33] A. Raghunathan and N. Jha. Behavioral synthesis for low power.
In Proceedings of the International Conference on Computer
Design, pages 318–322, Boston, MA, Oct. 1994.

[34] A. Raghunathan and N. Jha. ILP formulation for low power based
on minimizing switched capacitance during data path allocation.
In Proceedings of the International Symposium on Circuits &
Systems, 1995.

[35] K. Roy and S. Prasad. SYCLOP: Synthesis of CMOS Logic for
Low Power Applications. In Proceedings of the Int’l Conference
on Computer Design: VLSI in Computers and Processors, pages
464–467, October 1992.

[36] T. Sato, M. Nagamatsu, and H. Tago. Power and performance
simulator: ESP and its application for 100MIPS/W class RISC
design. In Proceedings of 1994 IEEE Symposium on Low Power
Electronics, pages 46–47, San Diego, CA, Oct. 1994.

[37] H. Savoj, R. Brayton, and H. Touati. Extracting Local Don’t-
Cares for Network Optimization. In Proceedings of the Interna-
tional Conference on Computer-Aided Design, pages 514–517,
November 1991.

[38] A. Shen, S. Devadas, A. Ghosh, and K. Keutzer. On Average
Power Dissipation and Random Pattern Testability of Combina-
tional Logic Circuits. In Proceedings of the Int’l Conference on
Computer-Aided Design, pages 402–407, November 1992.

[39] M. Stan and W. Burleson. Limited-weight codes for low-power
I/O. In Proceedings of the Int’l Workshop on Low Power Design,
pages 209–214, April 1994.

[40] C. L. Su, C. Y. Tsui, and A. Despain. Saving power in the
control path of embedded processors. In IEEE Design & Test of
Computers, pages 24–30, Winter 1994.

[41] C. Svensson and D. Liu. A power estimation tool and prospects
for power savings in CMOS VLSI chips. In Proceedings of the
International Workshop on Low Power Design, pages 171–176,
Napa, CA, Apr. 1994.

[42] C. H. Tan and J. Allen. Minimization of Power in VLSI Circuits
Using Transistor Sizing, Input Ordering, and Statistical Power
Estimation. In Proceedings of the Int’l Workshop on Low Power
Design, pages 75–80, April 1994.

[43] V. Tiwari, P. Ashar, and S. Malik. Technology Mapping for
Low Power. In Proceedings of the 30th Design Automation
Conference, pages 74–79, June 1993.

[44] V. Tiwari, S. Malik, and P. Ashar. Guarded Evaluation: Pushing
Power Management to Logic Synthesis/Design. In Proceedings
of the Int’l Symposium on Low Power Design, April 1995.

[45] V. Tiwari, S. Malik, and A. Wolfe. “Compilation techniques
for low energy: an overview". In Proceedings of 1994 IEEE
Symposium on Low Power Electronics, pages 38–39, San Diego,
CA, Oct. 1994.

[46] V. Tiwari, S. Malik, and A. Wolfe. “Power analysis of embedded
software: a first step towards software power minimization".
IEEE Transactions on VLSI Systems, 2(4):437–445, Dec. 1994.

[47] C-Y. Tsui, M. Pedram, C-A. Chen, and A. M. Despain. Low
Power State Assignment Targeting Two- and Multi-level Logic
Implementations. In Proceedings of the Int’l Conference on
Computer-Aided Design, pages 82–87, November 1994.

[48] C-Y. Tsui, M. Pedram, and A. M. Despain. Technology De-
composition and Mapping Targeting Low Power Dissipation. In
Proceedings of the 30th Design Automation Conference, pages
68–73, June 1993.

[49] P. w. Ong and R. H. Yan. Power-conscious software design - a
framework for modeling software on hardware. In Proceedings
of 1994 IEEE Symposium on Low Power Electronics, pages 36–
37, San Diego, CA, Oct. 1994.

	DAC 95
	Front Matter
	Table of Contents
	Session Index
	Author Index

