
Robot Architectures for Believable Game Agents

Ian D. Horswill and Robert Zubek

Institute for the Learning Sciences, Northwestern University
1890 Maple Ave., Suite 300

Evanston, IL 60201
{ian,rob}@cs.nwu.edu

Abstract
Computer game character design and robotics share many
of the same goals and computational constraints. Both
attempt to create intelligent artifacts that respond
realistically to their environments, in real time, using
limited computation resources. Unfortunately, none of the
current AI architectures is entirely satisfactory for either
field. We discuss some of the issues in believability and
computational complexity that are common to both fields,
and the types of architectures that have been used in the
robotics world to cope with these problems. Then we
present a new class of architectures, called role passing
architectures which combine the ability to perform high
level inference with real-time performance.

Introduction

 As both players and developers will readily admit, game
agents do not behave as realistically as we would want.
Even though first-person action games have greatly
advanced since the times of Wolfenstein 3D, the precursor
of the genre, game agents have not improved nearly as
much, especially in emulating real human and animal
behavior. What we would like to see instead are creatures
that do not just perform their roles, but which are more
believable in the sense of responding to situations in a way
that humans and animals might respond. We want agents
that:

• Hide behind corners to avoid being shot
• Look for good ambush sites
• Run away from more powerful enemies
• Are concerned about their own survival

 In short, we would like game agents that act more like
us.
 In this paper we would like to discuss how
advancements in robot programming could help with
developing believable agents, and we present a robot
architecture that can help game developers with agent
programming.

What’s hard about believability?

The problem with many game agents is that they’re
simultaneously too smart and too stupid. On one hand,

they have very limited reasoning capabilities. On the other
hand, the reasoning capabilities they do have may take
advantage of super-human sensory or motor skills.

None of this is surprising given the practicalities of
game design. No one is going to use an exponential-time
planner to select actions when the system has to run in
real-time and 95% of the CPU is reserved for rendering.
Also, AI infrastructure and real-time game infrastructure
don’t mix very well.

Modeling human limitations

Both humans and, to varying degrees, other animals,
have sophisticated cognitive abilities. However, those
abilities are severely limited both in speed and attention.
While people are very good at planning long-range
strategies, they can’t do it while simultaneously fighting
off a horde of angry monsters. Human perception is very
limited. We can’t see behind ourselves. We can’t see
around corners. We’re much better at detecting moving
objects than static objects. Perceptual attention is also
severely limited. When fighting one enemy, we are much
less likely to even be aware of another enemy approaching.
Finally, human short-term memory is extremely limited.
When people are distracted from one task, they often
forget their previous tasks completely.

Real military doctrine is based in large part on exactly
these kinds of limitations. On a tactical level, soldiers do
everything possible to avoid giving away their positions.
On a strategic level, misdirection of the enemy is central to
maneuver warfare.

Consequently, modeling of attentional limitations is
crucial to believability in real-time simulations of time-
limited behavior, such as combat.

How robotics can help

Unfortunately, today’s robots don’t share the problem of
being too smart. They’re just too stupid. However, the
reasons for their limitations are essentially the same as the
issues with believability.

Just as agents in computer games, robots need to be
responsive to changes in the external environment. That

means they need to be constantly resensing their
environments and reevaluating their course of action.
However, there are serious limitations on the degree to
which this is possible. Just as rendering can eat up
arbitrary amounts of CPU time in games, vision can eat
arbitrary amount of CPU time on robots. The high cost of
sensory processing means that robots have to be extremely
selective about what they sense and how often they update
it. It also means that in practice relatively little CPU is left
over for decision making.

Because of that, robot architectures may be particularly
suitable for game AI, as they operate within both the
computational constraints typical of a game engine, and
perceptual constraints imposed by the physical world that
we want to emulate.

A quick overview of robot architectures
Historically, robot architecture design has been

approached from two angles – behavior-based system and
symbolic systems.

Behavior-based architectures
Most autonomous robots use some variety of behavior-

based architecture, at least for sensory-motor control.
Behavior-based architectures are also being used
increasingly in computer games, such as Crash Bandicoot
and Jedi Knight.

Behavior-based systems consist of a set of simple, task-
specific sensory and motor processes (i.e. behaviors)
running in parallel, usually with some mechanism to
arbitrate between them. The basic sensory and motor
components are typically kept quite simple, so as to help
guarantee real-time performance. For example, the
subsumption architecture (Brooks 1986) limits the
programmer to finite-state machines communicating scalar
values over fixed communication channels.

Behavior-based systems offer a number of compelling
advantages:

• They’re fast and cheap
• They give hard real time guarantees
• They interface easily to most sensors and

effectors
• They require little or no infrastructure to support

them, so they’re convenient to program on a bare
machine with no O.S.

• They’re easy for new programmers to understand
However, behavior-based systems also have serious

limitations. For the most part, the only control structures
they support are parallelism and infinite looping. More
importantly, they only support very simple representations.
Typical behavior-based architectures only allow users to
pass simple scalar values (Brooks 1986, Maes 1991) or

fixed-size vectors (Arkin 1987) between behaviors. In
effect, this limits behavior-based systems to propositional
logic, and makes it impossible for them to represent
predicate logic (logic with variables) and quantified
inference.

