
1 Introduction

"Explanation-based" learning (EBL) is a semantically-driven, knowledge-intensive paradigm
for machine learning which contrasts sharply with syntactic or "similarity-basedn a p
proaches. It provides a way of generalizing a machine-generated explanation of a situation
into a rule which applies not only to the current situation but to similar ones as well.
The original explanation is normally created by a problem-solver, which relates the given
situation to a stated goal using domain knowledge that is provided to it. EBL takes the
output of the problem-solver - in the form of an explanation tree - and processes it to
discover an appropriate rule. In fact, it is more perspicuous to talk in terms of "problems"
rather than "situations". In this sense, EBL provides a mechanism for learning something
from the solution to a problem that will expedite the solution to similar problems in the
future.

While the EBL operation is generally seen as being quite distinct from problem solv-
ing, we find it fruitful to integrate the two closely. To motivate this approach, imagine
a problem-solver that is used quite often. Over the months, the same or similar prob-
lems are repeatedly given to it to solve. Since searching for solutions is computationally
very demanding, it would seem attractive to remember the solutions to previously-solved
problems. But a simplistic approach to adding such a "memo function" suffers from three
drawbacks. First, space may be wasted in storing a host of solutions to specific problems
that will never be repeated. Second, as the memory grows, sophisticated indexing struc-
tures will become necessary to access past history - for it would be unfortunate if the cost
of discovering whether a problem has been solved in the past exceeded that of re-solving
it! Third, the mechanism will not help with a particular problem unless exactly the same
one has been encountered before. Insignificant changes which do not alter the solution will
nevertheless have a great effect on the solution time. What is really needed is a way of
learning something more general from solving a problem. This is just what EBL offers.

The present paper is a foundational review of EBL which stresses its intimate connection
with problem-solving. By re-examining the operations involved in conventional implemen-
tations, it becomes clear how to integrate learning elegantly and invisibly into the inference
engine that constitutes the heart of a problem-solver. The paper proceeds as follows. The
next section reviews the idea of EBL and the principal structures that have been proposed
to accomplish it; we also briefly summarize current research directions. Then a formal
characterization is presented and used to explain how to embed the necessary general-
ization into the problem-solver itself. Resolution theorem provers and production systems
are examined as examples of backward- and forward-chaining problem-solvers respectively,
and the algorithms, with and without EBL, are illustrated in PROLOG. Finally, more com-
plex and realistic examples of problem-solvers are considered. A detailed analysis of the
planning problem shows that generalization of plans can be accomplished quite naturally
within the paradigm of learning as problem-solving.

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

2 Explanation-based learning

It seems clear that a great deal of human learning is accomplished by examining particular
situations and relating them to background knowledge in the form of known general princi-
ples. Such analysis often results in new rules that can be applied in other situations. This
kind of learning, called "explanation-based learningn (EBL), contrasts with approaches
such as "similarity-based learningn that analyze a large number of examples to discover
their structural similarities and differences. Rather than acquiring new knowledge induc-
tively, EBL operationalizes knowledge that is already latent in general principles, through
a process of deduction.

Figure 1 shows a graphical representation of these two styles of learning. Similarity-
based methods take several examples (and, perhaps, counterexamples) of a concept and
apply structural analysis to determine a generalized concept description. EBL is more
involved. Given an example, an "explanationn is first constructed by applying a problem
solver to relate the example to some general domain theory. The result of this operation
is a trace or "proof" of the example with respect to the theory. This is then generalized,
by discarding irrelevant parts of it, into an explanation that applies to other examples too.
Finally, operational rules are extracted from the general explanation.

2.1 The external view

Four inputs to an EBL system can be distinguished: the goal concept, training example,
domain theory, and operationality criterion [Mitchell 861. The output is a rule that applies
to the training example and to others like it. Figure 2 illustrates these constructs in the
simple domain of cup recognition. (In this Figure and elsewhere in the paper, upper-case
letters denote uninstantiated variables.)

The goal concept defines what is to be learned in terms of high-level (non-operational)
predicates. For example, the definition of a cup in Figure 2 is high-level in Winston's
function-structure system [Winston 831 because it involves functional properties (liftable,
stable, open-vessel . . .) rather than structural features (light, partof, pointing . . .). The
training example is a particular instance of the target concept. The domain theory repre-
sents the facts and rules that constitute what the learner knows. The cup domain includes
facts about concavities, bases, and lugs, as well as rules about liftability, stability and what
makes an open vessel. These are used to explain why the training example is an instance
of the target concept.

