
Explanation-Based Learning:
A Survey of Programs and Perspectives

THOMAS ELLMAN

Columbia University, Department of Computer Science, New York, New York 10027

Explanation-based learning (EBL) is a technique by which an intelligent system can
learn by observing examples. EBL systems are characterized by the ability to create
justified generalizations from single training instances. They are also distinguished by
their reliance on background knowledge of the domain under study. Although EBL is
usually viewed as a method for performing generalization, it can be viewed in other ways
as well. In particular, EBL can be seen as a method that performs four different learning
tasks: generalization, chunking, operationalization, and analogy.

This paper provides a general introduction to the field of explanation-based learning.
Considerable emphasis is placed on showing how EBL combines the four learning tasks
mentioned above. The paper begins with a presentation of an intuitive example of the
EBL technique. Subsequently EBL is placed in its historical context and the relation
between EBL and other areas of machine learning is described. The major part of this
paper is a survey of selected EBL programs, which have been chosen to show how EBL
manifests each of the four learning tasks. Attempts to formalize the EBL technique are
also briefly discussed. The paper concludes with a discussion of the limitations of EBL
and the major open questions in the field.

Categories and Subject Descriptors: 1.26 [Artificial Intelligence]: Learning-analogies;
concept learning; induction; knowledge acquisition

General Terms: Experimentation

Additional Key Words and Phrases: Analogy, analytic learning, chunking, concept
acquisition, empirical learning, explanation-based learning, generalization, goal
regression, machine learning, operationalization, similarity-based learning

INTRODUCTION

Research in the field of machine learning
has identified two contrasting approaches
to the problem of learning from exam-
ples. The traditional method is some-
times known as empirical learning or
similarity-based learning.’ This tech-
nique involves examining multiple exam-

1 A glossary of selected terms is given at the end of
this paper. Each term in the glossary is printed in
boldface the first time it appears in text.

ples of a concept in order to determine the
features they have in common. Researchers
using the empirical approach have assumed
that an intelligent system can learn from
examples without having much prior
knowledge of the domain under study. Some
well-known examples of empirical learning
are given in Winston [1972], Michalski
[19801, and Lebowitz [19831, among others.
This research is surveyed by Angluin and
Smith [1983], Cohen and Feigenbaum
[1982], Michalski [1983], Michalski et al.

Permission to copy without fee all or part of this material is granted provided that the copies are not made or
distributed for direct commercial advantage, the ACM copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specific permission.
0 1989 ACM 0360-0300/89/0600-0163 $1.50

ACM Computing Surveys, Vol. 21, No. 2, June 1989

164 . Thomas Ellman

CONTENTS

INTRODUCTION
I.1 An Intuitive Example of EBL
I.2 Overview

1. BACKGROUND OF EBL
1.1 Why Is EBL Necessary?
1.2 The History of EBL
1.3 Relation to Other Machine

Learning Research
2. SELECTED EXAMPLES

OF EXPLANATION-BASED LEARNING
2.1 Introduction
2.2 EBL = Justified Generalization
2.3 EBL = Chunk@
2.4 EBL = Operationalization
2.5 EBL = Justified Analogy
2.6 Additional EBL Research

3. FORMALIZATIONS OF EXPLANATION-
BASED LEARNING

3.1 Mitchell’s EBG Formalism
3.2 Other Formalizations

4. AN EVALUATION OF EBL
5. CURRENT AND FUTURE EBL RESEARCH

5.1 EBL and Theory Reformulation
5.2 EBL and Theory Revision
5.3 Integrated Learning

6. SUMMARY
7. GLOSSARY OF SELECTED TERMS
ACKNOWLEDGMENTS
REFERENCES

[1983], and Mitchell [1982a]. An alterna-
tive technique known as explanation-
based learning (EBL) has been developed
more recently. This analytic learning
method attempts to formulate a general-
ization after observing only a single ex-
ample. In contrast to empirical learning
techniques, EBL requires that a learning
system be provided with a great deal of
domain knowledge at the outset. Some ex-
amples of the EBL technique are given by
Mitchell [19831, DeJong [19861, Carbonell
[19861, and Mostow [1983a], among others
described below.

1.1 An Intuitive Example of EEL

EBL is based on the hypothesis that an
intelligent system can learn a general con-
cept after observing only a single example.
In order to illustrate how this can be done,
consider the following example taken from

the card game “Hearts.“* Imagine a student
who is learning to play the game of Hearts
by looking over the shoulder of a teacher
who is actually playing the game. The
teacher is faced with the situation described
in Figure 1. The leader of the current trick
has just played the eight of hearts. Accord-
ing to the rules, the teacher must play one
of his hearts. He can choose either the
queen, the seven, the four, or the two of
hearts. It turns out that the teacher chooses
to play the seven of hearts. The student
might explain the teacher’s choice with the
following line of reasoning:

(1) This trick contains hearts. The winner
of the trick will accumulate some un-
desirable points. Therefore, it is best to
play a card that will lose the trick.

(2) Playing a high card will minimize the
chances of taking tricks in the future.
All other things being equal, it is better
to play a high card than a low card.

(3) The seven of hearts was chosen because
it is the highest heart that is guaranteed
to lose the trick.

After explaining the example, the stu-
dent might realize that the same line of
reasoning would also apply in slightly dif-
ferent situations. Although this example
was taken from the fourth trick of the game
and the players all had specific scores, these
facts were not used in the explanation.
Furthermore, the explanation does not
depend on the ranks of any cards in the
teacher’s hand, other than hearts. The ex-
planation would continue to be valid even

* Hearts is normally played with four players. Each
player is dealt 13 cards. At the start of the game, one
player is designated to be the “leader.” The game is
divided into 13 successive tricks. At the start of each
trick, the leader plays a card. Then the other players
play cards in order, going clockwise around the circle.
Each player must play a card matching the suit of the
card played by the leader, if he has such a card in his
hand. Otherwise, he may play any card. The player
who plays the highest card in the same suit as the
leader’s card will take the trick and become the leader
for the next trick. Each player receives one point for
every card in the suit of hearts contained in a trick
that he takes. In the simplest version of the game, the
objective is to minimize the number of points in one’s
score. Other versions are more complicated. Complete
rules are found in Gibson [1974].

ACM Computing Surveys, Vol. 21, No. 2, June 1989

Explanation-Based Learning: Programs and Perspectives 165

Trick number: 4 Trick number: 6

Current scores: TEACHER: 0
TOM: 0
DICK: 2
HARRY: 0

Current scores:

Lead suit: V Lead suit:

Cards on table: (18 Cards on table:

Teacher’s hand: + JACK, 7
V QUEEN, 7,4,2
+ ACE, 10
+ JACK, 9

Student’s hand:

Teacher’s card choice: V 7 Student’s card choice: + 8

Figure 1. A training example from Hearts. Figure2. A new Hearts example covered by the
general rule.

if these features were changed. By elimi-
nating such irrelevant facts, the student
could formulate a general rule. The rule
might say, “Whenever a trick contains
hearts, play the highest legal card guaran-
teed to lose the trick.” The explanation can
help the student formulate this general
rule. The rule could be created by separat-
ing the facts used in the explanation from
the facts that are irrelevant to the expla-
nation. Using this rule, the student could
determine which card to play in new situ-
ations like the one described in Figure 2. In
this situation the rule would recommend
playing the eight of spades, because it is the
highest spade guaranteed to lose the trick.

mains valid. The generalization will include
other examples that can be understood us-
ing the same explanation and that manifest
the same principle of operation. EBL is a
method of using background knowledge to
determine which features and constraints
on an example can be generalized. The
generalizations are justified, since they can
be exnlained in terms of the svstem’s back-
ground knowledge.
may speak of EBL
generalization.

1.2 Overview

The term explanation-based learning has
been used to encompass a wide variety
of methods. Nevertheless, most of these
methods can be understood in terms of the
two-step procedure used by the student de-
scribed above. The first step is to build an
explanation of the function or behavior of
the input example. The explanation is in-
tended to capture a general principle of
operation embodied in the example. In or-
der to build the explanation, the system
must be provided with some background
knowledge of the domain. The second step
involves analyzing the explanation and the
example in order to construct a generalized
concept. Features and constraints pertain-
ing to the example are generalized as much
as possible, as long as the explanation re-

Section 1 contains a discussion of why EBL
methods are necessary. Some of the issues
and problems that EBL techniques are in-
tended to address are described here. The
history of EBL is also described, showing
how it developed out of several different
branches of the machine learning field.
This section also describes the relation be-
tween EBL and other knowledge-intensive
learning techniques.

Section 2 is a survey of some represen-
tative EBL programs, illustrating that EBL
methods apply to a variety of learning tasks
including generalization, chunking, opera-
tionalization, and analogical reasoning. It
is divided into four parts corresponding to
these four learning tasks. For each type of
task, several EBL programs that perform

STUDENT: 3
TOM: 0
DICK: 2
HARRY: 0

4

+ 10, (I QUEEN

4 ACE, 8,4
V JACK, 10
+ 9,5
+4

For this reason one
as a type of justified

ACM Computing Surveys, Vol. 21, No. 2, June 1989

166 l Thomas Ellman

the task are described. This section also
shows that differences between the four
categories of EBL programs are largely a
matter of interpretation. The operation of
most EBL programs can be interpreted in
terms of any of the four learning tasks.

In Section 3, efforts to precisely define
the methods of EBL, the requirements for
building EBL systems, and the types of
learning tasks that EBL can handle are
described. Formalization also serves to clar-
ify the relation between the four categories
of EBL systems. Section 4 is an attempt to
characterize the types of learning that EBL
systems can and cannot perform. Section 5
contains a discussion of major open prob-
lems in the EBL field and some ongoing
attempts to resolve them.

1. BACKGROUND OF EBL

1.1 Why Is EBL Necessary?

The methods of explanation-based learning
have been developed to address several dif-
ferent issues in the field of machine learn-
ing. One issue involves human learning
abilities. Some EBL research has been mo-
tivated by the observation that people are
often able to learn a general rule or concept
after observing a single instance of the
concept. Experimental evidence for single-
instance learning among humans is re-
ported in Ahn et al. [19871. Textbooks also
provide some evidence for this type of
learning. For instance, a textbook on logic
circuits presents an example of a three-bit
shift register and then asks the student to
design a four-bit shift register as an exercise
[Mano 1976, p. 781. In order to solve the
problem, the student must somehow gen-
eralize or transform the single example of
a three-bit shift register. Empirical learning
techniques are not suitable for learning
from a single example. They normally re-
quire examining multiple instances of a
concept. EBL is specifically designed for
generalizing from a single example and is
therefore able to model a type of human
learning outside the scope of empirical
methods.

EBL methods also address a more the-
oretical issue. EBL may be viewed as an

attempt to solve the problem of inductive
bias. As described by Mitchell [19801, every
system that learns from examples requires
some sort of bias. Mitchell defines bias to
be “any basis for choosing one generaliza-
tion over another, other than strict consis-
tency with the observed training instances”
[Mitchell 1980, p. 11. A system lacking in-
ductive bias would not be capable of making
predictions beyond the training examples
it has already seen. Typical types of bias
include using a restricted vocabulary in the
generalization language [Utgoff 19861 and
preferring maximally specific concept de-
scriptions [Dietterich and Michalski 19811
among others [Dietterich 19861. EBL may
be viewed as an attempt to use “background
knowledge” or a “domain model” as a type
of bias. The EBL method is biased toward
making generalizations that can be justified
by explaining them in terms of the domain
model. EBL programs usually represent do-
main knowledge in a declarative style, and
may therefore be said to utilize a declara-
tive bias representation.

Several advantages result from repre-
senting bias in terms of a declarative do-
main model [Russell and Grosof 19871. TO
begin with, a declarative bias can be inter-
preted in terms of direct statements about
the domain. For this reason, the bias is
subject to evaluation by human experts
even before it is used to process training
examples. In comparison, a nondeclarative
bias such as a restricted vocabulary is not
immediately interpretable as a statement
about the domain [Dietterich 19861. It
therefore cannot be easily evaluated except
by testing its consistency with the training
examples. A declarative bias also offers
advantages of domain independence. As ob-
served by Dietterich and Michalski [19811,
greater domain independence is achieved if
the bias is contained in a separate module.
The declarative domain models used by
EBL systems are usually kept separate and
can be easily modified. Traditional types of
bias, such as the two cited above, are nor-
mally built into the representation and pro-
cedures used by the learning system. For
this reason they are not easily modifiable.
A declarative bias representation also helps
to integrate diverse sources of background

ACM Computing Surveys, Vol. 21, No. 2, June 1989

Explanation-Based Learning: Programs and Perspectives l 167

knowledge into the learning process [Rus-
sell and Grosof 19871.

1.2 The History of EBL

Explanation-based learning has only re-
cently emerged as a recognizable area
of study. Consequently, most early EBL
research was undertaken by investigators
who were not working on “explanation-
based learning” per se. EBL may be viewed
as a convergence of several distinct lines of
research within machine learning. In par-
ticular, EBL has developed out of efforts to
address each of the following problems:

l Justified generalization: A logically
sound procedure for generalizing from ex-
amples. Given some initial background
knowledge B and a set of training exam-
ples T, justified generalization finds a
concept C that includes all the positive
examples and excludes all the negative
examples. The learned concept C must
be a logical consequence of the back-
ground knowledge B and the training
example set T [Russell 19861.

l Chunking: In the context of expla-
nation-based learning, chunking is a
process of compiling a linear or tree-
structured sequence of operators into a
single operator. The single operator has
the same effect as the entire original se-
quence [Rosenbloom and Newell 19861.

l Operationalization: A process of
translating a nonoperational expression
into an operational one. The initial non-
operational expression may be a set of
instructions or a concept. Concepts and
instructions are considered to be opera-
tional with respect to an agent if they
are expressed in terms of actions and
data available to the agent [Mostow
1983a].

l Justified analogy: A logically sound
procedure for reasoning by analogy.
Given some initial background knowl-
edge B, an analog example X, and a target
example Y, find a feature F such that
F(X) is true, and infer that F(Y) is true.
The conclusion F(Y) must be a logical
consequence of F(X) and the background
knowledge B [Davies and Russell 19871.

Two of the first investigators to develop
EBL methods were DeJong and Mitchell.
DeJong’s first paper in the EBL genre was
DeJong [1981], in which he outlines a
method of using explanations to learn pro-
cedural schemata from natural language
input. DeJong viewed his approach as an
attempt to model “insight learning” that
involves “grasping a principle” embodied in
an example [DeJong 1981, p. 671. Mitchell’s
first EBL program was the LEX-II system
developed jointly with Utgoff. This system
involved a method of learning search con-
trol heuristics by analyzing sequences of
operators [Utgoff and Mitchell 19821.
Mitchell’s overall approach to EBL was
first outlined in his “Computers and
Thought” paper [Mitchell 19831, where he
suggested that a learning system be given
“declarative knowledge of its learning goal”
[Mitchell 1983, p. 11451. Such knowledge
would enable a system to make “justifiable”
generalizations and would be more power-
ful than purely “empirical” or “syntactic”
methods.

At the same time that Mitchell and
DeJong were developing EBL methods of
generalization, Carbonell introduced his
method of derivational analogy [Carbonell
1983a]. Carbonell’s method uses deriva-
tions as a guide to analogical reasoning in
a manner similar to the way in which EBL
uses explanations to guide generalization.
Winston was another one of the first inves-
tigators to use EBL methods in the context
of reasoning by analogy [Winston et al.
19831. The EBL methods used by Carbonell
and Winston are both similar to Gentner’s
“structure-mapping” theory of analogy
[Gentner 19831. They also resemble Banerji
and Ernst’s method of using homomor-
phisms to implement a type of analogical
reasoning [Banerji and Ernst 19721.

One of the first operationalizing systems
was Mostow’s FOO program for operation-
alizing advice [Mostow 19811. Keller’s
LEXCOP technique [Keller 19831 was an-
other early example of operationalization.
The techniques used by Keller and Mostow
bear a strong resemblance to Balzer’s
method of “transformational implementa-
tion” [Balzer et al. 19761. A general ap-
proach to the problem of operationalizing

ACM Computing Surveys, Vol. 21, No. 2, June 1989

168 . Thomas Ellman

advice is discussed in Hayes-Roth and Mos-
tow [1981]. This line of research can be
ultimately traced back to McCarthy’s sug-
gestion for an advice taking program
[McCarthy 19681. All of these systems may
be seen as implementing a type of “learning
by being told” [Cohen and Feigenbaum
19821.

Early research into chunking of operator
sequences includes the STRIPS system
[Fikes et al. 19721 along with Lewis [1978]
and Neves and Anderson [1981]. Although
STRIPS uses explanation-based methods
for generalizing robot plans, it was not
viewed as an EBL system by its authors,
since it was built well before EBL became
a recognized field of study. The idea of
combining individual operators into macros
goes back to Amarel’s paper on represen-
tations for the “missionaries and canni-
bals” problem [Amarel 19681. The general
idea of chunking can ultimately be traced
back to Miller’s psychological studies
[Miller 19561.