These limitations can seriously hinder the programmer.
Because there’s no good way of expressing parameters,
Maes’ solution to the blocks world (1991) involves having
separate behaviors for every possible block motion.
Behavior-based dialog system by Hasegawa et al. (1997)
used separate behaviors for every possible utterance by
every possible speaker. While this kind of behavior
duplication is fine for small problems, it becomes
prohibitive for large problems.

Symbolic architectures
Symbolic AI architectures, on the other hand, are

typically Turing-complete. They allow full parameter
passing, general control structures, including recursion,
and more or less unrestricted representations, including
manipulation of arbitrary dynamic tree structures. This
flexibility allows the programmer to implement very
general reasoning operations, including generative
planning from first principles.

Of course, this flexibility comes at the cost of being
unable to make real-time guarantees, or even guarantees of
termination. First-order logic inference is equivalent to
simulating a Turing machine, so depending on the specific
problem, reasoning could take arbitrary time and space, or
fail to terminate entirely. Furthermore, drawing inferences
is generally an exponential-time operation.

A more down to Earth problem is that symbolic AI
systems typically assume all information to be manipulated
by the system is available in a centralized database. This
means that the sensory systems have to continually keep
the database up to date, often without any kind of back-
channel form the reasoner to tell them what information is
relevant to system’s current task. Worse, in very dynamic
environments such as combat games, the reasoner must
continually re-update any inferences it has made based on
the changing sensory data.

Many of the computational problems of inference come
from the presence of variables in the rules. If patterns in
the rules can contain variables, then those patterns must be
matched using some form of tree- or graph-matching
against the entries in the database. In the case of multiple
matches, the rule may need to be fired on all of them.
Although a number of excellent techniques exist for
optimizing the matching processes, chained rule
application is still exponential in the general case. If each
rule can match 4 different entries in the database, then a 5
step sequence has 1024 possible matches.

Implementing logical inference using compact
bit-vectors

Inference can, of course, be fast in special cases. One of
the principal problems in knowledge representation is
finding good special cases that are both fast and useful. We
have developed a family of inference engines for real-time
systems that allow us to compile all inference operations
into straight-line code consisting mostly of bit-mask
instructions. The principle limitations of the technique are
that:

• It only supports predicates of one argument. That
is, it supports predicates like near(X), but not
distance(X,100).

• It doesn’t support term expressions. This means it
allows arguments to predicates to be object
names, as in near(fido) or variable names, as in
near(X), but not complex expressions, as in
near(owner(fido)).

• It only supports a fixed, small set of object names
chosen at compile time. Our current
implementation allows 32 object names.

The last of these is mitigated by allowing the object
names to be indexical, meaning that the system is allowed
to use the names to mean different objects in different
situations. This effectively means that you never use
specific names like "fido", you use generic role names like
TARGET, DESTINATION, THREAT, etc. From a
programmer’s standpoint, these roles are effectively just
another variable binding mechanism. However, they are
implemented very differently – roles are bound by the
tracking components of the perceptual system and not by
the inference system.

By limiting the set of roles in advance we can represent
the complete extension of a unary predicate in a single
memory word, one bit per role. For example:

 Agent Patient Source Destination
in_range(x) N Y N Y
aiming_at(x) N Y N N
can_shoot(x) N Y N N

In robotics, the major appeal of this representation is

that it is easy for sensory-motor systems to generate and
update in real time. However, it’s simplicity and speed is
also convenient for computer games.

Suppose we want the creature to have a set of simulated
sensors that report when it is near an object, when it is
within firing range, when it is facing the object, etc. Each
of these sensors would report its data as a bit-vector
showing which roles were in range (or: nearby, facing, …).
At run time, the game would keep a table mapping roles to
the internal game objects to which they are bound. The

game can then compute simulated sensor readings using
the following C code:

typedef struct {
/* which roles the predicate

is true of */
unsigned long true;
/* which roles for which we know

whether it’s true */
unsigned long know;

} predicate;

predicate sensor() {
/* don’t know anything yet */
predicate reading = { 0, 0 };

for (int role=0;
role<total_roles; role++)

if (role_binding[role] &&
can_see(role_binding[role]) {

/* we can sense the predicate
for this role */

reading.know | = 1<<role;
if(sensor_internal_implementation(

role_binding[role]))
reading.true |= 1<<role;

}

return reading;
}

where role_binding[] is a table mapping the ith role to its
internal game object, can_see() is a function telling
whether a given game object is in the agent’s field of view,
and sensor_internal_implementation() performs the actual
sensing operation on game objects. The procedure allows
the game to efficiently determine the set of objects for
which the agent knows the truth of the predicate and also
its truth for those objects for which it’s known.