The fourth input, the operationality criterion, specifies which concepts can be used in
rules created by EBL. If all predicates were operational, the definition of cup as given by
the goal concept would be acceptable as it stands and there would be nothing to learn.
The whole point of the exercise is to characterize that concept in terms of attributes that
are easy to test. For example, in the function-structure system, learned concepts are to be

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

represented in terms of structural rather than functional predicates.

The operational rule learned from this example is also shown in Figure 2. This rule is
better than the original definition because it involves one less level of processing, allowing
cups to be recognized more quickly1. However, it is less general.

2.2 The internal view

An explanation-based learner works as follows [Mitchell 861. It first constructs an explana-
tion, in the form of a proof tree, which describes why the training example is an instance
of the goal concept (see Figure 3a). Next it generalizes the explanation using the method
of goal regression [Waldinger 771. This involves traversing the tree from top to bottom,
replacing constants by variables, but just those constants that were not embedded in the
rules or facts used to create the proof. This produces the generalized proof tree of Fig-
ure 3b. The tree is then pruned by removing leaf nodes until no operational predicates
appear at internal nodes. Finally, the operational definition of the target concept is simply
the conjunction of the remaining leaf nodes.

What we have described is a three-pass explanation-based generalizer. However, it was
pointed out in [DeJong 86) that one-pass goal regression can over-generalize the proof tree.
To avoid this requires two passes. The first propagates constraints down through the proof
tree, and the second propagates them back up. This modified technique is a four-pass
learning method.

2.3 Research directions

Perhaps the best-known example of EBL is LEX2 [Mitchell 831, which learns heuristics for
performing symbolic integration. Given an expression to integrate, it first searches for a
solution using the standard repertoire of integration transformations. Then it examines
each operator in the solution chain and generalizes the expression as much as possible
without violating the preconditions for that operator. This enables it to learn a new
operator which can be applied to this and other problems, sidestepping the normal trial-
and-error search procedure.

A rather different application is GENESIS [Mooney 851, which acquires schemata for
use in story understanding. For example, given a tale involving kidnapping, GENESIS
learns a schema that summarizes its important elements. It can use the schema to rec-
ognize instances of kidnapping in future stories. Winston's "function-structure system"
[Winston 831 operationalizes functional concept descriptions to obtain structural descrip-
tions. It learns rules for recognizing objects such as cups and chairs based on a domain
theory of how their structure (handle and concavity; legs and seat) fulfils their function
(drinking; sitting upon). Other EBL projects address the problems of generalizing soft-
ware [Hill 871, circuit designs [Ellman 851 and floor plans [Mostow 871; while still others

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

learn about momentum [S havlik 851, causal relationships [Pazzani 871, and equation solv-
ing [Silver 831.

Some recent research strives to create hybrid methods that work with similarity- and
explanation-based techniques together. The aim is to blend the (synthetic) ability to gen-
eralize from empirical observation with the (analytic) ability to deduce generalizations
from a known domain theory [Silver 881. One important goal is to be able to learn domain
principles from painstaking observations and then use them to make quick one-shot general-
izations. Other work investigates the application of explanation-based learning techniques
to incomplete [Hunter 881 or intractable [Ellman 881 domains. One way of doing this is
to use explanations to learn from failures [Clancey 881. For example, one kind of failure
can be caused by reliance on simplifying assumptions in an intractable domain, which can
lead to the creation of underconstrained concepts. These later show up as unexpected
failures, which can be explained and the explanation used to further constrain the concept
[Chien 881. Another line of research is to strengthen the generalization of explanations by
extending it from constants to operators, in an attempt to bridge the gap from first- to
second-order quantification. For example, if an operator is used several times in a row, the
explanation can be generalized to include arbitrary repetition of that operator [Shavlik 881.

The present paper aims at a rather different target. Current research tends to try
and split off the "learningn component and examine it in isolation, separated from the
rest of the system. But in reality it is grossly misleading to imagine learning as a sort
of module that can be demarcated, placed under the microscope, and studied in its own
right. Instead, we reappraise the paradigm of EBL, emphasizing the integrity and unity
of the problem-solving system as a whole. The method of producing the explanation
should not be glossed over; indeed, it deserves to be the focus of any study of learning.
Learning can be considered more as a side effect than as an end in itself. This orientation
produces novel and illuminating insights into the nature of EBL. The fact that some recent
research finds it necessary to perform convoluted manipulations of the explanations (eg
[Shavlik 881, [Mooney 881, [Cohen 881) does not subvert the paradigm but merely highlights
the inappropriateness of current knowledge representation schemes and problem-solving
methods [Gupta 881. Our perspective also promotes the use of EBL in practice, for it
strips away the mystique by showing how to modify general problem solvers in order to
make them learn.