1.3 Relation to Other Machine
Learning Research

EBL is characterized by the fact that it
makes use of extensive background knowl-
edge to guide the learning process. A num-
ber of researchers outside the area of EBL
have also used such knowledge-intensive
approaches to machine learning. Some
early examples include Lenat’s AM pro-
gram [Lenat 19821, Sussman’s HACKER
program [Sussman 19751, and Soloway’s
program for learning rules of competitive
games [Soloway 19781. These systems are
difficult to compare since they use diverse
program architectures. Their background
knowledge is embedded in specialized,
domain-dependent heuristics, such as
Lenat’s heuristics for creating and evalu-
ating concepts and Sussman’s knowledge
base of bugs and patches. Additional pro-
grams using knowledge-intensive learning
techniques include Buchanan and Mitchell
[19781, Vere [1977 1, Lebowitz [19831, Stepp
and Michalski [1986], and Lenat et al.
[1986].

The search control technique known
as “dependency-directed backtracking”

(DDB) provides an interesting comparison
to EBL. This technique is used to control
the process of backtracking when a contra-
diction or failure is encountered during a
search process [Doyle 1979; Stallman and
Sussman 19771. DDB may also be inter-
preted as a type of explanation-based learn-
ing. DDB uses data dependencies to
generalize the context of a contradiction,
or search failure, in much the same manner
that EBL uses explanations to generalize
from training examples.

Attempts at formally classifying the
types of background knowledge useful for
inductive learning have been undertaken
by both Michalski and Russell. Michalski
[19831 developed a typology describing var-
ious kinds of “problem background knowl-
edge” that can be used by inductive learning
systems. Russell [1986] has attempted to
exhaustively identify the types of informa-
tion that can enable a system to make
deductively sound generalizations. Natara-
jan and Tadepalli 119881 have developed a
framework for analyzing the impact of
background knowledge on the information
complexity of learning from examples.

2. SELECTED EXAMPLES
OF EXPLANATION-BASED LEARNING

2.1 Introduction

The techniques of explanation-based learn-
ing can be understood in a number of dif-
ferent ways. As described above, EBL
represents a merging of several trends in
machine learning research. These include
research into generalization, chunking, op-
erationalization, and analogy. Each of these
research areas has contributed a distinct
view of EBL. In this section EBL programs
are classified in terms of these four cate-
gories. The category for each system is cho-
sen to reflect the language used by its
authors in describing their work. In many
cases the differences between systems in
separate categories are only a matter of
interpretation. Programs described differ-
ently by their authors often involve similar
underlying procedures. The authors have
merely chosen to emphasize different
aspects of their work or different ways of

ACM Computing Surveys, Vol. 21, No. 2, June 1989

Explanation-Based Learning: Programs and Perspectives 9 169

Mapping justified generalization to chunking:

Explanation rules --* Operators,
Explanation + Operator sequence,

Generalized explanation + Compiled operator sequence,
Example + Problem state

+ Instantiated operator sequence,
Learned concept + Precondition of operator sequence

+ Generalized operator sequence.

Mapping justified generalization to operationalization:

Explanation rules + Nonoperational concept description,
Explanation + Translation process,

Generalized explanation --, Compiled translation process,
Example + Example,

Learned concept -S Operational concept description.

Mapping justified generalization to justified analogy:

Explanation rules -+ Causality rules
+ Problem-solving derivation rules,

Explanation + Network of causal relations
+ Derivation of solution,

Generalized explanation + Transferred causal subnetwork
+ Transferred portion of derivation,

Example + Analog or target,
Learned concept - Concept including analog and target.

Figure 3. Relation among views of EBL.

thinking about their programs. In this sec-
tion an attempt is made to show how most
EBL programs can be understood from
each of the four points of view. Figure 3
suggests some rough correspondences be-
tween the different views of EBL. The
reader should refer back to this figure while
reading about each program.

2.2 EBL = Justified Generalization

Explanation-based learning is most often
viewed as a method of generalizing from
examples. As described above, the general-
ization process is usually framed in terms
of a two-step procedure: (1) Explain the
example, and (2) analyze the explanation
in order to generalize the example. Figure
3 shows five roles that are a part of this
process, including “explanation rules,” “ex-
planations,” “generalized explanations,”
“examples,” and “learned concepts.” When
reading about EBL generalization pro-
grams, it is useful to keep the two-step
process in mind, and to consider how each
of the roles is filled in a particular program.

2.2.1 GENESIS (DeJong and Mooney)

One of the major efforts to investigate EBL
has been undertaken by DeJong and
co-workers at the University of Illinois
[DeJong 1986; DeJong and Mooney 1986;
Mooney and DeJong 1985; O’Rorke 1984;
Segre and DeJong 1985; Shavlik 19851. The
GENESIS system is a typical example of
their work [Mooney 1985; Mooney and
DeJong 19851. GENESIS has been pre-
sented by DeJong and Mooney as a system
for generalizing examples. It is intended to
investigate explanation-based learning in
the domain of human problem-solving be-
havior. GENESIS reads natural language
stories that describe people engaged in car-
rying out plans to achieve typical human
goals. It attempts to generalize from the
stories to form schemata describing general
plans for achieving goals. A story of a kid-
napping is shown in Figure 4. GENESIS is
able to generalize this single example of a
kidnapping into a schema describing a gen-
eralized plan for kidnapping to obtain ran-
som. The schema contains only those

ACM Computing Surveys, Vol. 21, No. 2, June 1989

170 l Thomas Ellman

Fred is the father of Mary and is a millionaire.
John approached Mary. She was wearing blue
jeans. John pointed a gun at her and told her
he wanted her to get into his car. He drove her
to his hotel and locked her in his room. John
called Fred and told him John was holding
Mary captive. John told Fred if Fred gave him
$250,000 at Trenos then John would release
Mary. Fred gave him the money and John
released Mary.

Figure4. A story that GENESIS reads and
generalizes [Mooney 19851.

elements of the story that were necessary
for the kidnapping to be successful, but
none of the extra details. For instance, the
schema requires that the victim be someone
who is in a close personal relationship with
a rich person since this constraint is nec-
essary for the kidnapping to succeed. It
does not require that the victim be wearing
blue jeans or that the money be delivered
at Trenos, since the success of the plan
does not depend on these details.

In order to generalize a story, GENESIS
builds a “causally complete explanation” of
the events the story describes. Although
the story describes a sequence of events, it
does not state the causal connections be-
tween events. GENESIS must infer these
connections. A causally complete descrip-
tion of the kidnapping story is shown in
Figure 5. In the course of building this
explanation, the system had to make sev-
eral types of inferences. All of the “support
links” (effects, preconditions, motivations,
and inferences) [Mooney 19851 and “com-
ponent links” were inferred by the system.
For example, GENESIS inferred that the
telephone call fulfilled a precondition for
the bargain made between John and Fred.
The system also inferred that the actors in
the story had certain goals or goal priori-
ties, for example, that Fred wanted Mary
to be safe more than he wanted to keep his
$250,000. In addition, the system inferred
that certain actions in the story were com-
ponents of composite plans, for example,
that the action of pointing a gun is part of
a “threaten” plan, which itself is part of a
“capture” plan. The explanation is “com-
plete” in the sense that all volitional actions
are understood to be motivated by typical

human goals, that is, “thematic goals”
[Mooney 1985; Schank and Abelson 19771.
Each action achieves a thematic goal di-
rectly or else is part of a plan that fulfills a
thematic goal.

In order to build explanations of stories,
GENESIS draws upon a knowledge base
containing facts about typical human goals
and motivations. The knowledge base also
describes actions and plans for achieving
such goals. This knowledge is organized
into a hierarchy of schemata describing
actions, states, and objects. The actions
are represented in a manner similar to
STRIPS-type operators [Fikes et al. 19721.
Each action has a list of preconditions and
a list of effects. GENESIS uses a combi-
nation of script-based [Cullingford 19781
and plan-based [Wilensky 19781 story-
understanding methods [Schank and Abel-
son 19771. Script-based methods operate by
instantiating general schemata to match
observed action sequences. Plan-based
methods require searching a space of goals
and plans to find those that would account
for peoples’ actions.

The GENESIS generalization process is
charged with the task of building a schema
describing plans for a wide variety of situ-
ations. For this purpose the generalizer
analyzes the explanation of the story to
determine which aspects are essential to
the plan and which are irrelevant. The gen-
eralizer removes as much information from
the story as possible, as long as the expla-
nation of the success of the plan remains
valid. If the explanation remains valid, the
generalized plan should also be successful.
Therefore, this procedure may be said to
produce justified generalizations. The gen-
eralization procedure is shown in Figure 6.3

’ The GENESIS system has apparently gone through
more than one implementation. Two similar general-
ization procedures are described by Mooney [1985]
and DeJong and Mooney [1986]. The procedure de-
scribed here is essentially the one in DeJong and
Mooney [1986], except that one step has been omit-
ted. The omitted step requires replacing observed
inefficient subplans with more efficient subplans,
when possible. Two additional steps are mentioned in
Mooney [1985]. One step involves “constraining the
achieved goal to be thematic,” and the other step
involves enforcing a constraint that all generalized
schemata be “well formed.”

ACM Computing Surveys, Vol. 21, No. 2, June 1989

Explanation-Based Learning: Programs and Perspectives l 171

/

POSSESS14 _I POSSESSI
P

, COALPRIORITY5 d-- POSITIVE-IFrI& PARENTI d- FATHER,

POSSESS9 l

BELIEFIS-’ BELIEF16

BELIEFIS& BELIEF14

GOAL-PRIORITY4 ,I COAL9

POSSESS9
BARGAIN1

John has $250,000.

MTRANS3

RELEASE1
ATRANS 1
POSSESS14
POSSESS1
GOAL-PRIORITY5
POSITIVE-E?‘1
PARENT1
FATHER1
HELD-CAPTIVE1
CAPTURE1
D-KNOW1
PTRANS 1
DRIVE1
THREATFNI
AIM1
MTRANSl
AT1
CONFINE 1
FREE1
BELIEFS
COMMUNICATE1
TELEPHONE1
CALL1
CPATHl
MTRANS2
BELIEF9
BELIEF15
BELIEF16
BELIEF13

John makes a bargain with Fred in which John releases
Mary and Fred gives $250,000 to John.
John tells Fred he will release Mary if Fred gives him
$250.000.
John releases Mary.
Fred gives John $250.000.
Fred has $250.000.

BELIEF14
GOAL-PRIORITY4

Fred has millions of dollars.
Fred wants Mary free more than he wants $250,000.
Fred has a positive interpersonal relationship with Mary.
Fred is Mary’s parent.
Fred is Mary’s father.
John is holding Mary captive.
John captures Mary.
John finds out where Mary is.
John moves Mary to his hotel room.
John drives Mary to his hotel room.
John threatens to shoot Mary unless she gets in his car.
John aims a gun at Mary.
John tells Mary he wants her to get in his car.
Mary is in John’s hotel room.
John locks Mary in his hotel room.
Mary is free.
Fred believes John is holding Maty captive.
John contacts Fred and tells him he is holding Mary captive.
John calls Fred and tells him he is holding Mary captive.
John calls Fred on the telephone.
John has a path of communication to Fred.
John tells Fred he has Mary.
John believes he is holding Mary Captive.
John believes Fred has $250,000.
John believes Fred has millions of dollars.
John believes Fred wants Mary free more than he wants
$250,000.
John believes Fred is Mary’s father.
John wants to have $250.000 more than he wants to hold
Mary captive.

GOAL9 John wants to have $250,000.
ATTIRE1 Mary is wearing blue jeans.

Link Types Definition

P = Precondition A state may be a precondition for an action.
E = Effect A state may be an effect of an action.
I = Inference The occurrence of one state or action implies the occurrence of another
C = Component An action may be a component of a plan.
M = Motivation A goal state may motivate an action.

Figure 5. A causally complete explanation of the kidnapping [DeJong and Mooney 19861.

ACM Computing Surveys, Vol. 21, No. 2, June 1989

172 l Thomas Ellman

1. Delete parts of the story representation that are
not essential to the explanation.
(a) Remove parts of the network that do not

causally support the achievement of the main
thematic goal.

(h) Remove nominal instantiations of known sche-
mata.

(c) Remove actions and states that only support
inferences to more abstract actions or states.

2. Generalize the remaining schemata while main-
taining the validity of each support link.
(a) Extract the explanation structure ES from the

explanation network.
(b) Find the most general instantiation of ES that

represents a valid explanation (EGGS proce-
dure).

3. Package the generalized network into a schema.

Figure 6. Generalization procedure used by
GENESIS.

The first part of GENESIS’ generaliza-
tion procedure is directed toward isolating
the essential parts of the explanation
(Step 1 in Figure 6). Some portions of the
network representation of the story are not
considered to be parts of the explanation
per se and are pruned away by the system.
To begin with, the system removes all ac-
tions and states that are not topologically
connected through “support” or “compo-
nent” links to the main thematic goal
(Step la in Figure 6). These nodes are
removed because they do not causally con-
tribute to the achievement of the goal. In
the network of Figure 5, the node asserting
that Mary was wearing blue jeans is re-
moved for this reason. The system also
prunes the nodes describing actions that
are mere “nominal instantiations” of
known composite schemata (Step lb in Fig-
ure 6). These constituent actions do not
contribute to the main thematic goal except
through the effects of the corresponding
composite schemata. Since the composite
schemata remain unpruned, the constitu-
ents are not needed. In the network of
Figure 5, component actions of the
“telephone” and “capture” schemata are
removed.

The final pruning step depends crucially
on the fact that all action and state sche-
mata are organized into an “isa” hierarchy.

All inferences of the form “Schema A is an
instance of Schema B” are deleted from the
explanation, whenever “Schema A” serves
no purpose other than supporting the
inference to “Schema B” (Step lc in Fig-
ure 6). For example, in Figure 5 the infer-
ences that the “father” relationship is an
instance of “parent,” which is itself an in-
stance of “positive-ipt,” are deleted along
with the “father” and “parent” nodes.
These nodes are deleted since they are not
needed to support the “goal-priority” node.
The goal-priority node was created using
an inference rule inherited from the “posi-
tive-ipt” node. Since this rule applies to
relationships more general than “father” or
“parent,” these two nodes are overspecific
and must be deleted. This step of the gen-
eralization process also leads to deleting
the “telephone” node and the inference that
the telephone action is an instance of the
“communicate” schema.

After the nonessential parts of the expla-
nation are pruned away, the next step is to
generalize the remaining schemata (Step 2
in Figure 6). The slot fillers on the remain-
ing schemata are generalized as much as
possible as long as the support links remain
valid. Each support link was created by
using some general inference rule from the
knowledge base. While building the expla-
nation, GENESIS annotated the support
links with pointers to the inference rules
from which the links were created. In order
for the support links to remain valid, the
schemata can only be generalized in such a
way that they continue to match the pat-
terns in the general inference rules.

The schemata are generalized in a two-
step process (Steps 2a and 2b in Figure 6).
GENESIS first extracts the so-called ex-
planation structure from the explanation
network. The explanation structure may
be defined as the result of replacing each
support link in the network with the associ-
ated general inference rule [Mitchell et al.
1986; Mooney and Bennett 19861. The
explanation structure represents an over-
generalized version of the original expla-
nation. In the second step, GENESIS uses
a procedure called EGGS to specialize the
explanation structure [DeJong and Moo-

ACM Computing Surveys, Vol. 21, No. 2, June 1989

Explanation-Based Learning: Programs and Perspectives l 173

ney 1986; Mooney and Bennett 19861. An
outline of the EGGS algorithm is shown in
Figure 7.*

The EGGS procedure takes an explana-
tion structure ES as its input. EGGS is
charged with the task of finding the most
general instantiation of ES that represents
a valid explanation. In order that ES rep-
resent a valid explanation, the rule patterns
must be reinstantiated to some degree. In
particular, if Rl and R2 are two rules inci-
dent on a given node of ES, then the ap-
propriate patterns from Rl and R2 must be
instantiated to syntactically identical
expressions.” EGGS first forms a list of all
pairs of patterns that must be instantiated
to identical expressions. Then EGGS finds
the maximally general set of bindings for
the pattern variables that will simultane-
ously unify all equated pairs of patterns.
Finally, all the rule patterns in ES are
instantiated with these bindings. The re-
sulting network is the most general instan-
tiation of ES that represents a valid
explanation.

After the EGGS procedure is applied to
the kidnapping expianation, some of the
objects are generalized and others are con-
strained. For example, the locations in the
“hold-captive” and “bargain” schemata are
generalized. The amount of money is con-
strained to be any amount possessed by
the target of the kidnapping. The victim
of the “capture” schema is constrained to
be the same person mentioned in the
“positive-ipt” schema. The resulting gen-
eralized explanation network is shown in
Figure 8.

The final step of GENESIS’ generaliza-
tion procedure requires packaging the gen-
eralized network into an action schema
(Step 3 in Figure 6). The resulting schema
contains “preconditions,” “effects,” and

4 The algorithm shown in Figure 7 most closely resem-
bles the version of EGGS presented by Mooney and
Bennett [1986]; however, Mooney and Bennett’s pre-
sentation contains a typographic error, omitting
Steps 3a and 3b shown in Figure 7.
“An additional constraint is mentioned by Mooney
[1985]. This constraint requires that the pattern rep-
resenting the main goal of the story match a thematic
goal pattern.

Given: An explanation structure ES.

Find: The most general instantiation of ES that
represents a valid explanation.

