

LOGICAL OPERATIONS

*Logical operations (Boolean algebra)
*named after George Bool, a famous mathematician

*AND, OR, NOT, XOR, NAND, NOR

LOGICAL OPERATIONS

NOT Gate NOT

* operates on one bit _[>Ck

e |ogical reverse (usually denoted INPUT

by ”1” or ”~") A OUTPUT
el0="0=1 0 L
e11="1=0 : °

LOGICAL OPERATIONS

AND Gate AND
e operates on two bits _)‘
i INPUT
e logical and (usually denoted by OUTPUT
"&"” or”.”): both have to be true A| B

- O = O
== Ol
-~ || O

LOGICAL OPERATIONS

OR Gate
e operates on two bits

e logical or (usually denoted by ”|”
or ”+”): at least one has to be true

OR

) >

INPUT
OUTPUT
~ B
0 0 0
1 0 1
0 1 1
1 1 1

LOGICAL OPERATIONS

XOR Gate XOR
* operates on two bits :)D
i i INPUT
* logical exclusive or (usually T
denoted by "@”): only one is true A B
0 0 0
1 0 1
0 1 1
1 1 0

LOGICAL OPERATIONS

NAND and NOR
e NAND = NOT AND
* NOR = NOT OR

e ANAND B = I(A.B)
e ANOR B = |(A+B)

NAND

I

Bs

NOR

) >

INPUT INPUT
OUTPUT OUTPUT
A B - B
0 0 1 0 0 1
1 0 1 1 0 0
0 1 1 0 1 0
1 1 0 1 1 0

LOGICAL OPERATIONS

NAND and NOR are very convenient

* You can build any other gate out

NOR

) >

of NANDs and NORs

e So, any circuit can be built out of

just NANDs or NORs

INPUT INPUT
OUTPUT OUTPUT
- B A B
0 0 1 0 0 1
1 0 1 1 0 0
0 1 1 0 1 0
1 1 0 1 1 0

LOGICAL OPERATIONS

NOT out of NAND
I(A) = A NAND A

AND out of NAND
A AND B = (A NAND B) NAND (A NAND B)

OR out of NAND
A OR B = (A NAND A) NAND (B NAND B)

DE MORGAN’S LAWS

(A-B)=A+B

(A+B)=A-B

DIGITAL CIRCUITS

With basic gates and logical operations, you can build
any logical functions or arithmetic functions.

For example, if you want to choose something based on
a condition

i.e.if S=0, choose A,
if S=1, choose B.

SIMPLE
DIGITAL
CIRCUIT

If S =0, choose A,
if S=1, choose B.

Output

SIMPLE
DIGITAL
CIRCUIT

If S =0, choose A,
if S=1, choose B.

SIMPLE
DIGITAL
CIRCUIT

If S =0, choose A,
if S=1, choose B.

14

SIMPLE
DIGITAL
CIRCUIT

If S =0, choose A,
if S=1, choose B.

0 0 0 0
0 0 1 0
0 1 0 0
| o 1 1 1 |
| 1 0 0 1 |
1 0 1 0
| 1 1 0 1 |
| 1 1 1 1 |

Output=A-B-S+A-B-S +A-B-S+A-B-S

15

Can you simplify this?

SIMPLE
DIGITAL
CIRCUIT

Output=A-B-S+A-B-S+A-B-S+A-B-S

If S =0, choose A,
if S=1, choose B.

m [dentity law: A+0=A and A-1=A

m Zero and One laws: A+1=1 and A-0=0

mlnverselaws: A+ A=1and A - A=0

m Commutative laws: A+B=B+A and A-B=B-A

m Associative laws: A+(B+C)=(A+B)+C and A+(B-C)=(A-B)-C

m Distributive laws: A-(B+C)=(A-B)+(A-C) and A+(B-C)=(A+B)-(A+C)

16

Can you simplify this?

SIMPLE _ _ _

Output =A-B-S+A-B-S+A-B-S+A-B-S
DIGITAL utpt * * *
CIRCUIT Output = S (AB + AB) + S(AB + AB)
If S=0, choose A, Output=SB(K+A)+§A(§+B)

if S=1, choose B.
Output = SB + SA

m [dentity law: A+0=A and A-1=A

m Zero and One laws: A+1=1 and A-0=0

mlnverselaws: A+ A=1and A - A=0

m Commutative laws: A+B=B+A and A-B=B-A

m Associative laws: A+(B+C)=(A+B)+C and A+(B-C)=(A-B)-C

m Distributive laws: A-(B+C)=(A-B)+(A-C) and A+(B-C)=(A+B)-(A+C)

Can you simplify this?