3 Extending problem solvers

The previous section's characterization of EBL as a three- or four-pass process, while
commonly accepted in the literature, is overly complicated and betrays the technique's
essential simplicity. Instead of tacking a generalization filter on to the problem solver's
output, it is easier and more perspicuous to modify the problem solver to learn whilst
solving its problems. This section shows how.

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

First a more formal characterization of EBL is presented which clarifies the technique
and pinpoints what is needed to augment problem solvers with the capability to generalize
examples they are given. Next we look at how to represent the domain theory. Then
we see how a basic problem solver can be converted into a learning problem solver in the
four stages summarized in Figure 4. The procedure is developed for both backward- and
forward-chaining problem solvers, and for concreteness skeleton implementations are given
in PROLOG. The final system is called MEL, for LLmodel for explanation-based learning", and
is derived in both backward-chaining (MELIB, Figure 10a) and forward-chaining (MEL/F,
Figure lob) forms. These two programs successfully and, we believe, elegantly, incorporate
EBL into the heart of a backward-chaining resolution theorem prover and a forward-
chaining production rule interpreter.

3.1 Functional Decomposition of EBL

As Figure 1 illustrates, traditional EBL involves three operations which we write as math-
ematical functions. a(Gs, 0) is the operation performed by the problem solver. It takes
the goal 5, and domain theory D, and generates a specific explanation Es of the goal with
respect to the domain theory. 7(Es, 9,) is the mapping performed by the generalizer. It
takes the explanation produced by the problem solver, together with the generalized goal
g,, and returns a generalized explanation E,. As will be explained below, the goal has
two components: a general one g,, used by 7, which indicates the concept to be learned,
and a specific one S,, used by a , which in effect specifies the training example. a(Eg,hZ)
is the mapping performed by the operationality pruner, which creates an operational rule
from the generalized explanation and operationality criterion R.

The entire EBL operation is fully characterized by the composition of these functions:

The equivalent single function p describes EBL more compactly and clearly than the
three components. Moreover, as will be seen shortly, it is easy to implement p directly by
augmenting a problem solver. This has the advantage that the computation is conceptually
more economical because no intermediate representation of the explanation is needed.

In order to preserve functionality, the essential contribution of each of a, 7, and a, will
be abstracted, although the packaging - in particular, the explicit passing of arguments
from one to the next - will be stripped away. The function a contributes the idea of
remembering items, -y that of using general items, and a: that of selecting items to par-
ticipate in the final rule. This breakdown is mirrored in sections 3.3 to 3.6, which first
describe the basic problem solver, then have it remember items, next have it remember
general items, and finally have it remember only those general items that are necessary.
These steps result in a problem solver which computes p as it goes along.

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

3.2 Domain theory for problem solvers

The EBL technique can only be applied to "generaln problem solvers, not to those which
incorporate procedural knowledge that is specially tailored to particular problem domains.
At the core of a general problem solve9 is a small, simple inference engine that uses
explicitly-represented domain knowledge to guide its search for solutions. As the burgeon-
ing technology of expert systems demonstrates, this is a powerful architecture which can
accommodate a great variety of problems from wide-ranging domains.

With a general problem solver, it is necessary for the user to specify knowledge in the
form of a declarative "theory" that supports the solution of problems in the target domain.
This background knowledge or domain theory comprises two parts, operators 0 and facts
3, and can be written D = (0,3). Operators work in the domain to draw inferences or
change the state of the problem solver. They may be production rules, schemata, etc,
and have two principal components, an antecedent which determines the conditions under
which the operator can be applied, and a consequent which specifies the result of applying
the operator. In the simple problem solvers considered in this section operators have only
these two components; in this case we usually call them "rulesn and write A + B, where A
is the antecedent and B the consequent. More complex operators are discussed in Section 4.

Facts are of two kinds: primitive and derived. The former include those explicitly defined
within the domain theory (like iea(lug, handle) and isa(base, bottom) in Figure 2), which
are denoted by Fd, as well as input facts (like owner(obj1, edgar) and partof(obj1, hollow)),
denoted by Fi, which are supplied by the user to guide problem solving. These are treated
equally by the problem-solver, and for present purposes it is convenient to regard input
facts as part of the domain theory. Derived facts also split into two types: specific ones
F, (eg cup(objl), stable(objl)), which are created by the application of operators during
the course of solving a particular problem, and general ones F, (eg cup(X), stable(^)),
which are non-ground versions of elements of Fa3. Only the first kind are relevant to
the discussion of subsections 3.3 and 3.4; general derived facts will appear later when
generalizing explanations. Note that F, includes some of the domain and input facts,
namely those relevant to the problem at hand.