Procedure:
Let L be a list of all pairs of inference rule patterns
in ES that must be instantiated to syntactically
identical expressions.
Initialize S to be the null substitution.
For each pair (A, B) of equated patterns on the list
L do:
(a) Let A’ be the result of applying S to A.
(b) Let B’ be the result of applying S to B.
(c) Let T be the most general unifier of A’ and B’.
(d) Let S be the composition of substitutions S and

T.
For each inference rule pattern P in ES do:
(a) Let P’ be the result of applying S to P.
(b) Modify ES by replacing P with P’.

Figure 7. EGGS procedure.

“expansion schemata.” The generalized
preconditions include just the precondition
nodes in the network that are not created
as effects of any other node in the network.
The generalized effects include the effect
nodes in the network that are not undone
by any other action in the network. The
generalized expansion schemata are all the
remaining nodes in the generalized expla-
nation.

The results of the GENESIS learning
process can be evaluated in terms of the
system’s question-answering ability [Moo-
ney 19851. Before building the schema,
GENESIS reads a test narrative and is
unable to answer some questions about the
narrative. In order to answer the questions,
GENESIS would have to make some de-
fault inferences. The inferences could be
made by a plan-based story understander;
however, GENESIS has only a rudimentary
capability for plan-based story understand-
ing and is unable to make the necessary
inferences. After forming a generalized kid-
napping schema, GENESIS can read the
narrative and successfully answer the very
same questions. GENESIS is able to make
the necessary inferences by using the gen-
eralized schema in a script-based story un-
derstanding process. One can summarize
the results of learning in GENESIS in the

ACM Computing Surveys, Vol. 21, No. 2, June 1989

174 l Thomas Ellman

b

POSSESS14 d--POSSESS,
P

COALPRIORKY5 & POSlTIvE-IFTI

p HELrKAmlvEI4 CAPTURE&- FREEI

POSSESS9 ,E BARGAIN1
P E

P BELIEF9

P

p BELIEF8 ,E COMMUNICATEI

F

/

BELIEF15

BELlEFIX- BELIEF14
M

CDALPRIORKY4 b CaAL

POSSESS9 Person1 has Moneyl.
BARGAIN1 Person 1 makes a bargain with Person2 in which Person 1

releases Person3 and Person2 gives Money1 to Personl.
POSSESS14 Person2 has Moneyl.
GOAL-PRIORITY5 Person2 wants Person3 free more than he wants Moneyl.
POSITIVE-IF’Tl There is a positive intqpersonal relationship between

Person2 and Person3.
HELD-CAPTIVE1 Person1 is holding Person3 captive.
CAPTURE1 Person1 captures Person3.
FREE1 Person3 is free.
BELIEFS Person2 believes Person1 is holding Person3 captive.
COMMUNICATE1 Person1 contacts Person2 and tells him he is holding

Person3 captive.
BELIEF9 Person1 believes he is holding Person3 captive.
BELIEF15 Person1 believes Person2 has Moneyl.
BELIEF13 Person1 believes Person2 wants Person3 free more than he

wants Money I.
BELIEF14 Person1 believes there is a positive interpersonal relationship

between Person2 and Person3.
GOAL-PRIORITY4 Person1 wants to have Money1 more than he wants to hold

Person3 captive.
GOAL9 Person 1 wants to have Moneyl.

Figure 8. The generalized kidnapping network [DeJong and Mooney 19861.

following way: Before learning, the knowl-
edge base is suitable only for use by a
plan-based understanding system. After
learning, the knowledge base contains
new schemata that can be used by a
script-based system. This represents an
improvement because plan-based under-
standing requires more search than is
necessary for script-based understanding
[Wilensky 19781.

Although GENESIS has been presented
as a program that learns by generalizing
examples, it can also be viewed in other
ways (see Figure 3). It can be regarded as a
chunking system, which learns by combin-
ing operators into macro operators. The
generalized kidnapping schema may be
viewed as a macro operator composed of
the “capture, ” “communicate,” and “bar-

gain” operators. GENESIS may also be
viewed as a system that reformulates non-
operational concept descriptions. Before
learning, the system may be said to possess
a nonoperational description of the concept
“plans for obtaining money.” The pattern
describing the thematic goal “obtain
money,” together with the knowledge base
of action schemata, could be viewed as a
nonoperational specification of the collec-
tion of all plans for obtaining money. The
description is nonoperational since the in-
formation about what constitutes a valid
plan for obtaining money is scattered
throughout the knowledge base. After
learning, GENESIS has an operational de-
scription of the concept in the form of a
general schema. The schema explicitly de-
scribes a set of plans. Any instantiat,ion of

ACM Computing Surveys, Vol. 21. No. 2, .June 1989

Explanation-Based Learning: Programs and Perspectives l 175

the generalized schema is a valid plan for
obtaining money.

2.2.2 LEX-II (Mitchell and Utgoff)

Another major effort to investigate EBL
techniques was undertaken by Mitchell and
co-workers at Rutgers University. A num-
ber of different EBL systems were devel-
oped by Mitchell’s group [Kedar-Cabeili
1985; Keller 1983; Mahadevan 1985; Mitch-
ell 198213; Mitchell 1983; Mitchell et al.
1986; Steinberg and Mitchell 1985; Utgoff
19861. One of the oldest of these systems is
LEX-II, which learns search control heu-
ristics in the domain of symbolic integra-
tion. LEX-II was built as an extension to
the LEX-I system. LEX-I uses purely em-
pirical techniques for learning concepts
from multiple examples [Mitchell et al.
1981; Mitchell et al. 1983a]. LEX-II was
built to combine the empirical techniques
of LEX-I with analytical (EBL) learning
methods for generalizing from single ex-
amples [Mitchell 1982b, 19831.

LEX-I and LEX-II both contain four
main modules: the problem generator, the
problem solver, the critic, and the general-
izer. The problem solver is equipped with a
set of operators that it uses in a best-first
forward search process. Sample operators
are shown in Figure 9. Each operator has a
condition specifying the class of problem
states to which the operator can be “val-
idly” applied. The learning modules are
charged with the task of finding more re-
strictive conditions on the states to which
the operators will be applied. For each op-
erator the system tries to learn a concept
describing the set of states to which the
operator can be “usefully” applied in order
to find a solution. The states to which an
operator can be “usefully” applied is usually
a proper subset of those states to which it
can be “validly” applied. The restricted ap-
plicability conditions limit the number of
states created, leading to a faster search
process and increasing the range of prob-
lems that the system can solve within a
fixed time limit.

The learning process begins when a prob-
lem is created by the problem generator.
The problem solver attempts to solve the

OPl:

OP2:

s sin(z) dx + c - cos(x).

f(x)’ + f(x) f(x)“-“.

OP3: s r f(x) dx --, r s f(x) dx.

OP4: s

xlr+ll
LX’+-” dx --a m + c.

Figure 0. Examples of operators used in LEX-I and
LEX-II.

Sl:
s 7(x2) dx

1

OP3
useful

(x2) dx

OP4

:i!. ---l

OP2
useful not useful

1

3
s3: 7 S xx dx

Figure 10. Partial search tree labeled by critic
module.

problem. If a solution is found, a trace of
the search tree is sent to the critic module.
The critic labels some or all of the operator
applications in the search tree as being
“useful” or “not useful.” The operator ap-
plications along the final solution path are
considered “useful,” and those that lead
away from the final solution path are
considered to be “not useful” (Figure 10).
The classification yields sets of positive
and negative instances for each operator.
These examples are used by the general-
izer in order to learn restricted operator
applicability conditions.

LEX-I processes the labeled instances
using Mitchell’s candidate elimination al-
gorithm [Mitchell 19781, a purely empirical
concept-learning technique. This algorithm
searches through a “version space” contain-
ing an initial set of candidate concept de-
scriptions. The candidates are connected

ACM Computing Surveys, Vol. 21, No. 2, June 1989

176 l Thomas Ellman

(Vop, s) (POSZNST(op, s) ti USEFUL(op, s) j.
(Vop, s)(USEFUL(op, s) ti [+OLVED(s) A SOLVABLE(APPLY(op, sl)]l.
(Vop, s)(SOLVABLE(s) G= SOLVABLE(APPLY(op, s))).
(Vop, s)(SOLVABLE(s) + SOLVED(APPLY(op, s))].

Figure 11. Rules defining the POSINST predicate in LEX-II.

by “generalization-of” and “specialization-
of” relations, which define a lattice.6 As
each positive or negative instance is pro-
cessed, the algorithm eliminates all candi-
dates that are inconsistent with the critic’s
classification of the example. This is
achieved by recording two sets called “S”
and “G.” These sets respectively contain
the maximally specific (S) and maximally
general (G) candidates that are consistent
with all the instances observed so far.
When observing a positive instance, each
member of S is generalized just enough to
include the new example. Negative in-
stances are processed by specializing each
member of G just enough to exclude the
new example. If a sufficient number of ex-
amples is observed, the sets S and G con-
verge to contain only one possible
candidate, assuming that the correct con-
cept description is actually contained in the
version space.

LEX-II was developed with the intention
of providing the learning modules with
additional forms of knowledge that would
enhance the effectiveness of the gener-
alization process. In particular, LEX-II was
given a description of the goal of the learn-
ing process. LEX-II contains rules that
provide an abstract definition of a positive
instance predicate, POSINST, shown in
Figure 11. These rules provide definitions
of a whole collection of concepts, one con-
cept for each operator. For example, when
the rules are instantiated by letting “op”
equal “OP3,” they define the concept
including the set of states that satisfy
“POSINST(OP3, s).” To paraphrase these
rules, a state “s” is a positive instance for

’ The version space is defined by a context-free gram-
mar. Each sentential form in the language of the
grammar corresponds to a learnable concept. The rules
of the grammar correspond to the relations “general-
ization of” and “specialization of,” which define the
lattice.

ACM Computing Surveys, Vol. 21, No. 2, June 1989

Examples

I

EBL

Candidate
elimination

Figure 12. Organization of the LEX-II generalizer.

the operator “op” if the state “s” is not
already solved and applying “op” to ‘Is”
leads to a state that is either solved or is
solvable by additional operator applica-
tions.

The organization of the LEX-II learning
module is shown in Figure 12. LEX-II pro-
cesses positive and negative examples
somewhat differently. The positive exam-
ples are submitted to an EBL procedure.
The EBL procedure generalizes single pos-
itive instances by making use of the rules
defining the POSINST predicate. The gen-
eralized positive instances are then submit-
ted to the candidate elimination procedure.
The negative instances are submitted di-
rectly to the candidate elimination algo-
rithm, just as they are in LEX-I.

The EBL procedure used in LEX-II is
shown in Figure 13. The input to this pro-
cedure is a state and operator application
pair, (OP, S), that was labeled as a positive
instance by the critic module. The EBL
procedure is charged with finding a gener-
alization of S representing a set of states
for which the operator OP will be “useful.”
The LEX-II EBL procedure uses a two-
step process similar to the one described
above for the GENESIS system. First

Explanation-Based Learning: Programs and Perspectives l 177

Given: An example state and operator application pair, (OP, S), that was classified as a positive instance.

Find: A generalization of S representing a set of states for which the operator OP will be “useful.”

Procedure:
1. Build an explanation showing how the pair, (OP, S), satisfies the definition of the POSINST predicate.
2. Analyze the explanation in order to obtain a set of conditions sufficient for any state “s” to satisfy the

predicate “POSINST(OP, s).”
(a) Change the state constant “S” into a universally quantified variable “s.”
(b) Extract a set of conditions satisfying the AND/OR tree representing the explanation.
(c) Translate the conditions from the “operator language” into the “generalization language.”

(1) Express the conditions in terms of restrictions on various states in the solution tree.
(2) Propagate restrictions through the solution tree to obtain equivalent restrictions on the example

problem state “s.”

Figure 13. EBL procedure used in LEX-II.

POSINST(OP3, Sl)

7
USEFUL(OP3, Sl)

?

f

T
SOLVABLE(APPLY(OP3, Sl)) +OLVED(SI)

SOLVED(APPLY(OP4, APPLY(OP3, SI)))

Figure 14. Proof tree built by LEX-II.

LEX-II explains why the example is a pos-
itive instance. Then LEX-II generalizes the
example by analyzing the explanation.

In order to illustrate the LEX-II EBL
procedure, consider an example from the
labeled search tree shown in Figure 10. The
labeling indicates that the pair (OP3, Sl)
is a positive instance. LEX-II begins pro-
cessing this instance by verifying that the
pair (OP3, Sl) does indeed meet the
conditions given in the definition of the
POSINST predicate. LEX-II verifies this
example by building the AND/OR proof
tree shown in Figure 14. The root of the
explanation tree asserts that the example
pair (OP3, Sl) is a positive instance. The
leaves of the tree represent the facts on
which the explanation is based. These leaf
nodes make assertions about the structure
of the search tree shown in Figure 10.

After building an explanation verifying
that (OP3, Sl) is a positive instance, LEX-
II analyzes the explanation in order to gen-
eralize the state Sl. The first two steps

involve (1) changing the state constant
“Sl” in the example into a universally
quantified variable “s”~ and (2) extracting
a set of nodes sufficient to satisfy the
AND/OR proof tree (Steps 2a and 2b in
Figure 13). Any set of nodes satisfying the
AND/OR proof tree would constitute suf-
ficient conditions. In practice, however,
only leaf nodes are chosen. For the expla-
nation tree in Figure 14, LEX-II forms the
following clause:

(Vs) (POSINST(OP3, s)

e= [SOLVED(APPLY(OP4,
APPLY (OP3,
s)))

A %SOLVED(s)]).

’ For this step to be “justified” LEX-II should consult
the definitions of the rules used in the proof to verify
that the proof remains valid after the state constant
is changed to a variable; however, Mitchell does not
mention such a process.

ACM Computing Surveys, Vol. 21, No. 2, June 1989

178 l Thomas Ellman

This clause provides a set of conditions
specifying when the operator OP3 can be
usefully applied to a state. The conditions
are sufficient, but not necessary, for a state
to be a member of the set “states for which
OP3 is useful.” The conditions are suf-
ficient since the explanation tree will be
satisfied by any state meeting these
conditions. The conditions are not neces-
sary, however, because there are other ex-
planation trees that could prove the same
result.

The antecedents of the clause are written
in the so-called “operator language” of
LEX-II. In this form they are not particu-
larly useful because they can only be tested
by applying operators to states and exam-
ining the results. LEX-II makes the clause
more useful by translating the antecedent
conditions into the “generalization lan-
guage”’ (Step 2c in Figure 13). LEX-II
begins the translation by applying
the definitions of “SOLVED” and
“+OLVED.” By substituting definitions
of these predicates, LEX-II obtains a con-
junction of statements of the form
MATCH((generalization), (state)), where
“ (generalization) ” is a statement in the
generalization language and “ (state) ” can
refer to any state in the symbolic integra-
tion state space. When these substitutions
are applied to the clause shown above, the
following result is obtained:

(Vs) (POSINST(OP3, s)

e= [MATCH((function), APPLY (OP4,
APPLY(OP3, s)))

A MATCH(J (function) d3c, s)]).

This clause contains references to several
states in the search tree. The states are
described by sequences of operator appli-
cations as indicated by the APPLY func-
tion. The final translation step removes the
references to operator applications to ob-
tain conditions expressed directly in terms
of the example state “s.” In order to remove
references to the APPLY function, a pro-
cedure called constraint back-propaga-
tion (CBP) is used [Utgoff 19861. The CBP

’ The generalization language is specified by the same
context-free grammar that defines the version space.

technique is given the task of translating
any statement in the form MATCH(P,
APPLY(OP, s)) into an equivalent state-
ment of the form MATCH(P’, s). This is
essentially equivalent to calculating “weak-
est preconditions” as formalized in Dijkstra
[19761 and to performing goal regression
[Nilsson 1980; Waldinger 19771. The pat-
tern P’ must meet the requirement that a
state S will match P’ if and only if the
state APPLY(OP, S) matches P. The CBP
procedure is implemented by writing one
LISP function for each problem-solving op-
erator. The LISP function represents the
“inverse” of that operator.” The inverse for
operator OP would take a pattern such
as P and find the corresponding weakest
precondition P ’ .l” After applying the CBP
procedure to the antecedents in the
clause shown above, the following result
is obtained:

(Vs)(POSINST(OP3, s)

e= [MATCH(J r(~‘+“) dx, s)
A MATCH(J (function) dx, s)])

The power of the LEX-II generalization
procedure can be illustrated by comparing
this result to the original example shown
in Figure 10. The original example only
asserted the usefulness of applying operator
OP3 to the single problem state Sl. The
clause shown above asserts the usefulness
of applying operator OP3 to a larger class
of problem states. Two distinct generaliza-
tions have been made. The coefficient “7”
has been generalized to “r,” any real num-
ber. Furthermore, the exponent “2” has
been generalized to any real number “r,”
other than “-1.”

B Strictly speaking, these LISP functions are not true
inverses of the corresponding operators. If OP maps
problem states to problem states, the true inverse
would map states to states. The so-called “inverse”
used here maps patterns (sets of states) to other
patterns.
“I A difficulty arises when the precondition 1” cannot
be expressed in the generalization language of LEX-
II. When this happens, the system defines new terms
to expand the generalization language so that it can
express the desired precondition [Utgoff 19861. On
one occasion the system was led to define a new term
equivalent to “odd integer” in order to resolve such an
impasse.