Having implemented primitive sensing, we can now
implement forward-chaining, universally quantified
inference rules, such as:

for all x, P(x) if Q(x) and R(x)
using simple bit-mask operations. For example, in C we
would translate the rule:

for all x, can_shoot(x) if in_range(x) and
aiming_at(x)

as:
can_shoot.true = in_range.true &
aiming_at.true;

which computes the inference rule for all values of x
simultaneously using only one machine instruction plus

any loads and stores that may be necessary. It can also
compute the know bits using:

can_shoot.know = in_range.know &
aiming_at.know;

although in this particular case the agent presumably
always knows whether it is aiming at a given object, so a
good compiler will optimize this to:

can_shoot.know = in_range.know;

It is straightforward to extend the representation to handle
reasoning about goals and knowledge goals. See (Horswill
1998) for details.

Role passing

This technique is the basis of a class of architectures,
called role passing architectures, which we believe
combine (much of) the utility of symbolic reasoning
architectures with the performance of behavior-based
systems.

A role-passing system represents the agent’s task and
environment in terms of a set of situations and bindings of
external objects to roles. Situations classify the current task
and environment. For example, the agent might have a
search situation, which would mean the agent was engaged
in searching, and a intruder containment situation, which
would mean the agent was attempting to prevent an
intruder from moving outside some specified perimeter.
Either, both, or none of those situations might be active at
any given time. When the search situation is active, the
agent will use the inference rules associated with it to solve
the search task, and similarly with intruder containment. If
both are active, it will run both rules and try to achieve
both goals. The specifics of what intruder is being kept
within what perimeter, and of what object is being
searched for, are specified by role bindings.

A role passing system is composed of a set of inference
rules, expressed in a simple forward-chaining rule
language, and a set of sensory-motor systems that track
designated objects, follow them, grab them, shoot at them,
etc. The inference system tells the sensory-motor systems
what to follow or grab by passing it a bit-vector specifying
the role of the object to be followed or grabbed. On each
cycle of its control loop, the system resenses all the
properties of all the objects bound to roles, reruns all of its
inference rules, and feeds the output of the inference rules
back to the sensory-motor systems to retarget them. By
rederiving inferences on every cycle, the system can
continually adjust its activity as the environment changes.
This is important to avoid the kinds of non-fluencies that
are common in plan-based systems where a set of firing
conditions are checked at the time the plan is initiated, but
are not rechecked during the course of the plan. A classic

example in robotics is a robot trying to deliver and package
to a destination. If the package falls out of the robot's
gripper enroute, many robot systems won't notice and will
continue the delivery operation without reacquiring the
package. Parallel examples are easy to construct in
computer game design, such as monsters that continue to
chase other monsters, even when the latter slip into pits of
lava.

Using role passing techniques, we estimate that current
mid-to-high end PCs could easily run a rule base of 1000
inference rules at 100 Hz (100 complete revisions of the
system’s inferences per second) using less than 1% of the
CPU. However, this assumes that the perceptual systems
(in the case of robots) or the graphics engine (in the case of
games) could keep up with that speed, which is probably
unrealistic.

Conclusion
Computer games and robotics share many of the same

goals and computational constraints. We believe that role
passing provides many of the benefits of symbolic
reasoning systems, such as:

• Limited parameter passing, both to predicates and
to behaviors

• Explicit subgoal decomposition
• Universally quantified inference, and
• Explicit reasoning about the agent’s state of

knowledge
while simultaneously the simplicity and real-time
performance of behavior-based systems. On robot systems,
the performance of role passing systems comes from
taking into account the inherent limitations of the sensory-
motor and short-term memory systems. Since these can
only track a few objects simultaneously anyhow, we can
simplify the inference system by having it operate directly
upon the set of objects in short term memory, performing
inferences on all of them, in parallel. This simplifies
interfacing and also allows the system to stream data from
the sensory systems, through the inference system, to the
motor systems.

We are currently working implementing role passing
architectures in Unreal. We are writing behavior-based
sensory-motor controllers for the game and are porting our
role passing compiler to support UnrealScript. Our intent is
to use role passing to implement intelligent characters that:

• Find environmental features for ambush, hiding
from enemies, and so on,

• Show animal-like hunting behavior (e.g. stalking
prey), and

• Adopt interesting group strategies.

References
Arkin, R. C. 1987. Motor Schema Based Navigation for a
Mobile Robot: An Approach to Programming by Behavior.
In Proceedings of the IEEE Conference on Robotics and
Automation, 264-71. Raleigh, NC: IEEE Press.

Brooks, R. 1986. A Robust Layered Control System for a
Mobile Robot. IEEE Journal of Robotics and Automation,
RA-2 (1): 14-23.

Hasegawa, T., Nakano, Y. I., Kato, T. 1997. A
Collaborative Dialog Model Based on Interaction Between
Reactivity and Deliberation. In Proceedings of the First
International Conference on Autonomous Agents, 83-87.
Marina del Rey, CA: ACM Press.

Horswill, I. D. 1998. Grounding Mundane Inference in
Perception. Autonomous Robots 5: 63-77.

Maes, P. 1989. How To Do the Right Thing, Memo No.
1180, Artificial Intelligence Laboratory, Massachusetts
Institute of Technology.