To guide its work a problem solver needs to be given something to seek out: a goal.
It receives this either from the user or from another part of the system. There are two
types of goal: specific ones 5, and general ones 5,. They differ in that only the latter
may contain uninstantiated variables. For example, the general goal in Figure 2 is cup(X),
while the specific one is cup(objl), and facts about objl are included in the domain theory.
"Basic" and "tracing" problem solvers use the specific goal G,, while "generalizing" and
"learning" problem solvers use the general goal G, as well. Note that goals are also derived
facts: Ga E F, and $, E F,. If S, $! Fa, then the problem would be insoluble, for the solver
would not be able to derive the goal.

It is often possible to convert a specific goal into a general equivalent by uninstantiating
all arguments4. Conversely, a specific goal may be derivable from a general one by invok-

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

ing a problem solver to search for any domain objects that satisfy the general predicate.
Consequently, whether an EBL system is provided with a general or a specific goal, or
both, depends more on the application environment and desired mode of operation than
on any fundamental considerations. In this paper we assume that both are provided.

3.3 Implementing basic problem solvers

During operation of the problem solver, operators Op, E 0 are applied to facts Fi U Fd and
previously derived facts F, to generate new members of F,. The stream of facts that is
produced is called the specific derivation stream. Problem solvers that match consequents
of rules with facts in F, are called backward-chaining, while those that match antecedents
with facts in F, are forward-chaining. We deal with each type in turn.

Backward chaining. A resolution theorem prover is an important kind of problem solver
which represents background knowledge in terms of first-order logic and proves theorems
using the resolution principle. The PROLOG interpreter is a particular incarnation of such a
scheme. Background knowledge is represented in the form of implications with conjunctive
(or empty) antecedent and unit consequent. The problems themselves are given to the
system as goals to prove. PROLOG is a backward-chaining interpreter because it works
back from the goal, applying rules recursively to create subgoals until the subgoals are
trivially solvable.

Figure 5a shows how to write a problem-solver, in the form of a meta-interpreter, in
PROLOG. The first rule decomposes sequences of conjoined terms in a rule (in PROLOG,

comma denotes conjunction) and executes each in turn. Here and elsewhere a prime
denotes a sequence of terms of the type indicated; thus F, denotes something that is or
will be instantiated to a specific fact, while F,' denotes a sequence of such items. The
predicate fact(A) unifies A with a fact in the domain theory database, if this is possibles.
rule(A =+ B) finds rules in the domain theory of the form A + B (where A may be a
sequence of conjoined terms), so the third rule recursively evaluates domain rules.

Forward chaining. A second important class of problem solvers comprise forward-
chaining production systems such as OPS-5. In many ways these can be viewed as reverse
PROLOGS. Instead of working from the goal progressively back to the facts, they work
forward from a set of input facts towards a goal. Matching is done on antecedents of rules
rather than on consequents.

Figure 5b shows a rudimentary forward-chaining problem solver written in PROLOG. It
is given a set of facts in the domain theory database, and a goal to seek. Domain rules
are applied to the facts and to derived facts until the goal is reached. Whenever a rule is
triggered, its consequent is added to the database, thereby augmenting the domain theory.
The new facts may trigger other rules later. Rule firing continues until the goal is generated
or until no further rules can be fired, in which case the goal is not solvable.

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

The first rule in Figure 5b checks to see whether the specific goal is contained within the
facts currently in the database; if so, the problem is solved. As before, predicates fact and
rule find facts and rules of the domain theory; matches just checks whether a conjunction
of facts is supported by the theory. The second rule chooses a production rule and tries to
apply it to the current database. If it matches, its consequent is asserted into the database
using save-fact, and the cycle continues. If the rule does not trigger, a new one is tried.

3.4 Problem solvers which record a t race

During operation of a problem solver, many facts are created in the specific derivation
stream F,, some of which may turn out not to contribute to the solution of the problem.
The f E F, that are used in the solution of the goal form the basis of an explanation of
how the example satisfies the goal. Explanations take the form of a tree whose interior
nodes are derived facts, with primitive facts at the leaves and the goal as the root. Each
arc in the tree corresponds to an operator. Because there are two types of derived fact,
two types of explanation are distinguished: specific ones E, with nodes in F,, and general
ones Eg with nodes in Fg (in the present section we encounter only the first kind). Figure 6
illustrates the relationship between different kinds of specific fact, specific goal, and specific
explanation.