SIMPLE .
Using K-MAP

DIGITAL 9
CIRCUIT S

A 00 01 11 10
If S =0, choose A, 0) 0 0 1 0
if S=1, choose B.

1 1 0 1 1

m [dentity law: A+0=A and A-1=A

m Zero and One laws: A+1=1 and A-0=0

mlnverselaws: A+ A=1and A - A=0

m Commutative laws: A+B=B+A and A-B=B-A

m Associative laws: A+(B+C)=(A+B)+C and A+(B-C)=(A-B)-C

m Distributive laws: A-(B+C)=(A-B)+(A-C) and A+(B-C)=(A+B)-(A+C)

18

MULTIPLEXOR
2:1

very common circuit where the name is
MUX (# of inputs) : (# of output)

A j
A—(0
M ﬂ
u C C

B—>1

S

FIGURE A.3.2 A two-input multiplexor on the left
and its implementation with gates on the right.

19

BUILDING AN

ADDER
A B | R Carry-out
* Let’s do an arithmetic 0 00 0
circuit 0O 11 0
* An adder which adds two 10 1 0
1-bit together 1 1]0 1

BUILDING AN

ADDER
A B | R Carry-out
 1-bit adder actually needs O 010 0
two outputs 0 1|1 0
* One for the output 1 01 0
1 110 1

* One for the carry-out

BUILDING AN

ADDER
A B | R Carry-out
 1-bit adder actually needs O 010 0
two outputs 0 1|1 0
* One for the output 1 01 0
1 110 1

* One for the carry-out

Output functions
= R=AoB
= Carry-out = A.B

BUILDING AN

ADDER
A B | R Carry-out
 1-bit adder actually needs O 010 0
two outputs 0 1|1 0
* One for the output 1 01 0
1 110 1

* One for the carry-out

Output functions
= R=AoB
= Carry-out = A.B

BUILDING AN
ADDER

* This circuit is called,

“Half Adder”
L’ —R>
B HA |Cout

A B | R Carry-out
0 010 0
0 1|1 0
1 01 0
1 110 1

Output functions
= R=A&®B
= Carry-out = A.B

BUILDING AN
ADDER

To add more than two 1-bits
together, the adder must add
the carry from the other adder

HA

BUILDING AN

Carry-in A B | R Carry-out

ADDER 5 5010 5
0 0O 11 0

0 1 01 0

* Full Adder has 3 inputs and 2 0 1 110 1
outputs. 1 0 o0l1 0

1 0O 1,0 1

1 1 01]0 1

1 1 1)1 1

BUILDING AN

ADDER

* Full Adder has 3 inputs and 2

outputs.

e (Can use 2 half-adders

A Sum

=>—A Sum|4A Sump——o©
HA HA

Dﬁ B Carry. i1 B Carry Cout

Carry-in A B | R Carry-out
0 0 010 0
0 0 111 0
0 1 01 0
0 1 110 1
1 0 0|1 0
1 0 1|0 1
1 1 010 1
1 1 11 1

BUILDING AN

Carry-in A B | R Carry-out

ADDER 5 5010 5

0 0O 11 0

. 0 1 01 0

* Full Adder has 3 inputs and 2 0 1 110 1

outputs. 1 0 01 0

1 0O 1|0 1

1 1 01]0 1

1 1 1)1 1
A Sum
OD————A Sump———

o2—1B FA

cin Cout

—o———— Cin Cout———C4

Block diagram representation
of the Full Adder

	Slide 1: Basic logic design
	Slide 2: logical operations
	Slide 3: Logical OPERATIONS
	Slide 4: Logical OPERATIONS
	Slide 5: Logical OPERATIONS
	Slide 6: Logical OPERATIONS
	Slide 7: Logical OPERATIONS
	Slide 8: Logical OPERATIONS
	Slide 9: Logical OPERATIONS
	Slide 10: De Morgan’s Laws
	Slide 11: Digital Circuits
	Slide 12: Simple digital circuit
	Slide 13: Simple digital circuit
	Slide 14: Simple digital circuit
	Slide 15: Simple digital circuit
	Slide 16: Simple digital circuit
	Slide 17: Simple digital circuit
	Slide 18: Simple digital circuit
	Slide 19: MUltiplexor 2:1
	Slide 20: Building an Adder
	Slide 21: Building an Adder
	Slide 22: Building an Adder
	Slide 23: Building an Adder
	Slide 24: Building an Adder
	Slide 25: Building an Adder
	Slide 26: Building an Adder
	Slide 27: Building an Adder
	Slide 28: Building an Adder
	Slide 29