ACM Computing Surveys, Vol. 21, No. 2, June 1989

Explanation-Based Learning: Programs and Perspectives l 179

The final generalization step involves
combining the results of (EBL) general-
ization of single positive examples with
the candidate elimination algorithm. The
clause shown above provides sufficient (but
not necessary) conditions for concept mem-
bership. Therefore, every candidate con-
cept description must be at least as general
as this generalized positive instance. For
this reason, the generalized instance can be
processed by the candidate elimination al-
gorithm just as if it were an actual positive
instance. The algorithm must simply gen-
eralize each member of the boundary set S
just enough to include the generalized pos-
itive instance.

Although LEX-II does not use its EBL
techniques to process negative examples,
there is no reason in principle why this
cannot be done. The system could be pro-
vided with a set of rules for proving state-
ments of the form lPOSINST(OP, S). By
processing explanations of negative in-
stances, the system could obtain general-
ized negative instances. These could be
used to refine the boundary set G, just as
generalized positive instances are used to
refine the boundary set S. In practice, ex-
planations of negative instances might be
large and difficult to analyze if the predi-
cate POSINST is defined as above. A proof
of lPOSINST(OP, S) would require show-
ing that the state APPLY(OP, S) is a dead
end. This would mean proving that no op-
erators apply or that all applicable opera-
tors lead to other dead-end states. In the
worst cases, such proofs can require reason-
ing about a large number of states along
multiple paths in the search tree. Proofs of
POSINST(OP, S) need only reason about
states along a single solution path.

The value of using EBL techniques in
LEX-II can be assessed by observing the
rate at which learning occurs. The candi-
date elimination algorithm should converge
faster in LEX-II than in LEX-I, because
LEX-II uses generalized positive instances
to refine the boundary set S. The EBL
techniques effectively provide a stronger
bias for inductive learning. LEX-I makes
use of the bias contained in the definition
of the generalization language. LEX-II uses
this bias in addition to the constraints pro-

vided by using EBL techniques to general-
ize positive instances. The stronger bias
and faster rate of convergence should lead
to improved performance by the problem
solver, since the learned heuristics are
available earlier in LEX-II than in LEX-I.

The learning component of LEX-II was
able to improve the overall problem-solving
performance of the system during the ini-
tial stages of learning. Eventually a point
was reached after which the acquisition of
new heuristics failed to improve the overall
performance of the system [Mitchell 19831.
The difficulty results from the fact that the
heuristics learned by LEX-II are capable of
improving only some aspects of the sys-
tem’s performance. Heuristics help decide
what operator to apply, given a state to be
expanded. They do not provide direct guid-
ance about what state should be chosen for
expansion. Eventually the system’s perfor-
mance was limited by the decision of which
state to expand, rather than which operator
to apply. This “wandering bottleneck”
problem results from the fact that only
some aspects of the system’s perfor-
mance fall within the scope of the learning
module.

Although LEX-II has been presented
mainly as a system for generalizing from
examples, it can also be viewed in other
ways (see Figure 3). LEX-II can be viewed
as a system that performs “chunking” of
operator sequences to form macro opera-
tors. In the example shown above, the sys-
tem learns a condition describing the set of
states for which the sequence OP3 followed
by OP4 will lead to a solved state. The
system could save this macro along with its
applicability condition. Although LEX-II
does not actually save such macro opera-
tors, it could easily be extended to do so.

LEX-II can also be viewed as a system
that reformulates nonoperational con-
cept descriptions. In the example shown
above, the system translates the concept
“POSINST(OP3, s)” into a conjunction of
patterns in the system’s generalization lan-
guage. LEX-II could, in principle, be mod-
ified to reformulate concepts other than the
POSINST predicate defined in Figure 11.
As described by Mitchell [1982b], the rules
defining POSINST could be changed so

ACM Computing Surveys, Vol. 21. No. 2, June 1989

180 . Thomas Ellman

that an operator application is considered
to be useful only if it lies along a minimum
cost path to a solution; however, this
change was apparently never implemented.
Were the rules so modified, they would
probably lead to large and complex expla-
nations that would be difficult to analyze,
just as explanations for negative instances
would be difficult to analyze. Proving a
path to be minimal in cost would require
reasoning about an entire search tree,
rather than merely reasoning about a single
solution path.

2.2.3 Similar Work

Several other investigators have developed
EBL systems that are naturally viewed in
terms of generalizing from examples. Min-
ton [1984] implemented a variant of EBL
called “constraint-based generalization.”
He used the method in a program that
learns forced win positions in games like
tick-tat-toe, go-moku, and chess. Two sim-
ilar EBL systems that operate in the do-
main of logic circuit design were developed
independently by Ellman [1985] and Ma-
hadevan [19851. Ellman’s program is ca-
pable of generalizing an example of a shift
register into a schema describing devices
for implementing arbitrary bit permuta-
tions. The schema is created by a process
that analyzes the proof of correctness of
the example circuit. Mahadevan’s method
is called “verification-based learning”
(VBL). The VBL technique is intended to
be a general method of learning problem
decomposition rules. Mahadevan has tested
VBL in the domains of logic circuit design
and symbolic integration. Hill [1987] has
developed similar methods for the domain
of software design. His system uses expla-
nation-based methods to generalize pro-
gram abstractions to promote software
reuse.

A number of people working with DeJong
developed EBL systems following up on
GENESIS. O’Rorke built the “Mathema-
tician’s Apprentice” program [O’Rorke
1984, 19861, which uses explanation-based
methods to create schemata summarizing
successful theorem-proving episodes. Shav-
lik [1985, 19861 built a system that learns

concepts from classical physics. His
“PHYSICS 101” system learns concepts
like conservation of momentum, starting
with only a knowledge of Newton’s laws
and calculus. Segre developed a system that
uses EBL methods to learn schemata
describing robot manipulator sequences
[Segre 1986; Segre and DeJong 19851.

2.3 EEL = Chunking

Chunking is usually understood in the con-
text of problem spaces, problem states, and
operators. A chunking system takes a linear
or tree-structured sequence of operators as
its input. The task of the chunking system
is to convert the sequence of operators into
a single “macrooperator,” or “chunk,” that
has the same effect as the entire sequence.
This process is sometimes described as
“compiling” the operator sequence.

As shown in Figure 3, chunking can be
placed into rough correspondence with the
EBL generalization techniques described in
the preceding section. The process of form-
ing an operator sequence out of primitive
operators is analogous to forming an expla-
nation out of explanation rules. Compiling
an operator sequence into a macro corre-
sponds to analyzing and generalizing an
explanation. Problem states may be seen to
play the role of training examples. The
chunking process produces a precondition
for the macro operator. The macro precon-
dition represents a generalization of the
example state. It is also possible to view an
instantiated operator sequence as a train-
ing example and view a generalized opera-
tor sequence as the learned concept.

2.3.1 SOAR (Laird, Newell, and Rosenbloom)

The SOAR project is an ambitious attempt
to build a system combining learning and
problem-solving capabilities into an archi-
tecture for general intelligence [Laird et al.
1986a, 19871. The problem-solving meth-
ods in SOAR are based on “universal
subgoaling” (USG) [Laird 19841 and the
“universal weak method” (UWM) [Laird
and Newell 1983a, 1983bJ. Universal
subgoaling is a technique for making all

ACM Computing Surveys, Vol. 21, No. 2, June 1989

Explanation-Based Learning: Programs and Perspectives 181

(GOAL, SPACE, STATE, OPERATOR) four parts of the context:

T
l Change the operator to be applied to the

(SUBGOAL, SPACE, STATE, OPERATOR) current state.

t

(SUBSUBGOAL, SPACE, STATE, OPERATOR)

l Change the current state to be expanded.
l Change the problem space used to solve

the current goal.
Figure 15. Hierarchy of goal contexts in SOAR. l Change the current goal to some other

goal.

search control decisions in a uniform man-
ner. The universal weak method is an ar-
chitecture that provides the functionality
of all the weak methods [Newell 19691.
The learning strategy of SOAR is based on
the technique for “chunking” sequences of
production rules that was developed by
Rosenbloom and Newell [1986; Rosen-
bloom 19831. The developers of SOAR have
put forward the hypothesis that chunking
is a universal learning method. They also
believe that chunking techniques are espe-
cially powerful when combined with the
USG and UWM architecture.

The production rules make search con-
trol decisions in a two-phase process [Laird
and Newell 1983a]. In the first, “elabora-
tion” phase, all rules are applied repeatedly
in parallel to the working memory. The
rules assert “preferences” regarding which
part of the context should be changed and
how it should be changed. In the second,
“decision” phase, the preferences are tallied
to see if a unique “best” choice is de-
termined; When a unique best choice is
determined, SOAR makes the change au-
tomatically.

The architecture of SOAR is based on
the “problem space hypothesis” [Newell
19801, the notion that all intelligent activ-
ity occurs in a problem space. This idea is
embodied in SOAR by allowing all deci-
sions to be made in a single uniform man-
ner, that is, by searching in a problem
space. At any point in time, SOAR is work-
ing in a “current context” that describes
the status of the search in whatever prob-
lem space SOAR is currently using. More
specifically, the current context consists of
four parts: a goal, a space, a state, and an
operator. The current context can be linked
to previous contexts so that a goal and
subgoal hierarchy is formed (Figure 15).
The components of each context are an-
notated with additional information called
“augmentations.” The hierarchy of con-
texts and associated augmentations make
up the “working memory” of SOAR.

SOAR uses a special mechanism for
controlling search in problem spaces. Pro-
duction rules contained in “long-term
memory” are charged with the task of de-
ciding which one of the four items in the
current context should be changed and how
it should be changed. There are four types
of possible changes, corresponding to the

Sometimes the production rules lack suf-
ficient knowledge to make a search control
decision. This problem is manifested when
the decision phase fails to yield a unique
best choice concerning how to change the
current context. Under such circumstances
the system is said to have reached an “im-
passe.” For example, SOAR reaches a “tie
impasse” when it cannot decide which of
several operators should be applied to the
current state. SOAR reaches a “no change
impasse” when it does not know how to
apply the current operator to the current
state, because the operator is not directly
implemented. An impasse is resolved in the
same manner in which SOAR solves any
other problem-by searching in a problem
space. When the SOAR architecture de-
tects that an impasse has occurred, it
automatically sets up a subgoal and a
new context to resolve the impasse. The
“resolve-impasse” subgoal is solved in the
usual way, by selecting a problem space,
states, and operators. During processing of
the subgoal, the system will hopefully ac-
cumulate sufficient information to make
the search control decision that resulted in
the impasse. In that case the subgoal gets
terminated and SOAR returns to th ’ orig-
inal goal and context.

ACM Computing Surveys, Vol. 21, No. 2, June 1989

182 . Thomas Ellman

NTIAL. STATE DESIRED STATE 1. Gl solve-eight-puzzle

m 1 ::;m

Figure 16. Initial and goal states for &Puzzle [Laird
et al. 1986a]. 4. 01 place-blank

5. ==Xi2 (resolve-no-change)
6. P2 eight-puzzle

In order to illustrate the behavior of
7. Sl
8. ==>G3 (resolve-tie-operator)

SOAR, consider the following example of Tu, P3 tie
solving the g-PUZZLE. The g-PUZZLE in- S2 (left, up, down)

volves moving tiles around on a rectangular 11. 05 evaluate-object(02(1eft))

grid. The initial state and goal state for the
12. ==>G4 (resolve-no-change)
13.

puzzle are shown in Figure 16. In order to
P2 eight-puzzle

14. Sl
solve the puzzle, one must find a sequence 15. 02 left

of tile moves that transforms the initial 16. s3

state into the goal state. A partial trace of 2 3 1
SOAR’s solution is shown in Figure 17.
SOAR starts with the goal “SOLVE-
EIGHT-PUZZLE.” An abstract problem
space called “EIGHT-PUZZLE-SD” is se-
lected. The operators of the abstract space
are called “PLACE-BLANK,” “PLACE-l,” 0

8 4

7 6 5

“PLACE-2,” etc. Each such abstract oper- 17. 02 left
ator is intended to achieve the function of 18. S4
moving one particular tile or the space to 19. s4

its goal position. SOAR chooses the opera-
20. 08 place- 1

tor “PLACE-BLANK” first. A “NO- Figure 17. Trace of SOAR execution on E&Puzzle
CHANGE” impasse occurs because the 1Laird et al. lssaal.
abstract operator is not implemented
and SOAR does not know how to apply it
to the current state. A “RESOLVE-NO- abstract operator “PLACE-BLANK” to
CHANGE” goal is created to resolve the this particular initial state.
impasse. SOAR attempts to solve the new The learning mechanism in SOAR is in-
goal by working in the original “EIGHT- tended to acquire search control knowledge
PUZZLE” problem space. Another impasse from problem-solving experience. In partic-
occurs later when SOAR cannot decide ular, the chunking system creates new pro-
which of the three operators, “LEFT,” duction rules that help SOAR to make
“UP,” or “DOWN,” to apply. This leads to search control decisions more easily. The
a new subgoal, and so on. The system even- new rules enable SOAR to make such de-
tually accumulates enough information to cisions directly through the elaboration and
resolve the sequence of impasses and their decision phases described above. The result
associated subgoals. This occurs by line 16 is that fewer impasses occur and SOAR
when SOAR has tried applying the operator avoids the need to process subgoals. The
“LEFT” and discovers that the blank is chunking mechanism operates continu-
now in its correct location. This means that ously. Whenever a subgoal terminates in
SOAR has now found a way to apply the SOAR, the chunking mechanism is in-

ACM Computing Surveys, Vol. 21, No. 2, June 1989

Explanation-Based Learning: Programs and Perspectives l 183

voked.” The mechanism attempts to build
a new rule that will summarize the results
of processing the subgoal. When the same
subgoal occurs in an identical or similar
situation, the new rule will fire and help
make a decision that previously led to an
impasse.

The chunking procedure is described
by Laird et al. [1986a] and outlined in Fig-
ure 18. Assuming that a subgoal G has just
successfully terminated, the chunking pro-
cess will create a new production rule R
having the same effect as the entire se-
quence of production rules that fired during
the processing of goal G. The first step
involves collecting conditions and actions
for the new rule R. The conditions are
found on a “referenced list” that was main-
tained during the processing of goal G. The
“referenced list” contains all working mem-
ory elements that were created before goal
G and were referenced by rules that fired
during the processing of G. If these working
memory elements were to be present in
some other situation, they would enable the
same sequence of rules to fire.‘” These
working memory elements become the con-
ditions of the new rule R. The actions of R
are found by determining which working
memory elements were created during pro-
cessing of goal G and were passed on to
supergoals of G by being attached as aug-
mentations to the context of a supergoal of
G. These actions are just the information
that was remembered by the system after
goal G was terminated. They constitute the
information required to resolve the impasse
that led to the creation of goal G.

In order that the new rule R apply to a
variety of situations, some of the constants
in the conditions and actions of R need to
be generalized. In particular, the “identi-
fiers” must be changed to variables. This is

” This capability requires that the system meet the
“goal-architecturality constraint”: that is, the repre-
sentation of goals must be defined in the system
architecture itself IRosenbloom and Newell 19861.
I” Strictly speaking, this requires that the system meet
the “cryptoinformation constraint”; that is, the firing
of rules must not be controlled by “hidden informa-
tion” such as a conflict resolution strategy [Rosen-
bloom and Newell 19861.

Problem:
a. Given a goal G that has successfully terminated.
b. Create a new production rule R that has the same

effect as the sequence of rules that were used to
solve the goal G.

Procedure:
1. Collect conditions and actions.

(a) Conditions of R include all working memory
elements created before goal G that were ref-
erenced during processing of goal G.

(b) Actions of R include all working memory ele-
ments created during processing of goal G that
were passed on to supergoals of goal G.

2. Variabilization of identifiers.
(a) All occurrences of a single identifier in R are

changed to a single variable.
(b) Occurrences of distinct identifiers in R are

changed to distinct variables.
(c) A condition asserting that distinct variables

must match distinct identifiers is added to R.
3. Chunk optimization.

Figure 18. Chunking procedure in SOAR.

necessary since each identifier is unique to
a working memory element. In order to
choose variables, SOAR must determine
which identifiers are required to be equal
to each other and which are required to be
distinct. The procedure shown in Figure 18
makes the decision in a conservative way,
leading to chunk applicability conditions
that are. as restrictive as possible. It as-
sumes that equal identifiers in the example
are required to be equal and replaces them
with a single variable. It also assumes that
distinct identifiers in the example are re-
quired to be distinct and replaces them with
distinct variables. An additional constraint
is added to guarantee that distinct variables
match distinct identifiers. Aside from some
exceptional cases reported in [Laird et al.
1986131, the developers of SOAR claim this
approach guarantees that no overgeneral-
ized rules will be created, although overspe-
cialized rules will sometimes be formed
[Laird et al. 1986a]. The final step in Fig-
ure 18 involves making the new rule more
efficient by reordering the conditions
and making other changes for the sake of
efficiency.