During the course of its work, any problem solver must derive all facts that are needed
in a specific explanation E,, since all nodes in E, are drawn from F, and it certainly derives
all of F,. Consequently if a basic problem solver is modified to trace its own operation,
saving the facts it derives while creating a solution, the explanation can be reconstructed
from this record. We call such a mechanism, which calculates a during the course of solving
a problem, a "tracing" problem solver.

It is not necessary to store facts derived in failed branches of the problem-solving pro-
cess. In backward chainers, this corresponds to suppressing all memory of branches that
fail and cause backtracking. However, forward chainers cannot know whether the facts
they produce will be relevant to the deduction until the final goal is reached, and so an
explanation needs to be recorded with each fact.

Backward chaining. In a backward-chaining problem solver implemented by backtrack-
ing, a second argument can be added to the definition of solve to collect the explanation.
This records all subgoals that are solved during the course of the proof. Figure 7a shows
how to do this. The first rule maintains conjunctions of subgoals as they are executed,
while the last two add facts and rules to the explanation whenever they are retrieved from
the database.

Forward chaining. As in the backward chainer, a second argument must be added to
collect the explanation, and Figure 7b illustrates what is required. Notice that in this
case explanations are collected as part of the fact database. Instead of simply storing the
specific derived fact

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

fact(stable(objl)),

the explanation is stored as well:

fact(stable(objl), (partof(objl, base),
isa(base, bottom) ,
flat(base))).

Since these explanations are incrementally compounded, the one associated with the goal
fact will be E,, the complete explanation tree. This is returned by the first rule of solve, and
the predicate matches is augmented to give the explanations of all facts that are matched.

3.5 Problem solvers which generalize

The explanation that is returned by a "tracing" problem solver, from which a general rule
must be constructed, is specific. The function 7 (E 8 , $,) produces a generalized explana-
tion from it. The second argument, the general goal S,, forms the root of the general
explanat ion. Simply substituting variables for constants in E, will over-generalize the ex-
planation tree, and $, must be used to further constrain the generalization. The standard
technique of goal regression provides a way of computing 7 . Basically, this constructs an
appropriately generalized fact F, corresponding to each specific fact F, of E,, and creates
a general explanation E, by exchanging the F, for these F,.

In order to calculate the generalized explanation on the fly, the problem solver should
remember the general facts F, corresponding to those specific facts F, necessary to create
a specific explanation. The facts Fg are calculated explicitly, in parallel with the normal
computation of F,. The simplest way to do this is to include a general derivation stream
along with the specific derivation stream used before. Recall that previously, operators
Op, E 0 were applied to facts F; U Fd and previously derived facts F, to obtain new
members of F,. Now a parallel general derivation stream is needed to create general facts
in F,, as illustrated in Figure 8.

To accomplish this, the specific operator Op, that is to be applied is copied (before
being instantiated) to create Op,. Op, then is applied to existing members 6f F,. Since
if it succeeds Op, matches some subset of F,, Op, will likewise match the corresponding
subset of F,. Note that the mapping from F, to F, may be many-to-one, and so the
correspondence between related members of F, and F, must be stored explicitly.

Thus backward- and forward-chaining problem solvers which generalize can be created
by supplementing the basic problem solver with a general derivation stream and recording
those members of F, that lead to the solution of the goal. In the backward-chaining case,
F, is initialized to contain 5 , alone. For forward-chaining, the first members of F, are the
antecedents of the Op, corresponding to those Op, that are applied to members of Fi U Fd.

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Backward chaining. A "generalizingn backward-chaining problem solver maintains two
goals: a specific one $, and a general one $,, along with a generalized explanation tree
E,. This effectively adds the general derivation stream alongside the specific one. All
unification can be performed by the PROLOG interpreter, and Figure 9a shows how to
do this. (An independently-created system called PROLOG-EBG [Kedar 871 bears a strong
resemblance to this program.)

The first rule takes care of conjunctions in the usual way. The second checks the
specific goal against the database to see if the proof has terminated. The third finds
a rule which matches the general goal regardless of specific variable instantiations. The
procedure matched-copy creates a copy of this rule and unifies the copy with the specific
goal, while leaving the general form of the rule untouched. The procedure then recurs,
with the specific (instantiated) and general (uninstantiated) body of the rule as its first
two arguments.

To use the program, solve should be called with both specific and general goals; the
third argument returns the correctly generalized proof tree. For instance, in the "cup"
domain one could invoke

and execution would bind E to a tree like

cup(A)
liftable(A)

light (A)
partof(A, B)
isa(B, handle)

stable(A)
partof(A, C)
isa(C, bottom)
flat (C)

open-vessel(A)
partof(A, D)
isa(D, concavity)
pointing(D, upward).

Forward chaining. Augmenting forward-chaining systems to return a general explana-
tion is not so straightforward. As Figure 9b shows, a general derivation stream is included
along with the specific one. As before, the general goal is included as an argument and
will form the root of the explanation tree. However, in the forward chainer this argument
is not decomposed, but is used to constrain E, once the specific goal is generated.

In forward chainers, explanations are recorded with individual facts. A fact, which is
written fact(F,, F,, E,), has three components: the specific and general form, and the
explanation tree E, that led to its production. An example is

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

fact(stable(objl), stable(X), (partof(XI Y),
isa(Y, bottom),
flat(Y 1 1 1-

Given that facts are stored in this manner, a specific production rule can be applied to
the specific derivation stream (the first component of the fact), and the corresponding
general production rule, created by functor-copy, applied to the general derivation stream
(the second component).

The matches predicate returns the conjunction of the explanations of all facts that
contributed to the rule's triggering. If matches(F,, F,, E,) is called and F, matches some
derived facts, an explanation will already be stored with the derived facts which can be
returned as the new explanation for F, and F,. However, facts at the lowest level, namely
those in Fd U F;, will have no associated explanation, for example

fact(isa(lug, handle), -, none).

Then the explanation is just the corresponding fact in F, which is given as an argument
to matches, in this case, isa(X, handle).

3.6 Problem solvers which learn

The final task of EBL, a!(E,, n) , is to prune the generalized proof tree and create a rule from
it. To embed this within the problem solver it is necessary to consider the form of the op-
erationality criterion S1. We assume that operationality is defined by specifying which facts
in the domain can participate in the final generalized rule. In the "cup" domain, for exam-
ple, the operational predicates are simply the structural ones (light, partof, pointing, . . .),
and not the functional ones (liftable, stable, open-vessel, . . .) .

A "learning" problem solver prunes the proof on the fly and returns an operational
clause on exiting at the top level. No explicit explanation tree need be maintained at all.
The function a is applied by checking facts F, in E, against fl to determine which ones
should participate in the learned rule. Each fact is already considered by the previously-
derived "generalizing" problem solver, and so it suffices to apply S1 to it before storing it
in E,. If it passes the test it becomes part of the antecedent of the learned rule, otherwise
it is ignored. The consequent of that rule is the general goal.

Backward chaining. To embed a! in a backward-chaining system, all goals that are
generated are tested for operationality. The resulting system, called MELIB, appears in
Figure 10a. Operationality testing is done by the operational predicate. The solve function
returns the rule Fi =+ Fg whose antecedent is the generalized goal $,, written here as F,,
and whose consequent is a sequence (hence the prime) of operational predicates in the form
of general derived facts. The osolve function, which does the work and returns OF;, is very

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

similar to solve of Figure 9. However, when a rule is sought in the database it checks to
see if the head clause is operational; if it is, it serves as part of the rule without further
ado.

Forward chaining. Embedding a within a forward-chaining problem solver is just as easy.
Instead of remembering general explanations, only the operational parts are remembered.
As before, facts are written as fact(F,, F,, O p ~ u s t) with three components, the specific
and general forms and an explanation part. The third part does not include the complete
explanation, however, but only those operational items in Eg that might contribute to the
final rule. We call such items operational justifications. An example fact is

fact(cup(objl), cup(X), ((partof(X, Y1), isa(Y1, concavity), pointing(Y1, upward)),
(partof(X, Y2), isa(Y2, bottom), flat(Y2)),
(light(X), partof(X, Y3), isa(Y3, handle))).

As it happens this is the goal fact for the cup example, and the final rule contains the
second argument as consequent and the third as antecedent.

Figure lob shows the implementation of MEL/F, a model for EBL using forward chaining.
The matches function returns the operational justifications of all facts that contributed
to the rule's triggering. These are used by prune, along with the R predicate and the
antecedent (general version) of the rule just triggered, to determine the consequent's op-
erational justifications. is applied to each f E Fg in the antecedent, and if it fails the
operational justifications for f are retained. Otherwise, f becomes part of the operational
justification for the consequent.