The chunking mechanism in SOAR has
gone through several implementations. An

ACM Computing Surveys, Vol. 21, No. 2, June 1989

184 l Thomas Ellman

earlier implementation used a different cri-
terion for deciding when chunking should
occur [Rosenbloom and Newell 19861. The
earlier criterion specified that chunking
take place only for goals that were solved
without invocation of subgoals. This re-
sulted in “bottom-up” chunking, which was
useful for cognitive modeling. A recent
implementation uses a different method of
finding the conditions that go into a rule
created by the chunking mechanism [Laird
et al. 1986a]. The new approach involves
tracing dependencies from the results of a
goal, through the sequence of rules that
fired, back to working memory elements
present before the goal was created. This
approach leads to rules with greater gener-
ality than the one described above. The new
method excludes conditions that were ref-
erenced by production rules that fired but
did not contribute to the results of a goal
because they led to dead ends.13

When the chunking mechanism is ap-
plied to the 8-PUZZLE problem, it gener-
ates a collection of rules that implement
the abstract operators such as “PLACE-
SPACE,” “PLACE-l,” and “PLACE-2”
described above. These rules are similar
to the macro operators created for the 8-
PUZZLE for Korf’s macro learning pro-
gram [Korf 1985].14 An example of one
of the abstract operators is shown in Fig-
ure 19. The diagram shows how a sequence

“I The dependency tracing technique is similar to the
methods used in LEX-II and GENESIS. This raises
the question of why SOAR does not retrieve defini-
tions of fired production rules and analyze them using
a procedure like EGGS. Such an approach might lead
to a method of changing constants to variables that
avoids problems of overspecialization. The developers
of SOAR may have rejected this approach because
SOAR is implemented in a variant of OPS5 [Forgy
19811. Unlike the STRIPS type operators used in
GENESIS, the OPS5 productions may be relatively
difficult to analyze.
I4 Although SOAR and Korf’s system create roughly
the same macros, they do not apply macros in the
same way. When SOAR forms the macro sequence
OPl, . . . , OPN, it applies the operators one at a time.
SOAR must make at least one search control decision
between applying operators OP(i) and OP(i + 1). To
make the decision, SOAR must go through elaboration
and decision phases. Korf’s system can apply a macro
sequence OPl, . , OPN as a group without making
any search control decisions between applying opera-
tors OP(i) and OP(i + 1).

x x 1

E!l!i

X X

x x x

x x x

Eli@

X X

1 x x

Figure 19. Abstract operator created by SOAR
[Laird et al. 1986a].

of rules will guide the one-tile to the correct
location whenever (a) the one-tile is at the
upper right or lower left corner and (b) the
blank is in the center. The “x” marks in-
dicate that the rules apply regardless of the
contents of the other cells. As suggested by
Figure 19, the chunks apply to a variety of
board situations, many of which SOAR has
never seen before [Laird et al. 1986a].

In order to evaluate the chunking mech-
anism in SOAR, it is useful to examine
SOAR’s behavior before and after chunking
takes place. Figure 17 shows how SOAR
behaves before chunking takes place.
SOAR was forced to resolve three impasses
in order to apply the abstract operator
“PLACE-BLANK.” After building new
chunks, SOAR can solve this problem and
similar ones without the occurrence of any
impasses. This example illustrates that
SOAR can create new rules to avoid im-
passes and the searching that results from
impasses. Statistics presented by Laird
et al. [1984, 19871 show that chunking re-
duces the total number of search control
decisions that the system must make.
Nevertheless, a question arises as to
whether the number of search control de-
cisions is an appropriate unit of measure-
ment. Although chunking can reduce the
number of control decisions by creating
rules used in the elaboration and decision
phases, these processes may run more
slowly after chunking than before. The dif-
ficult work may simply have been moved to
a different part of the system. Tambe and
Newell [1988] have measured absolute
CPU time in SOAR. Their results show
that chunking does improve overall perfor-
mance on some tasks, but degrades others
by creating chunks that ‘are expensive to
match [Tambe and Newell 19881.

ACM Computing Surveys, Vol. 21, No. 2, June 1989

Explanation-Based Learning: Programs and Perspectives 9 185

The developers of SOAR have claimed
that the power of chunking is enhanced
when used in the context of a problem-
solving architecture such as SOAR [Laird
et al. 1986a], because all parts of the system
fall within the scope of the learning mech-
anism. They argue that the SOAR archi-
tecture allows chunking to improve any
aspect of the behavior of a problem-solving
system. This can enable SOAR to avoid
“wandering bottleneck” problems, which
have occurred in systems like LEX-II
[Mitchell 19831. This potential capability
results from the fact that all decisions in
SOAR are made in the same manner, by
searching in a problem space. The chunk-
ing mechanism can create production rules
that summarize the results of search. It
follows that the learning system in SOAR
has the potential to create rules to guide
any of the decisions that the system makes
in the course of problem solving. All deci-
sions can be influenced by the chunking
mechanism. More practical experience is
needed to determine whether this conclu-
sion is borne out in practice.

Although SOAR has been described
mainly in terms of chunking, it can also be
viewed in other ways (see Figure 3). SOAR
can also be viewed as a system that can
generalize from a single example. After
SOAR solves a goal in one situation, it
creates a rule that can solve the same goal
when it occurs again in other problem-
solving contexts. SOAR is able to general-
ize across problem-solving contexts by
building rules whose conditions only in-
clude working memory elements that are
necessary for finding the solution of the
goal. By omitting the irrelevant working
memory elements, SOAR achieves a kind
of “implicit generalization” [Laird et al.
1986a]. The learning process in SOAR can
also be viewed in terms of reformulation of
non-operational concept descriptions. The
combination of a goal G and the original
production rules may be viewed as a nono-
perational specification of the set of prob-
lem states in which G can be solved
[Rosenbloom and Laird 19861. The chunk-
ing process creates a production rule with
conditions that directly test whether the
goal G can be solved. The conditions of the

Initial world model:
INROOM(ROBOT, Rl)
INROOM(BOX1, R2)
CONNECTS(D1, Rl, R2)
CONNECTS(D1, R2, R3)
BOX(BOX1)

&x, y, z)[CONNECTS(x, y, z)
==a CONNECTS(x, z, y)].

Goal formula:
(3z)[BOX(x) A INROOM(x, Rl)].

Figure 20. STRIPS’ initial world model [Fikes et al.
19721.

new rule may be viewed as an operational
description of the same concept.

2.3.2 STRIPS (Fikes, Hart, and Nilsson)

STRIPS is a system for building and gen-
eralizing “robot plans” [Fikes et al. 19721.
The robot plans are represented as
sequences of “STRIPS-type operators,”
When given a goal to achieve, STRIPS
performs a search to find a sequence of
operators that transforms the initial state
into the goal state. The operator sequences
are then combined into chunks called
“MACROPS.” The sequences are also gen-
eralized so that they can be applied to new
situations.

STRIPS uses a list of predicate calculus
formulas to model the current situation of
its world and to describe the goal that the
robot plan is intended to achieve. An initial
model and a goal are shown in Figure 20.
The model describes some interconnecting
rooms and the locations of a robot and a
box. STRIPS is faced with the goal of get-
ting a box into room Rl. The operators that
STRIPS can use for this task are shown in
Figure 21. Each operator has a set of pre-
condition formulas that must be true in
order for the operator to apply to a situa-
tion. Before applying an operator, STRIPS
uses a resolution theorem prover to verify
that the preconditions of the operator are
met. Each operator also has an “add list”
and a “delete list,” which specify the effects
of the operator. To apply an operator,
STRIPS first instantiates the operator’s
variables using bindings obtained from the
process of proving preconditions. Then

ACM Computing Surveys, Vol. 21, No. 2, June 1989

186 l Thomas Ellman

GOTHRU(d, rl, r2)
Precondition: INROOM(ROBOT, rl) A CONNECTS(d, rl, r2),
Delete list: INROOM(ROBOT, rl),
Add list: INROOM(ROBOT, r2).

PUSHTHRU(b, d, rl, r2)
Precondition: INROOM(ROBOT, rl) A CONNECTS(d, rl, r2)

A INROOM(b, rl),
Delete list: INROOM(ROBOT, rl)

INROOM(b, rl),
Add list: INROOM(ROBOT, r2)

INROOM(b, r2).

Figure 21. Examples of STRIPS operators [Fikes et al. 19721.

* INROOM(ROBOT,Rl)

* CONNECTS(Dl,Rl,R2) GOTHRU(D1,R1,R2)

* lNROOM(BOX 1 ,R2)

* CONNECTS(D1 ,R 1 ,R2) * lNROOM(ROBOT,R2)

* CONNECTS(x,y,z) =>

CONNECTS(x,z,y)

PUSHTHRU(BOXl,Dl,R2,Rl)

lNROOM(ROBOT,Rl)

INROOM(BOXl,Rl)

0 1 2

Figure 22. Example of a triangle table [Fikes et al. 19721.

STRIPS deletes any formulas in the cur-
rent world model that match an item on
the delete list. Finally, STRIPS adds all the
formulas on the add list to the current
model.

After finding a plan to achieve a goal,
STRIPS builds a data structure known as
a “triangle table.” The triangle table de-
scribes the structure of the robot plan in a
format that is useful for generalizing oper-
ator sequences. An example of a triangle
table is shown in Figure 22. A procedure

for building such a table is shown in Figure
23.‘” The triangle table is useful because it
shows how operator preconditions depend
on the effects of other operators and on
facts from the initial world model. Any fact
marked with an asterisk in the table indi-
cates just such a dependency. For example,
the marked fact INROOM(ROBOT, R2),

” The example table departs slightly from the defini-
tion. In column zero of the example, only the “marked”
clauses are shown.

ACM Computing Surveys, Vol. 21, No. 2, June 1989

Explanation-Based Lear1

0. For an operator sequence of length N, number the
rows from 1 to N + 1, and number the columns
from 0 to N.

1. Place the (i)th operator in the cell at column i,
row i.

2. In every cell at column 0, row i (; = 1,. , N),
place the facts of the initial model that were true
just before the (i)th operator was applied.

zing: Programs and Perspectives

1. “Lift” the triangle table.

l 187

3. In the cell at column 0, row N + 1, place the facts
of the initial model that remained true in the final
model.

4. In every cell at column i (i = 1, . . , N - l), row j
(j = i + 1,. , N), place the facts added by the
(i)th operator that were true just before the (j)th
operator was applied.

5. In every cell at column i (; = 1,. , N), row
N + 1, place the facts added by the (i)th operator
that remained true in the final model.

6. Use an * to mark each fact in row j (j = 1, . . . , N),
that was used in the proof of the preconditions of
the (j)th operator.

Figure 23. Definition of a triangle table.

in column 1, row 2 of Figure 22, indicates
that the precondition of the PUSHTHRU
operator depends on a fact added by the
GOTHRU operator. Likewise, the presence
of the marked fact INROOM(BOX1, R2),
in column 0, row 2, indicates that the pre-
condition of PUSHTHRU depends on a
fact from the initial model.

There are two main criteria that are used
to determine how to generalize the robot
plan represented by a triangle table. The
first criterion involves maintaining the de-
pendencies between operators. Operator (i)
will add a clause supporting operator (j) in
the generalized table if and only if the same
dependency exists between operators (i)
and (j) in the original table. The second
criterion requires that the preconditions of
operators in the generalized table be prov-
able using the same proofs as used to verify
preconditions in the original plan.

STRIPS generalizes operator sequences
using the procedure shown in Figure 24.
This procedure makes use of both the tri-
angle table and the proofs of operator pre-
conditions that were created when the
robot plan was formed. The first step re-
places constants with variables leading to
an overgeneralized table. The second step
constrains the table in accordance with the
two aforementioned criteria. The precon-

(a) Replace each distinct constant in column zero
with a distinct variable.

(b) Replace each clause in column i (i = 1,. . . , N),
with the corresponding clause from the unin-
stantiated add list of the (i)th operator.

(c) Rename variables so that clauses from distinct
operator applications have variables with dis-
tinct names.

2. Rerun proofs of preconditions using isomorphic
images of original proofs.
(a) Each new proof will be supported by the gen-

eralized versions of clauses that were marked
in the original table.

(b) Each new proof step performs resolution on
pairs of clauses and unification on pairs of
literals corresponding to the pairs matched in
the same step of the original proof.

(c) Substitutions generated during unification are
applied throughout the entire table.

Figure 24. STRIPS generalization procedure.

dition proofs are performed once again. The
supporting clauses of the new proofs are
the generalized versions of the (marked)
supporting clauses of the original proofs.
For every step in the original proof that
resolved clauses “a” and “b” and unified
literals “i” and “j,” the new proof resolves
the generalized versions of “a” and “b” and
unifies the generalized versions of “i” and
‘7.” This technique is similar to EGGS (Fig-
ure 7), inasmuch as they both require that
the same objects be unified in the general-
ized proof as in the original proof.

When the STRIPS generalization pro-
cedure is used to process the triangle table
of Figure 22, it produces the generalized
table shown in Figure 25. Several interest-
ing generalizations have been made. The
object to be moved from one room to an-
other has been generalized from a BOX to
any object. Although the initial and final
rooms were identical in the original plan,
the room variables are distinct in the gen-
eralized plan. STRIPS has also generalized
the conditions of applicability of the oper-
ator sequence. The marked clauses in the
leftmost column of the generalized table
indicate the generalized conditions under
which the sequence is applicable. Initially,
STRIPS only knows that the sequence ap-
plies to the initial world model shown in
Figure 20. After generalizing the triangle

ACM Computing Surveys, Vol. 21. No. 2, June 1989

188 l Thomas Ellman

* INROOM(ROBOT,p2)

* CONNECTS(p3,p2,pS)

* CONNECTS(p8,p9,pS)
* INROOM(ROBOT,pS)

* CONNECTS(x,y,z) =>

CONNECTS(x,z,y)

0 1

INROOM(ROBOT,p9)

Figure 25. Generalized triangle table [Fikes et al. 19721.

table, STRIPS knows the sequence is ap-
plicable whenever the conditions in the
leftmost column of the generalized table in
Figure 25 are met.

An obvious next step would be to create
a new STRIPS operator representing the
entire generalized operator sequence. The
new operator would have the same effect in
a single step as the entire sequence of op-
erators used in the original plan. STRIPS
does not actually build such a macro oper-
ator. STRIPS keeps the generalized trian-
gle table in the form shown in Figure 25
instead. This means that the MACROP
cannot be applied in a single step in the
course of solving a new planning problem.
The operators must be applied one by one.
Nevertheless, the table does directly indi-
cate the conditions under which an entire
sequence will apply to a problem situation.

STRIPS has been described above in
terms of “generalization” and “chunking.”
It can also be viewed in terms of reformu-
lating nonoperational concept descriptions
(see Figure 3). Given an operator sequence

2

OP1, . . . , OPN, STRIPS contains all the
information needed to determine the con-
dition of applicability of the entire se-
quence. The information is only present
implicitly, embedded in the definitions of
the individual operators. One could view
the sequence description “OP1, . . . , OPN”
as a nonoperational description of the con-
dition of application. STRIPS creates an
operational description by building the gen-
eralized triangle table. The marked clauses
in the leftmost column constitute such an
operational description of the condition of
application.

2.3.3 Similar Work

Anderson’s ACT* system is similar to the
chunking systems described here [Ander-
son 1983a, 1983b, 19861. The ACT* system
uses a learning mechanism called “knowl-
edge compilation,” which is based on col-
lapsing sequences of production rules into
single rules. Each single rule has the same
effect as the original sequence from which

ACM Computing Surveys, Vol. 21, No. 2, June 1989

Explanation-Based Learning: Programs and Perspectives l 189

it was compiled. Anderson describes his the task of reformulating the original
ACT* system as a general architecture that expression in terms of data and actions that
underlies all types of human cognition. are available to the agent.

Minton and Benjamin have both devel-
oped systems that perform chunking in
architectures similar to SOAR [Benjamin
1987; Minton 1988a; Minton and Carbonell
19871. Like SOAR, each system makes a
distinction between domain level operators
and control rules that guide the application
of domain level operators. As in SOAR, the
chunks are used to make search control
decisions. Minton’s PRODIGY system is
distinguished by the fact that it learns from
failure as well as success. Unlike SOAR,
which creates chunks only after successful
subgoals, PRODIGY has the additional ca-
pability of chunking after subgoal failures.
The resulting control rules enable PROD-
IGY to avoid similar failures in the future.

Many people have investigated methods
of forming macro operators outside the con-
text of explanation-based learning. Cheng
and Carbonell have investigated methods
of building macros with conditional and
iterative constructs [Cheng and Carbonell
19861. Korf developed a method for finding
useful macro operators that applies to any
problem exhibiting a property called “serial
decomposability” [Korf 19851. Iba investi-
gated heuristics for determining when a
sequence of operators will lead to a useful
macro operator [Iba 19851. The REFLECT
system of Dawson and Siklossy also had a
mechanism for creating macro operators
[Dawson and Siklossy 19771.

As shown in Figure 3, operationalization
can be placed into rough correspondence
with the EBL generalization processes de-
scribed previously. The explanation rules
used in systems like GENESIS or LEX-II
may be viewed as nonoperational specifi-
cations of the concepts that these systems
learn. The rules “specify” the concepts be-
cause they contain all the information
needed to construct the learned concepts.
The concept specifications are “nonopera-
tional” because the rules only implicitly
contain the information. The EBL tech-
niques of GENESIS and LEX-II serve the
purpose of making the concepts explicit.
Building and analyzing an explanation is
similar to the process of translating a non-
operational concept into an operational
one. The translation may be said to “ex-
plain” how the operational concept descrip-
tion meets the conditions given by the
nonoperational concept description.

2.4.7 FOO and BAR (/Vo.stow)

The FOO and BAR programs were devel-
oped by Mostow to investigate the problem
of operationalizing “advice.” The older
FOO program is described in Mostow
[1981, 1983b]. BAR was developed as an
extension to FOO and is described in Mos-
tow [1983a, 1983c]. The programs were
tested mainly in the domain of the card
game Hearts. Some additional tests were
run in the domain of music composition.