Augmenting the facts in this way allows the final operator of the first clause to be pieced
together simply by examining the second and third arguments of the goal fact. The second
argument is the consequent and the third the antecedent of the rule.

4 More complex problem solvers

The rudimentary backward- and forward-chaining systems considered in the last section are
somewhat simplistic. Real-world problem solvers tend to be more complex. More sophis-
ticated domains - planners, story understanders, programming-by-example schemes -
present new challenges because operators are more than just antecedent/consequent rules,
and so it is not completely straightforward to build the final operator which encapsulates
the result of learning. Moreover, our earlier decision-function model of the operationality
criterion may be inappropriate or overly simplistic [DeJong 861. Nevertheless, the same
idea of embedding learning within the problem-solving mechanism can still be used to
enhance these more sophisticated systems.

This section presents a case study of planners, as an example of a more complex type
of problem solver. We first discuss the planning problem, then build a basic planner,

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

and finally show how to augment it with EBL. Although skeleton implementations are
presented as before, space does not permit a detailed discussion of the code. The resulting
program, called MELIP and shown in Figure 13, supports our contention that only small
modifications are required to endow general problem solvers with learning capabilities.

4.1 The planning domain

Whether we consider humans, robots, game-playing programs or search systems, the ability
to plan ahead is a hallmark of intelligent behavior. Planning involves reasoning about how
to achieve a desired state, based on knowledge of the current situation and the various
ways that changes can be made to the world. More formally, given a starting state S, the
planning problem is to find a plan @ which leads to a state that satisfies a set of goals r.
The plan will be a sequence of operators or actions that modify the world state:

For example, suppose that in the celebrated blocks world the original situation in Fig-
ure l l a must be transformed into that of Figure I lb. The starting state is

and the goal is to get a on b and b on c:

Here is a plan which, when applied to S, produces the configuration of Figure l l b and
thereby satisfies I':

- a move of block b (which is currently on e) to the top of c, followed by a move of block
a (which is currently on d) to the top of block b.

Finding @ for arbitrary I' and S involves trying out meaningful combinations of opera-
tors 0 (0 =move(b,e,c) for example) to see if they lead to states that satisfy I'. Many of the
original domains on which EBL was applied incorporated planning (eg LEX2 [Mitchell 831).
In most of these, domain knowledge was deeply embedded in the mechanism for doing the
planning, and so a separate process was required to generalize explanations.

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

4.2 Basic planners

Our basic planner is derived from STRIPS [Fikes 721, the grandfather of all planners, and
is simple enough to permit a full description here. Following STRIPS, operators 0 are not
just antecedent/consequent pairs but have three parts. The first is a set of preconditions
that must be met in order to apply the operator. The other two contain postconditions
that specify the state of the world after application of the operator, effectively splitting
the consequent in two. The add list dictates what new conditions will be added to the
world, while the delete list gives those previously-existing conditions that will have been
invalidated by the operator.

The three parts of an operator are specified by

pre(0) - set of preconditions
add(0) - set of positive (additive) effects on the world state
del(0) - set of negative (subtractive) effects on the world state.

For example, one definition of the above-mentioned "move" operator is

The more complex operator structure affects the nature of the a function needed by a
planner incorporating EBL.

Some STRIPS-like planners use a backward-chaining technique called goal regression
[Waldinger 771, that we employ in our system, which starts with the goal and creates
a series of subgoals, the last of which is completely satisfied by the initial state. The re-
duction of a goal to subgoals is done on the basis of operator descriptions. An operator
is chosen and a subgoal generated such that when the operator is applied to any state
satisfying the subgoal, the resulting state will satisfy the goal. Note that the goal typically
contains several conjoined parts (recall the example given earlier), and any operator can
be chosen so long as

some part of the goal matches something in its add list

no parts of the goal match anything in its delete list.

The first condition ensures that the operator aids in achieving the goal, while the second
ensures that it does not simultaneously invalidate other components of it. Producing the
appropriate subgoal is called "regressing" the goal through the operator, and involves
including all of the operator's preconditions in the subgoal, as well as all predicates in the
goal that do not match anything in the add list.

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Unfortunately, doing simple regression through general operators may create disjunctive
goals (see [Nilsson 801, pp 288-292). This is unacceptable since goals in our problem solvers
must be conjunctive. One way to solve the problem is to instantiate operators before they
are used. First, the general operator is retrieved from the database. Next, an instantiation
of it is guessed on the basis of the initial state and the objects in the world. The guess is
submitted to a consistency check and if it fails, a new one is tried. Once a valid instantiation
of the operator is obtained, the goal is regressed through the operator to obtain a new
subgoal as described above.