2.4 EBL = Operationalization

The term operationalization may be
defined as a process of translating a
“nonoperational” expression into an “op-
erational” one. The initial expression might
represent a piece of advice, as in Mostow’s
FOO and BAR programs [Mostow 1981,
1983a], or it might represent a concept, as
in Keller’s LEXCOP program [Keller
19831. The initial expression is said to be
“nonoperational with respect to an agent”
because it is not expressed in terms of data
and actions available to the agent [Mostow
1983a]. An operationalizing program faces

As an example of a nonoperational
expression from the hearts domain, con-
sider the advice to “avoid taking points.“lG
This advice is considered “nonoperational”
because it is not written in terms of actions
that a player can perform. The rules of the
game do not allow one to refuse to take up
the cards at the end of a trick merely be-
cause they include point cards. The only
actions available to a player are to choose

l6 The phrase “taking points” means winning tricks
that contain point cards. In the version of the game
described previously, point cards are hearts.

ACM Computing Surveys, Vol. 21, No. 2, June 1989

190 l Thomas Ellman

Unfolding concept definitions:
If F is a concept defined as (X(x,. . x,,,)e), then
replace the expression (F e, . e.v) with the result
of substituting e, eN for X, . .x.” through-
out e.

Approximation of a predicate (1):
Given an expression containing (P S), where P is a
predicate, replace (P S) with the expression (High
(Probability (P S))).

Approximation of a predicate (2):
Given an expression containing (P S), where P is a
predicate, replace (P S) with the expression (Possi-
ble (P S)), where (Possible (P S)) is true unless
(P S) is known to be false.

Figure 26. Problem transformation rules [Mostow
19831.

to play one of the cards from his hand. As
another example, consider the advice
“Don’t lead a card of a suit in which an
opponent is void.“17 This advice is not
operational because it requires knowing
one’s opponents’ cards. These data are not
usually available to a player. Mostow’s pro-
gram can translate the advice to “avoid
taking points” into an operational expres-
sion. After translation, the advice becomes
“play a low card.” In this new form, the
advice does directly specify an action avail-
able to the player and is therefore consid-
ered to be operational.

In order to translate a piece of advice,
Mostow’s programs make use of several
types of knowledge. One part of the
knowledge base contains a set of domain-
independent “problem transformation
rules.” Each rule has an action component
specifying how to rewrite an expression
representing some advice as well as con-
ditions governing the applicability of the
rule. Examples of such rules are shown in
Figure 26. The transformation rules are
progressively applied to the initial advice,
gradually changing it into a form that meets
the requirements of operationality. The
knowledge base also contains domain-de-
pendent “concept definitions” like those
shown in Figure 27.

” A player is said to be “void” in suit if he does not
have any cards of that suit in his hand.

ACM Computing Surveys, Vol. 21, No. 2, .June 1989

The FOO and BAR programs differ in
the type of control structure used to choose
a sequence of rule applications. FOO relies
on a human user to pick an appropriate
sequence of transformation rules [Mostow
1983b]. BAR uses means-ends analysis to
guide the choice of which rule to apply
[Mostow 1983a]. The rule sequences can be
quite long, amounting to over 100 rule ap-
plications in some cases. Even the BAR
program is unable to work without some
human guidance.

In order to guide the search process, BAR
needs to know which specific parts of an
expression are not operational. This is done
by annotating each “domain concept” with
information that indicates the operation-
ality of the concept [Mostow 1983a]. For
example, the concept “point-cards” is
marked as being operational since a player
always knows which cards are worth points.
The “void” predicate is not operational,
since a player cannot generally know when
an opponent is void in a suit. In general,
predicates can be “evaluable” or “not eval-
uable,” functions can be “computable” or
“not computable,” events can be “control-
lable” or “not controllable,” and constraints
are “achievable” or “not achievable.” BAR
also contains some general knowledge
about operationality. For example, there is
a rule stating that “a computable function
of evaluable arguments is itself evaluable.”
Another rule says that “an evaluable con-
straint on a controllable variable is achiev-
able.” This knowledge can be used to guide
the search process by determining which
parts of an expression are nonoperational
and need to be transformed.

In order to illustrate the operationaliza-
tion techniques, consider the following ex-
ample taken from Cohen and Feigenbaum
[1982], which shows how the FOO program
operates. FOO is initially given the advice
“Avoid taking points,” which is represented
internally by the expression

(AVOID (TAKE-POINTS ME) (TRICK)).

This expression may be interpreted as say-
ing “Avoid an event in which the player
‘me’ takes points during the current trick.”
In order to translate this expression, FOO

Explanation-Based Learning: Programs and Perspectives l 191

POINT-CARDS = (LAMBDA () (SET-OF C (CARDS) (HAS-POINTS C))),
VOID = (LAMBDA (P SUIT)

(NOT (EXISTS C (CARDS-IN-HAND P)
(IN-SUIT C SUIT)))),

AVOID = (LAMBDA (E S) (ACHIEVE (NOT (DURING S E)))),
TRICK = (LAMBDA ()

(SCENARIO (EACH P (PLAYERS) (PLAY-CARD P))
(TAKE-TRICK (TRICK-WINNER)))).

Figure 27. Concept definitions [Mostow 19831.

first uses the rule for unfolding concept
definitions (Figure 26), along with the def-
initions of the concepts “avoid” and “trick”
(Figure 27). The system subsequently ap-
plies several more transformations, includ-
ing “case analysis, ” “intersection search,”
“partial matching,” and “simplification” to
translate the expression into the form

(ACHIEVE (NOT (AND

(= (TRICK-WINNER ME)

(TRICK-HAS-POINTS))))).

This expression says “Try not to win a trick
that contains point cards.” After several
additional transformations, the final form
of the advice is obtained:

(ACHIEVE

(*(AND (IN-SUIT-LED
(CARD-OF ME))

(POSSIBLE
(TRICK-HAS-POINTS)))

(LOW (CARD-OF ME)))).

This expression asserts the advice “Play a
low card when following suit in a trick that
could possibly contain point cards.“”

This final expression is not exactly
equivalent to the original advice. There
have been several modifications to the con-
tent of the advice as well as the form of the
advice. To begin with, the final form of the
advice is specialized to a more limited range
of situations than the original advice. The
final advice only applies in situations when
the player is “following suit.” The original
advice purports to apply to any situation.

I” A player is said to be “following suit” whenever he
plays a card in the same suit as the card played by the
leader of the current trick.

In addition to specializing the advice, the
system was forced to make approximations.
One approximation replaced the expression
(TRICK-HAS-POINTS) with (POSSI-
BLE (TRICK-HAS-POINTS)). This was
necessary because it is not possible to de-
termine in advance whether a trick will
have points. In order to have an operational
rule, the system inserts a condition testing
whether, based on current information, it
is possible for the trick to eventually con-
tain points. Another approximation re-
placed the requirement of playing a card
that will lose the trick with the weaker
requirement of playing a low card. Since
the player cannot generally determine
whether a card will lose a trick, he must
use the approximation of playing a low
card. This example illustrates the need to
sacrifice generality and accuracy in order
to translate advice into an operational
expression.

The FOO and BAR programs have been
described in terms of operationalizing “ad-
vice.” As suggested by Figure 3, they may
also be viewed in terms of operationalizing
“concepts” in the following way: Initially
the system is given the nonoperational con-
cept description “cards that avoid taking
points.” This description is translated into
the operational form “low cards.” FOO and
BAR can also be viewed in terms of chunk-
ing. After translating the advice, the system
may be said to possess a rule of the form
“If a card is low, then the card avoids taking
points.” This rule represents the result of
forming a chunk out of the sequence of
problem transformation rules used to
translate the advice. Although FOO and
BAR do not look at examples, they could
be modified to implement a process of gen-
eralizing from examples. The system could

ACM Computing Surveys, Vol. 21, No. 2, June 1989

192 l Thomas Ellman

(Vop, s)(POSINST(op, s) (= USEFUL(op, s)l,
(Vop, s)(USEFUL(op, s) +

[-6OLVED(s)
A SOLVABLE(APPLY(op, s))
A APPLICABLE(op, s)
A IWOOP)

EQUAL(op, oop)
V lAPPLICABLE(oop, s)
V lSOLVABLE(APPLY(oop, s))
V GREATER-COST(APPLY(oop, s), APPLY(op, s))]]},

(Vop, s)(SOLVABLE(s) c= SOLVABLE(APPLY(op, s))},
(Vop, s){SOLVABLE(s) + SOLVED(APPLY(op, s))j.

Figure 28. Rules defining the POSINST predicate in LEXCOP
[Keller 19831.

be given an example of a “card that avoids
taking points.” The search for a translation
could be constrained by imposing the re-
quirement that the translated advice be
capable of predicting the given example.
Examples might help the system decide
what types of approximations and special-
izations are appropriate.

2.4.2 LEXCOP and MetaLEX (Keller)

The LEXCOP system [Keller 19831 is
closely related to Mostow’s operationalizer.
Like Mostow’s systems, LEXCOP is in-
tended to translate nonoperational expres-
sions into operational ones. The systems
differ slightly in the types of expressions
they reformulate. Whereas FOO and BAR
are designed to reformulate “advice,” LEX-
COP is explicitly intended to address the
problem of reformulating “concept descrip-
tions.” LEXCOP takes nonoperational
concept descriptions as input and produces
operational concept descriptions as output.
Keller’s system is also distinct from Mos-
tow’s because of its criterion for deciding
when an expression is operational. In LEX-
COP a concept description is operational if
it allows instances to be “efficiently” tested
for concept membership. LEXCOP uses
the same basic methodology as FOO and
BAR. The knowledge base contains a set of
transformation rules that can rewrite con-
cept descriptions. LEXCOP uses these
rules to perform a heuristic search in a
space of concept descriptions. Each state is
a concept description and the transforma-
tion rules are operators of the state space.

LEXCOP was worked out on paper but
apparently never implemented [Keller
1987a].

Consider the following example from the
domain of symbolic integration. A defini-
tion of the concept “POSINST(op, s)” is
shown in Figure 28. This definition asserts
that a state “s” is a positive instance if
applying “op” to “s” leads to a state along
a minimum-cost solution path. In this form
the concept description is considered to be
“nonoperational.” For example, in order to
test a state “s” for membership in the con-
cept POSINST(OP1, s), it may be neces-
sary to build a large search tree. LEXCOP
attempts to reformulate this concept de-
scription into something that can be tested
more efficiently. Given the nonoperational
description POSINST(OP1, s), LEXCOP
could produce the description shown in Fig-
ure 29. This new concept description can
be tested more efficiently because it is writ-
ten as a pattern match using the general-
ization language of LEX [Mitchell et al.
1983a]. Notice that the translated descrip-
tion is a specialization of the original con-
cept description. Like Mostow’s systems,
LEXCOP is forced to sacrifice generality
in order to make an expression more oper-
ational. In order that the new concept de-
scription be useful in a variety of situations,
LEXCOP would have to create a conjunc-
tion of several alternate specializations of
the original concept description.

Some of the transformation rules used in
LEXCOP are shown in Figure 30, taken
from [Keller 19831. The rules are divided
into three main types. The “concept-

ACM Computing Surveys, Vol. 21, No. 2, June 1989

Explanation-Based Learning: Programs and Perspectives l 193

(Vs){POSINST(OPl, s) * MATCH((function) J sin(x) dx, s)].

Figure 29. Translated concept description [Keller 19831.

Concept-preserving transforms:
1. Expand definition of a predicate.
2. Constraint back-propagation.
3. Enumerate the values of a universal variable.

Concept-specializing transforms:
1. Add a conjunct to an expression.
2. Delete a disjunct from an expression.
3. Instantiate a universal variable.

Concept-generalizing transforms:
1. Add a disjunct to an expression.
2. Delete a conjunct from an expression.

Figure 30. Transformation rules in LEXCOP
[Keller 19831.

preserving transformations” rewrite con-
cepts without changing their meaning.
The “concept-specializing” and “con-
cept-generalizing” transformations make
concepts more specialized and more
generalized, respectively. A concept-spe-
cializing rule creates a new expression rep-
resenting sufficient conditions for concept
membership. A concept-generalizing rule
produces a new expression representing
necessary conditions for concept member-
ship. The sequences of transformations
used in LEXCOP correspond closely to the
explanation trees used in LEX-II [Mitchell
19831; however, the explanation trees of
LEX-II are built from concept-preserving
and concept-specializing transformations
only. This explains why LEX-II creates
generalizations that represent sufficient,
but not necessary, conditions for concept
membership. Unlike the LEX-II system,
LEXCOP would arrive at the translated
concept description without making use of
any training examples.

Keller has developed a new system called
MetaLEX, which builds on the ideas of
LEXCOP [Keller 1987a]. MetaLEX is in-
tended to show how learning systems can
exploit explicit representations of contex-
tual knowledge, that is, knowledge of the
context in which learning takes place.
Keller defines “contextual knowledge” to
include (1) a description of the performance

program to be improved by learning and
(2) a specification of performance objec-
tives, among other things.

Keller argues that contextual knowledge
is useful for several purposes. For example,
he outlines a method by which a learning
system can utilize contextual knowledge to
automatically formulate its own learning
tasks. By analyzing the algorithm used
in the performance program, a learning
system could formulate a plan to improve
performance by inserting a concept
membership test at some location in the
performance program. The plan would ini-
tially describe the concept in nonopera-
tional terms. The learning system would
then be faced with the task of translating
the concept into an operational form. By
formulating new learning tasks to attack
bottlenecks as they move around in the
system, this process may provide a solution
to the “wandering bottleneck” problem.

Unlike FOO, BAR, and LEXCOP,
MetaLEX uses empirical information. In
particular, MetaLEX collects data mea-
suring the CPU time expended in evaluat-
ing various parts of a concept description.
By indicating which parts of an expression
are the least operational and most in need
of reformulation, these empirical data help
to guide the search for an operational con-
cept description. MetaLEX also collects
data to help determine when a concept can
be safely approximated. MetaLEX mea-
sures the impact of various approximations
on overall efficiency and accuracy. By com-
paring these to the system’s performance
objectives (i.e., contextual knowledge),
MetaLEX can determine when approxi-
mations are worthwhile.

2.4.3 Similar Work

Techniques for operationalization have not
been studied extensively in the field of ma-
chine learning. Some automatic program-
ming methods can be viewed in terms of
operationalization. The transformational

ACM Computing Surveys. Vol. 21, No. 2, June 1989

194 l Thomas Ellman

CUP

b CAUSE
AK0

- IS + OPEN-VESSEL

IS) STABLE
b LIFTABLE

Figure 31. Functional definition of a cup [Winston et al. 19831.

implementation methodology developed by
Balzer is a case in point [Balzer et al. 19761.
This technique takes a (nonoperational)
program specification as input. A series of
correctness-preserving transformations are
then applied to the specification, gradually
refining it into an executable (operational)
program. This method has been used by
Swartout to build knowledge-based expert
systems for which human-oriented expla-
nations can easily be generated [Swartout
19831. A survey of program transformation
systems is found in Partsch and Steinbriig-
gen [1983]. The relation between EBL and
program transformation is discussed in
Prieditis [1988a].

2.5 EBL = Justified Analogy

Techniques for performing “justified” an-
alogical reasoning are discussed in this sec-
tion. Traditional methods of reasoning by
analogy require making a guess about what
information should be transferred from a
remembered analogous situation to a new
situation. The “justified” version of anal-
ogy tries to avoid guessing. One approach
to justified analogy involves mapping se-
quences of “inference rules,” or “explana-
tions,” from analogs to target examples.
The inference rules might encode “causal
relations” as in Winston et al. [1983],
Kedar-Cabelli [1985], and Gentner [1983],
or they might represent problem-solving
“derivation” steps as in Carbonell [1986]
(see Figure 3). Since the inference rules
contain their conditions of applicability,
the system needs only to verify that the
mapped rules apply to the new situation in
order to avoid making guesses. This sug-
gests that explanation-based analogy

(EBA) would be a reasonable name for
these techniques.

2.5.1 ANALOGY (Winston)

Winston and his co-workers have devel-
oped the ANALOGY system [Winston
et al. 19831. This program is intended to
learn “physical” or “structural” descrip-
tions of objects. The program is given
“functional definitions” of objects as input.
By finding analogies between “precedents”
and “practice examples,” ANALOGY
transforms the functional definition into a
physical or structural description.

The ANALOGY program is described
using the example of a drinking cup. The
input to the system is a functional defini-
tion of a cup, shown in Figure 31. This
definition gives three conditions that must
be met in order that an object function as
a drinking cup. The object must be a “sta-
ble, liftable, open vessel.” These conditions
are considered to be functional specifica-
tions but not physical or structural prop-
erties. A variety of physically different
objects could fulfill these three functional
criteria, In addition to a functional defini-
tion, the system is also given an example
of a cup, shown in Figure 32. ANALOGY
so provided with a set of precedents that
are used to reason by analogy. These prec-
edents include descriptions of objects such
as bricks, suitcases, and bowls, which are
useful for establishing the connection be-
tween physical properties and functional
specifications.

ANALOGY begins by trying to confirm
that the example is indeed a cup. The func-
tional definition network is retrieved and
superimposed on the example network.

ACM Computing Surveys, Vol. 21, No. 2, .June 1989

Explanation-Based Learning: Programs and Perspectives

OBJECT i-?-m

. 195

UPWARD-POINTING

Figure 32. Example of a cup [Winston et al. 19831.

Next the system tries to establish each of
the three criteria in the definition; that is,
the program must show that the example
is a “stable, liftable, open vessel.” Each
condition can be established either by ver-
ifying that the condition appears directly
in the description of the example or by
reasoning from a precedent. The suitcase
precedent is used to show that the example
is liftable. The description of the suitcase
precedent contains a causal chain. This
chain has two steps asserting that (1) “the
suitcase is liftable because it is light
and graspable” and (2) “the suitcase is
graspable because it has a handle.” In
order to use the chain, ANALOGY deter-
mines a correspondence between parts of
the cup example and parts of the suit-
case precedent, using a method called
“importance-dominated matching” [Win-
ston 19821. While transferring the chain,
the program tests whether the antecedents
of the chain are found in the example. In
this case the cup example does in fact con-
tain the “light” and “handle” relations.
This means the condition of being “liftable”
is successfully established. In a similar
manner, ANALOGY uses the brick prece-
dent to show that the example is stable and
the bowl precedent to show that the ex-
ample is an open vessel. The final version
of the example network is shown in Fig-

ure 33. This diagram shows all the causal
chains transferred from the precedents to
the cup example.

After establishing the example to be a
cup, ANALOGY creates a general rule. The
rule is intended to summarize the set of
physical properties that enabled the exam-
ple to function as a cup. An English para-
phrase of the new rule is shown in
Figure 34. The “IF” part of this rule was
built from the antecedents of the causal
chains transferred from precedents. The
“THEN” part asserts an object to be a cup.
The “UNLESS” conditions correspond to
the intermediate nodes of the transferred
causal chains. These conditions are in-
cluded because the causal connections are
not considered to be infallible. For example,
the causal link asserting that “an object is
graspable if it has a handle” might be wrong
in some cases. By adding the “UNLESS”
condition, the rule is understood to mean
“an object is graspable if it has a handle,
unless there is some reason to believe
otherwise.”

A question arises regarding whether the
precedents are really necessary in the
ANALOGY system. According to Winston,
“The precedents are essential for otherwise
there would be no way to know which as-
pects of the example are relevant” [Win-
ston et al. 1983, p. 4331. The precedents

ACM Computing Surveys, Vol. 21, No. 2, June 1989

196 l Thomas Ellman

CUP
A

b CAUSE
AK0
IS) OPEN-VESSEL +

+ CONCAVITY 0

UPWARD-POINTING -

Figure 33. Final version of example network [Winston et al. 19831.

IF: AN OBJECT IS LIGHT AND HAS A
HANDLE, A FLAT BOTTOM AND AN
UPWARD POINTING CONCAVITY,

THEN: THE OBJECT IS A CUP,

UNLESS: THE OBJECT IS NOT STABLE, OR
NOT LIFTABLE, OR NOT AN OPEN
VESSEL, OR NOT GRASPABLE.

Figure 34. Rule extracted from network.

might appear to be necessary because they
contain causal information in the form of
links between causes and effects. ANAL-
OGY may be said to possess an “exten-
sional theory” of causes and effects in the
form of precedents. This can be contrasted
with an “intensional theory” in the form of
general rules connecting causes and ef-
fects [Mitchell et al. 19861. Nevertheless,
Winston’s database of precedents is
really an intensional theory in disguise.
ANALOGY has the ability to extract causal
relations from precedents and transfer
them to new situations. This implies it can
determine which conditions must hold for

a causal link to be in effect. As observed by
Mitchell, the ANALOGY program impli-
citly assumes a causal link such as
“FEATUREl(A) + FEATURES(A)” is
supported by a general rule of the form
“(Vx)(FEATUREl(x)+FEATURE2(x)J”
[Mitchell et al. 19861. If a database of rules
were created by extracting causal links
from the precedents, the result would be a
program looking more like GENESIS or
LEX-II. There may be a reason for storing
causal rules in the context of precedents.
The causal rules may be faulty. When con-
tradicted by future information, they will
need revision. The precedents might help
determine how to revise faulty rules.

Winston’s ANALOGY program can also
be viewed in terms of generalization,
chunking, and operationalization (see Fig-
ure 3). The rule in Figure 34 can be taken
as a generalization of the single example of
a cup, which was provided to the system.
The rule may also be seen as an operation-
alization of the functional definition of a
cup. The original definition of a cup in
Figure 31 may be considered to be “non-

ACM Computing Surveys, Vol. 21, No. 2, June 1989

Explanation-Based Learning: Programs and Perspectives l 197

operational” because it describes a cup
in functional terms. The final rule in Fig-
ure 34 is operational because it describes
cups in physical or structural terms. Win-
ston’s program also performs chunking.
Three causal chains are taken from three
precedents, the suitcase, the brick, and the
bowl, and are spliced together to build an
explanation of the cup example. The expla-
nation is then collapsed into a single rule
representing a chunk.

2.5.2 Derivational Analogy (Carbonell)

Derivational Analogy (DA) was developed
by Carbonell to investigate analogical rea-
soning in the context of problem solving
[Carbonell1983a, 19861. The DA technique
solves a new problem by making use of a
solution derivation that was generated
while solving a previous problem. The new
problem is solved by recreating sequences
of decisions and justifications for decisions
that were used to solve a precedent prob-
lem. Carbonell uses derivations in a way
similar to the manner in which Winston
uses causal networks. Carbonell proposes
transferring derivations between examples,
whereas Winston proposes transferring
causal networks. Derivations and causal
networks are both types of dependencies or
justifications. Inasmuch as DA involves
transferring justifications from a precedent
to a new situation, it may be seen as a type
of justified analogical reasoning.

The DA method was originally developed
to remedy a limitation of earlier work on
analogy in problem solving. Carbonell’s
earlier work involved solving new problems
by directly modifying solutions to previ-
ously solved problems [Carbonell 1983b].
For example, one might try to write a sort-
ing program by directly modifying the code
used in a previous sorting program. The
difficulty can be illustrated by considering
the following problem from Carbonell
[19861: Suppose one wanted to write a LISP
sorting program, and one had already writ-
ten a Pascal program implementing quick-
sort. The approach of directly modifying
the Pascal program would either fail com-
pletely or lead to a poor LISP program.
This would happen because a good LISP

implementation of quicksort would look
quite different from the Pascal program
owing to differences in the structures of
these languages. Nevertheless, the LISP
and Pascal programs might share the same
underlying design strategy. They could
both use a divide and conquer approach
manifested in terms of partitioning sets.
This strategic information is ignored by an
analogy process that directly transforms
the code of one program into the code of
another. DA avoids this problem since it
does not try to directly transform one
solution into another. The DA method
transfers information at the level of “deri-
vations” rather than “solutions.” DA would
solve the sorting problem by transforming
the derivation of the Pascal program into a
derivation of a LISP program.

Carbonell gives a detailed specification
of the sorts of information that should be
contained in a derivation [Carbonell1983a,
19861. A derivation is supposed to include
the “hierarchical goal structure” used to
generate the solution. The goal structure is
represented in terms of the “sequence of
decisions” made while solving a problem.
For each decision, the derivation should list
the alternative that was chosen as well as
those that were considered, but not chosen.
The record of a decision should include the
reasons for the decision (i.e., the derivation
might record an explanation of the decision
along with dependency links to aspects of
the problem specification and dependency
links to general knowledge). The derivation
should also indicate how each decision de-
pends on prior decisions and influences
subsequent decisions. Finally, the deriva-
tion should record the initial segments of
any dead-end paths that were explored,
along with reasons the paths appeared
promising and reasons the paths ultimately
failed.

In order to use the DA method to solve a
problem, it is necessary to find prior prob-
lem situations that are analogous to the
current situation. DA begins solving a prob-
lem by using general techniques, for ex-
ample, application of weak methods or
instantiation of a general problem-solving
schema like divide and conquer [Carbonell
19861. A trace is maintained to record these

ACM Computing Surveys, Vol. 21, No. 2, June 1989

198 l Thomas Ellman

initial stages of the problem-solving pro-
cess. Appropriate analogous problems are
found by matching the initial analysis trace
of the current problem with the initial
analysis of previous problems.

After finding an analogous problem, the
derivation of the analogous problems’ so-
lution is retrieved and applied to the new
situation. A derivation may be transferred
to a new problem in the following way: The
system must follow the sequence of deci-
sions in the derivation and reconsider each
one in the context of the current problem.
In order to reconsider each decision, the
system must examine the reasons for the
decision. This can be done by examining
the dependency links to the previous prob-
lem situation and to general knowledge. If
the relevant aspects of the problem speci-
fication are the same and the general
knowledge applies to the new situation,
then the same decision can be made. Oth-
erwise, the system must reconsider the de-
cision. Carbonell actually provides a more
detailed description of how to transfer a
derivation from one problem to another
[Carbonell 19861.

2.5.3 Analogy versus Generalization

The explanation-based versions of analogy
and generalization differ mainly on the
issue of schema formation. Systems like
GENESIS and SOAR are naturally viewed
as generalizers because they convert deri-
vations (explanations, operator sequences)
into schemata (chunks). The schemata rep-
resent compiled versions of the derivations
and need only to be instantiated to apply
to new problems. The process of schema
instantiation solves a new problem in a
single step, bypassing all the intermediate
steps of the derivation. In contrast, Car-
bonell’s DA method is more naturally
viewed in terms of analogy because it does
not convert a derivation into a schema, but
rather keeps the derivation in its original
form. In order to solve a new problem, DA
must pass through all the steps in the orig-
inal derivation, possibly modifying them to
some degree.

Each approach has advantages. When a
new problem actually matches an existing

schema, the process of schema instantia-
tion is usually more efficient than replaying
an entire derivation. Schemata suffer from
the disadvantage of not being immediately
useful when a new problem falls outside
their scope. Derivational analogy does not
suffer from this problem. If one assumes
that DA can modify derivation steps so the
derivation can apply to a new problem, then
the original derivation does not have a fixed
range of application.

2.5.4 Similar Work

The EBA methods discussed in this section
are similar to other recent research in an-
alogical reasoning. In particular, they are
similar to Gentner’s “structure-mapping”
theory of analogy [Gentner 19831. This
theory involves using a principle called
“systematicity” to determine what infor-
mation should be mapped from the analog
to the target example. According to the
systematicity principle, analogy processes
should transfer “systems of relations.” A
system of relations involves “first-order”
relations that are governed by “higher or-
der” relations. Causal relations are one type
of higher order relation. The systematicity
criterion often leads to transferring net-
works of causal relations from one example
to another. The causal nets can be inter-
preted as explanations. For this reason the
systematicity principle often results in
transferring explanations from the analog
to the target, just as in explanation-based
analogy. Despite this similarity, structure
mapping is different from EBA in one
crucial respect. Although the structure-
mapping theory often leads to transfer of
explanations, it does not actually require
that all analogical inferences be logically
sound.

A method of justified analogical reason-
ing, called “Purpose-Directed Analogy”
(PDA), has been proposed by Kedar-
Cabelli [1985]. PDA is intended to address
the question of deciding which causal net-
work should be transferred from the ana-
log to the target, in cases when the
analog contains many possible causal
networks. Kedar-Cabelli argues that the
methods of Winston and Gentner are not

ACM Computing Surveys, Vol. 21, No. 2, June 1989

Explanation-Based Learning: Programs and Perspectives l 199

able to operate unless the relevant network
is specified in advance. PDA tries to avoid
this limitation by using the “purpose of the
analogy” to select the relevant network
from among many.

Derivational analogy has been applied to
the logic circuit design domain in several
systems. For example, the REDESIGN sys-
tem [Mitchell et al. 1983b; Steinberg and
Mitchell 19851 serves as an assistant to a
human for the purpose of designing new
circuits by analogy with existing ones.
REDESIGN combines causal reasoning
about circuit behavior with knowledge
about the design plan of the original circuit
in order to focus attention on the parts that
must be modified. Other applications of
derivational analogy to circuit design in-
clude the BOGART system [Mostow and
Barley 19871 and the ARGO system
[Huhns and Acosta 19871.

Mostow has investigated the applicabil-
ity of derivational analogy to design prob-
lems in general, including both circuit
design and program generation [Mostow
19861. He has examined some difficulties
that arise in the course of attempting to
replay derivations. This study has led him
to propose criteria about the types of infor-
mation that should be included in deriva-
tions. Mostow has also done a comparative
analysis of several derivational analogy sys-
tems in design domains [Mostow 1987a].

An entirely different approach to justi-
fied analogy has been developed by Davies
and Russell [1987]. Their technique in-
volves utilizing “determinations,” for ex-
ample, a rule asserting that “the value of
feature A determines the value of feature
B.” A system in possession of determina-
tions can make logically sound inferences
from precedents to new examples. Other
knowledge-intensive approaches to analog-
ical reasoning are discussed in Prieditis
[1988b].

2.6 Additional EBL Research

Several additional research projects are re-
lated to explanation-based learning in the
sense that they use explanations to guide
learning; however, they do not fit neatly
into any of the four categories: generaliza-

tion, chunking, operationalization, or anal-
ogy. Systems developed by Silver and by
Schank fall into this group. Silver [1986a]
has built a program called LP, which learns
heuristics for solving algebraic equations.
LP uses an analytic learning technique
called “precondition analysis” (PA). The
PA method is used to infer the strategic
purpose of an operator, when the LP sys-
tem sees it used within a sequence of
operators. Suppose that the two operators,
Pi and Pi+,, appear within the sequence,
PI, . * -9 Pi-17 P,, Pi+19 . . . , PN. The PA
method will assume that Pi was used to
achieve some preconditions of Pi,,. Sup-
pose that A is a set containing all the
preconditions of operator P,+l and that B
is a set containing members of A that are
true before Pi was applied. The set differ-
ence, A - B, represents those preconditions
of p,+, that were brought about by the
operator Pi. PA would then infer that
these conditions are the “strategic purpose”
of Pi. After learning the purpose of an
operator, LP would use the information as
a search control heuristic in future problem
solving. Precondition analysis is related to
EBL methods in two ways. It can learn
from a single observation of an operator
sequence applied to an algebra problem. It
also relies on background knowledge about
the preconditions of operators. Precondi-
tion analysis differs somewhat from ana-
lytical techniques like constraint-back
propagation (CBP) and EGGS. PA can be
applied to operators that are ill behaved in
certain ways that would cause these meth-
ods to fail [Silver 1986b].

Schank and co-workers have been work-
ing on a theory of learning and memory
that is similar to EBL. Schank envisions a
role for explanations in learning; however,
he uses explanations in a somewhat differ-
ent way than the EBL systems described
above. He has proposed a theory called
“failure-driven memory” (FDM) based on
the idea that learning is possible whenever
a person encounters a failure of expecta-
tions [Schank 19821. In the course of at-
tempting to explain the failure, a person is
reminded of previous episodes that can be
understood using the same explanation.
Such reminding is possible if memory is

ACM Computing Surveys, Vol. 21, No. 2, June 1989

200 l Thomas Ellman

indexed in terms of “patterns of explana-
tion.” Schank has proposed a typology of
standard explanation patterns [Schank
19871. Hammond has used the FDM
method in his CHEF program [Hammond
1986, 19871.

Schank’s FDM theory can be compared
with EBL in the following way: According
to FDM, if event A causes one to be re-
minded of event B, then A and B share a
common explanation. In the context of
EBL, if A and B are instances of a single
generalization, then they can both be
understood using the same explanation.
Owing to the emphasis that Schank places
on case-based reasoning, his work bears
an especially strong resemblance to
explanation-based analogy.

3. FORMALIZATIONS OF
EXPLANATION-BASED LEARNING

3.1 Mitchell’s EBG Formalism

A formalism called explanation-based
generalization (EBG)” has been pro-
posed by Mitchell et al. [1986]. EBG at-
tempts to capture the essential elements of
most explanation-based learning systems
that have been proposed. EBG is similar in
spirit to Mitchell and Utgoff’s LEX-II sys-
tem; however, it uses a more uniform set of
methods and is cast in a form that is more
clearly applicable to other domains. Mitch-
ell describes the EBG framework as a
“domain independent method . . . for using
domain dependent knowledge to guide gen-
eralization” [Mitchell et al. 1986, p. 491.

The EBG formalism consists of two parts
called the “EBG Problem” and the “EBG
Method.” A formal specification of the
problem is shown in Figure 35. The EBG
problem is defined in terms of four param-
eters that are necessary for all EBG sys-
tems. The “goal concept” represents the
objective of the learning program. This pa-
rameter provides a nonoperational specifi-
cation of the concept that the system will
attempt to learn. In Mitchell’s presentation
of EBG, the goal concept is represented as

Is In the remaining sections, the term EBG shall refer
to Mitchell’s specific formalism, whereas EBL refers
to any explanation-based learning system.

Given:
(1) Goal concept,
(2) Training example,
(3) Domain theory,
(4) Operationality criterion,

Find:
A new concept description that is
(a) a generalization of the training example,
(b) a sufficient condition for the goal concept, and
(c) that satisfies the operationality criterion.