The resulting basic planner is given in regular PROLOG notation in Figure 12.

4.3 Planners that learn

The planner described above searches for a plan each time a goal state is requested. To
avoid duplicating this work whenever a similar goal is sought, it can be extended to return
generalized rules, or macro operators ("macrops" for short), which encapsulate the relevant
parts of the plan. A macrop is created by composing other operators. Since the basic
planner works by composing operators, it is not difficult to modify it to return a macrop
as well as a plan. In fact, the macrop's precondition is just the last subgoal that needed to
be solved, and its add and delete lists are just the union of the add and delete lists of the
operators used in the plan6. The macrop thus created is stored and can be used in future
plans, either by itself or with other operators.

Since operators are instantiated before use, a macrop formed by concatenating them
would be fully instantiated. Unfortunately, this means that it could only be used in the
same initial state as was used to create it. Actually, there is some latitude for variation
even when all operators are fully instantiated. For example, adding an irrelevant block to
the configuration would not render the rnacrop inapplicable, just as adding an irrelevant
rule to a forward- or backward-chaining interpreter would not deny an existing conclusion.
However, EBL seeks to generalize more deeply, for example by making the macrop insen-
sitive to such things as names. This requires working with operators that are not fully
instantiated.

Using the ideas developed in the previous section, the basic planner is first modified
by augmenting it with a general derivation stream. This involves adding a general goal
argument and regressing general goals and subgoals through a general copy of the cur-
rent operator to create new facts (subgoals) in F,. Care must be taken when regressing
general goals because if operators and goals are both general, there is more opportunity
for predicates to match than in the specific case. It is important to match and regress
the same predicates as in the specific derivation stream, and so the matches and regressed
predicates are modified to ensure that general matching proceeds exactly in parallel with
specific matching.

Remembering general operators instead of the specific versions yields a general plan

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

E,. This must be turned into a general rule or macrop using the analogue of the a
function. Operationality testing is not an issue in this simple planner - all operators are
operational - and so fl is unnecessary. However, a still has the job of piecing together the
final macrop's precondition, add, and delete lists. This can be done quite naturally within
our implementation. MELIP, as our learning planner is called, keeps general versions of
each component of the macrop. One argument is included to record the add list. During
goal regression, it is filled by collecting together the add lists of the general operators used
in the general derivation stream7. Another argument is used to collect the delete list, and
contains the union of the delete lists of the general operators used in the general plan E,.
Finally, the preconditions of the macrop are formed by remembering the last subgoal in
the general derivation stream.

Augmenting the basic planner in this manner gives the program of Figure 13. If neces-
sary, a notion of operationality of predicates could be incorporated simply by applying R
before storing components of the macrop.

5 Conclusions

We have argued that problem solvers can easily be extended to give them learning abilities,
and supported this contention with several specific illustrations. Of course, there are
reasons why one might not want to augment a problem solver in the manner proposed.
For one thing, modifying existing code is always very difficult. However, adding learning
abilities even within the standard EBL paradigm requires modifying the problem solver to
obtain a specific trace, and as we have seen it is only a small further step to go all the way
and create a learning problem solver.

Another question concerns efficiency. At first glance, it seems that the method pre-
sented here may be more efficient than the traditional multi-pass technique since it requires
only one pass and stores no intermediate explanations. However, maintaining the general
derivation stream increases the computational load and this makes it hard to compare the
resources required by the two approaches. In any case, the only differences are just con-
stant overheads in time and space. Besides, the real need is for efficiency in understanding,
not computation; this places emphasis on elegance and economy of ideas.

Finally, our strategy of making the problem solver do all the work seems to fly in the face
of modern ideas of modularity. But another principle of software engineering is localization:
putting things that belong with each other together. We believe that the issue of learning
should not be sundered from problem solving and the performance system, but forms an
intimate part of it.

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Introspection - admittedly a risky business! - seems to indicate that people do not
have to make special efforts to learn something from performing tasks. We do not normally
undertake post hoc analyses of our problem-solving activities. Learning seems more like
a byproduct of the problem-solving process itself. This research puts the learning back
where it belongs, right in the heart of the problem solver.

Acknowledgements

We gratefully acknowledge the roles that David Hill and Bruce MacDonald have played
in helping us to develop these ideas, and the stimulating research environment provided
by the Calgary Machine Learning Group. Thanks also to Rosanna Heise who provided
valuable comments on early drafts of this paper. This research is supported by the Natural
Sciences and Engineering Research Council of Canada.