Figure 35. The EBG problem.

an atomic predicate calculus formula, pos-
sibly containing free variables (e.g., vari-
ables “s” and “obj” in POSINST(OP3, s)
and CUP(obj)). The “operationality crite-
rion” specifies the types of concept descrip-
tions that are considered to be operational.
Mitchell represents the criterion as a list
of predicates that are observable or easily
evaluable. A concept description is con-
sidered operational if and only if it is
expressed entirely in terms of predicates
from this list. The “training example” is a
description of an object that is an instance
of the goal concept. The training example
parameter is described in operational
terms, that is, using predicates from the
list of operational predicates. Finally, the
“domain theory” parameter is a set of rules
describing the domain from which the ex-
ample and goal concept are drawn. The
rules must be capable of proving that the
training example meets the conditions for
being an instance of the goal concept. In
Mitchell’s presentation, the domain theory
is represented as a set of Horn clauses.

The EBG system is charged with the task
of reformulating the goal concept into an
expression that meets the operationality
criterion. The new concept description
need not be exactly equivalent to the orig-
inal goal concept, so long as it is both (1) a
specialization of the goal concept and
(2) a generalization of the training example.
In order to create such a concept descrip-
tion, the EBG system uses a two-step
process similar to the ones described
above for GENESIS and LEX-II. First the
system uses the domain theory to build an
explanation tree proving that the training
example satisfies the goal concept defini-

ACM Computing Surveys, Vol. 21, No. 2, June 1989

Explanation-Based Learning: Programs and Perspectives

Generalization:

l 201

Training example -+ Operational concept description.

Chunking:
Domain theory + Concept membership test rule.

Operationalization:
Goal concept + Operational concept description.

Analogy:
Training and test examples -P Test example classification.

Figure 36. Four interpretations of EBG.

tion. Then the system “regresses” the goal
concept formula through the explanation
tree to obtain a generalized operational
concept description at the leaves. For this
step, EBG uses a procedure called modi-
fied goal regression (MGR) [Mitchell
et al. 19861.” MGR is a modified version
of the goal regression technique described
in Nilsson [1980] and Waldinger [1977].
MGR fulfills conceptually the same func-
tion as Dijkstra’s method of calculating
weakest preconditions [Dijkstra 19761,
Utgoff’s constraint-back propagation
[Utgoff 19861, STRIPS’ method of gener-
alizing resolution proofs [Fikes et al. 1972 1,
and Mooney and DeJong’s EGGS proce-
dure [DeJong and Mooney 1986; Mooney
and Bennett 19861.

Mitchell’s EBG formalism is valuable for
the conceptual clarity it provides. It is es-
pecially helpful in making the “goal con-
cept” and “operationality criterion” into
explicit parameters. In previously existing
EBL systems, these two parameters were
present only implicitly. By making them
into explicit parameters, the EBG formal-
ism raises the question of how they may be
obtained. As outlined by Keller [1987a],
these parameters might be generated auto-
matically by a learning program in posses-
sion of “contextual knowledge” describing
the task and internal architecture of the
performance element.

The EBG formalism is also useful for
clarifying the relation between generaliza-

“’ The version of MGR in Mitchell et al. [1986] con-
tains an error that was pointed out and corrected in
DeJong and Mooney [1986].

tion, chunking, operationalization, and
analogy. Figure 36 suggests how EBG can
be interpreted in terms of each of these
processes. Each interpretation involves em-
phasizing one input and one output and
ignoring the others. If the training example
is the input and the operational concept
description is the output, EBG looks like
generalization. In order for EBG to look
like chunking, the domain theory is taken
as the input. The output is a concept mem-
bership test rule of the form “if OCD, then
GC,” where OCD is the operational concept
description and GC is the goal concept.
EBG looks Iike operationalization if the
input is the nonoperational goal concept
and the output is the operational concept
description. In order for EBG to look like
analogy, the system would be given the
training example and a “test” example as-
inputs. The output would be the classifica-
tion of the “test” example as a member or
nonmember of the goal concept.

3.2 Other Formalizations

DeJong has recently presented a detailed
critique of EBG, covering a number of spe-
cific areas in which he claims EBG is defi-
cient [DeJong and Mooney 19861. Among
other things, DeJong argues that EBG suf-
fers from problems of undergeneralization.
He points out that EBG cannot generalize
the predicates appearing in domain theory
rules and cannot generalize the structure of
the explanation itself. DeJong also dis-
cusses other problems with EBG. He claims
that the operationality criterion used in
EBG is deficient. He also argues that the

ACM Computing Surveys. Vol. 21, No. 2, June 1989

202 l Thomas Ellman

EBG generalization procedure fails to take
adequate account of the source of the ex-
planation, that is, whether the explanation
is built by the system or provided by a
human expert. According to DeJong, many
of these problems can be solved by organiz-
ing the system’s knowledge base in terms
of a hierarchy of schemata. He presents his
own formalism as an alternative to EBG
[DeJong and Mooney 19861.

Several other authors have attempted to
formally describe the relations among EBL
programs. Laird and Rosenbloom [1986]
examine the relation between EBG and
SOAR. Mostow [1987b] compares the types
of knowledge used in several EBL programs
by viewing each as performing a search for
operational concept descriptions. EBG is
shown to be equivalent to “partial evalua-
tion” of logic programs in [Prieditis 1988a]
and [Van Harmelen and Bundy 19881. A
domain-independent definition of the term
explanation structure is presented by Moo-
ney and Bennett [1986]. An early attempt
to formalize EBL was made by Minton
[19841. A formalization of explanation-
based analogy is presented by Kedar-
Cabelli [19851.

4. AN EVALUATION OF EBL

The EBG formalism clarifies a number of
outstanding issues in the field of explana-
tion-based learning. Mitchell’s formalism
draws attention to the fact that an EBG
system must be provided with a “domain
theory” and a “goal concept” at the outset,
before learning can occur. Several ques-
tions are suggested by this fact:

l Are training examples necessary for EBG
systems?

l Do EBG systems only learn things al-
ready contained in the domain theory?

l In what sense can EBG be said to im-
prove an intelligent system?

The first question results from the fol-
lowing observation: If an EBG system
possesses a domain theory capable of
explaining an example, the same theory
might be sufficient for generating the
example in the first place. If the system

can generate its own example, the training
example parameter appears not to be
necessary.

In some domains the ability to explain
an example is not equivalent to the ability
to generate an example in the first place.
To illustrate, consider the 8-QUEENS
problem. Suppose an EBG system were
given the goal concept “mutually nonat-
tacking positions of 8 queens.” Given a
theory about how queens can attack, a sys-
tem could easily verify that a solution sat-
isfies the goal concept. Nevertheless, it is
much more difficult to find a solution than
to verify the correctness of a solution pro-
vided by a teacher. This argument applies
to the whole class of NP-complete prob-
lems, of which the N-QUEENS problem is
an instance. The NP-complete problems all
have the property that solutions are easy
to verify but difficult to find. For such
problems an example solution provided by
a teacher can be very useful.

Mitchell’s EBG method might actually
be modified to operate without training
examples. This would require omitting
the step that involves explaining how the
example satisfies the goal concept. The fol-
lowing “explanation step” would be used
instead: The system would find any expla-
nation tree that has the goal concept at the
root and only operational statements at the
leaves. The modified explanation process
would be permitted to use any operational
predicate as an assumption in the expla-
nation. The resulting explanation process
might be more time consuming than that
occurring if an example were being ex-
plained. Some search control techniques
that would be useful in the presence of a
training example would not apply to the
modified explanation process. If Mitchell’s
EBG method were modified in this way, the
result would look very much like Keller’s
LEXCOP system.

Training examples provided by a teacher
may be useful, even if an EBG system could
generate its own, or operate without them.
A human teacher may be able to select
examples that are “typical” of those likely
to be encountered by a system in the course
of future problem solving. In order to see
why typical examples are important, con-

ACM Computing Surveys. Vol. 21, No. 2, June 1989

Explanation-Based Learning: Programs and Perspectives l 203

sider that EBG normally does not produce
an exact reformulation of the goal concept.
It usually creates a specialization of the
original goal concept instead. If EBG were
applied to an atypical example, it might
produce a concept specialization that ap-
plies to few typical examples. On the other
hand, were a teacher to provide a typical
example to the EBG system, the resulting
operational concept description is guaran-
teed to apply to at least one typical exam-
ple. If the teacher chooses the example
carefully, the resulting concept description
might be expected to have wide applica-
tion.”

Considering that EBG creates concept
recognition rules that are deducible from
the initial domain theory, one is led to ask
whether EBG systems can learn anything
that they do not already know. One answer
to this question is provided by Dietterich’s
definition of “knowledge-level learn-
ing” [Dietterich 19861. A system is said to
perform knowledge-level learning only
when there is a change in the “deductive
closure” of its domain theory. The deduc-
tive closure of a set of axioms is defined to
include the axioms themselves, plus all
facts derivable from the axioms using an
arbitrary number of inference steps. The
concept membership test rules created by
EBG are all contained in the deductive
closure of the initial domain theory. There-
fore, EBG does not change the deductive
closure of a knowledge base and does not
perform knowledge-level learning. The
same criticism applies to most, if not all, of
the EBL systems described above.

Russell has proposed an alternate form
of justified generalization that does per-
form knowledge-level learning [Russell
19861. He suggests that a generalization
system’s background knowledge may con-
tain rules describing “high-level regulari-
ties.” One type of high-level regularity is a
“determination” rule of the type mentioned

” This may explain a difficulty encountered by LEX-
II. LEX-II does make use of training examples, but
the examples are generated internally by the problem-
generator and problem-solver modules. The learning
process in LEX-II was ultimately limited, in part,
by the problem generator’s inability to choose good
examples [Mitchell 19831.

above in the context of Russell’s justified
version of analogy (Section 2.5). Given a
determination rule plus a training example,
a system can logically deduce a generaliza-
tion. Nevertheless, the generalization is
not derivable from the determination rule
alone, in the absence of the training
example.

Since EBG does not perform knowledge-
level learning, one is led to ask what type
of learning EBG actually does perform.
Subramanian and Smith [1988] have pro-
posed the idea of “limited knowledge-level
learning” to address this issue. Their ap-
proach is based on the observation that the
complete deductive closure is not generally
obtainable in real systems with limited
computational resources. One may there-
fore consider the “knowledge of a system”
to include all facts derivable under some
limited inference procedure, for example,
one using at most a fixed number of infer-
ence steps. From this point of view, EBG
does change the knowledge contained in a
system, by creating chunked rules that en-
able some theorems to be proved in fewer
steps. Thus, EBG may be said to perform
limited knowledge-level learning.

The preceding observations suggest that
EBG is useful chiefly for the purpose of
improving the efficiency of an inference
process. It is clear that EBG can produce
new rules enabling shorter proofs of some
theorems. Nevertheless, this may not im-
prove the overall efficiency of a perfor-
mance program. As observed by Minton
[1985] and Fikes et al. [1972], an EBL
system might create rules that are rarely
useful. The useless rules consume storage
space. Time efficiency may also be de-
graded if the system is forced to waste time
attempting to apply the useless rules. As
argued by Minton [1988b], indexing meth-
ods or parallel processing may mitigate the
problem, but cannot eliminate it entirely.

Several investigators have attempted to
empirically measure the efficiency change
resulting from EBL. Minton has performed
tests showing that EBL can improve
or degrade performance, depending on
whether the technique is applied in a selec-
tive or an uncontrolled fashion. His mea-
surements show that uncontrolled chunk

ACM Computing Surveys, Vol. 21, No. 2, June 1989

204 l Thomas Ellman

formation can degrade performance [Min-
ton 1985,1988a, 1988131. He also shows that
EBL can improve performance, provided
that heuristics are used to decide when to
create and retain chunks [Minton 1988b]
(see Section 5.1). Similar empirical results
have been reported by Tambe and Newell
[1988] and Markovitch and Scott [1988].
Tambe and Newell have performed mea-
surements of CPU time in SOAR. They
show that chunking does improve overall
performance on some tasks, but degrades
others by creating chunks that are expen-
sive to match (see Section 2.3.1). Markov-
itch and Scott have done an empirical study
showing that performance degrades if too
many macros are formed, but that improve-
ments result from either random or selec-
tive deleting of excess macros. Additional
empirical tests of EBL are described by
O’Rorke [1987] and Prieditis and Mostow
[1987].

This section has provided only partial
answers to the three questions listed above.
To some extent these questions remain un-
answered. By focusing attention on these
issues, Mitchell’s formalism raises ques-
tions about the value of explanation-based
learning. EBG may turn out to be a case of
premature formalization. Future research
may demonstrate that the real value of
explanation-based learning comes in situ-
ations that do not fit into the EBG frame-
work. In particular, explanation-based
learning may be most useful in cases where
the initial domain theory is defective.

5. CURRENT AND FUTURE
EBL RESEARCH

A large number of problems in the EBL
field remain unsolved. Directions for future
work may be categorized according to the
position they take with respect to a criti-
cism of EBG described in the last sec-
tion, that is, that EBG does not perform
knowledge-level learning. One category can
be called “EBL and theory reformulation.”
This approach would accept the view that
EBL can only reformulate an existing
domain theory without changing its sub-
stantive content. EBL is nevertheless
considered worthwhile because it reformu-

lates the theory to make it more “useful.”
This is the point of view taken in Mitchell’s
EBG formalism. Even if one works within
the EBG paradigm, many problems remain
unsolved. Most of this research would ex-
amine the question of what makes a theory
useful and how EBL should be practiced to
guarantee a maximally useful reformulated
theory. Another category can be called
“EBL and theory revision.” This research
would seek to take EBL beyond Mitchell’s
EBG formalism to include methods that
change the substantive content of an initial
domain theory. The “imperfect theory
problem,” described below, is included in
this category. An additional line of research
would seek to develop “integrated” learning
methods that combine the analytical ap-
proach of EBL with empirical learning
methods. To some extent this category cuts
across the others. As suggested below, in-
tegrated methods may be useful in the con-
text of both theory reformulation and
theory revision.

5.1 EBL and Theory Reformulation

5.1.1 Optimization of Reformulated Theories

Researchers who continue to work in the
“theory reformulation” paradigm must de-
velop methods to guarantee that EBL really
does produce a reformulated theory that is
more useful than the initial theory. As dis-
cussed in the last section, EBL may or may
not improve overall performance, depend-
ing on whether the technique is applied
selectively or indiscriminately. This prob-
lem can be factored into several parts. One
part involves deciding which examples
should be processed by EBL to form general
schemata. Another part involves deciding
which schemata should be retained in mem-
ory over the lifetime of a program.

5.1.2 When Is Schema Formation Warranted?

In order to avoid creating useless schemata,
an EBL program might try to predict in
advance whether an example will generalize
into a useful schema. A number of investi-
gators have proposed heuristics for deciding
when to create schemata. DeJong [1986]
proposed a series of questions that a learn-

ACM Computing Surveys, Vol. 21, No. 2, June 1989

Explanation-Based Learning: Programs and Perspectives l 205

ing system should ask when deciding
whether to generalize an observed example
plan. His questions are directed mainly to-
ward determining whether the solved goal
will occur often and whether the gener-
alized plan will apply in a variety of
situations. Schank’s theory of “failure-
driven learning” suggests paying attention
to anomalous situations [Schank 19821.
Lebowitz [1986a] has proposed “interest-
ingness” as a criterion for determining
when learning should occur.

Heuristics applying to search spaces with
evaluation functions were studied by Iba
[1985] and Minton [19851. Iba’s heuristic
suggests forming a chunk whenever an op-
erator sequence is found to span two peaks
of an evaluation function. Minton’s crite-
rion says that generalization should occur
when a tough problem is solved in a sur-
prisingly simple way, for example, when a
heuristic evaluation function grossly over-
estimates the cost of a solution. His PROD-
IGY program also uses “training example
selection heuristics” to select those exam-
ples that appear likely to result in useful
rules [Minton 1988b]. SOAR implements a
criterion requiring that learning occur
whenever the system must perform search
to resolve an impasse [Laird et al. 1986a].

5.1.3 Which Schemata Should Be Retained?

After a schema is formed, empirical meth-
ods can be used to determine whether it is
useful in practice [Markovitch and Scott
1988; Minton 1988b; Silver 19881. Minton’s
PRODIGY system collects statistics that
help to evaluate the “utility” of learned
rules. PRODIGY uses a measure of utility
that involves (1) the cost of testing a rule
for applicability, (2) the frequency with
which the rule is applicable, and (3) the
savings that results from using the rule.
The measure is designed so that rules with
positive utility will improve overall perfor-
mance. Rules are retained in memory only
as long as they are estimated to have posi-
tive utility.

Mostow and Cohen [1985] have exam-
ined this issue in a slightly different con-
text. They have investigated the cost
effectiveness of software “caches” that

avoid recomputing functions by storing and
reusing the results of computations. They
list several criteria bearing on the question
of which computations should be cached,
including the hit rate, the lookup cost, and
the cost of the original computation. Cache
formation is similar to EBL schema for-
mation inasmuch as both processes imple-
ment a “store versus compute trade-off”
[Rosenbloom and Newell 19861. Thus,
these criteria may also be relevant for de-
termining when schema formation is war-
ranted and when schemata should be
retained.

5.1.4 Schema Optimization

Assuming that a rule is kept in the memory
of an EBL system, the cost of using the
rule may be diminished through the use
of expression simplification techniques.
Minton’s PRODIGY system performs
“compression analysis,” which can simplify
individual rules and combine several rules
into one [Minton 1988b]. Prieditis’ PRO-
LEARN program uses partial evaluation to
simplify some expressions [Prieditis and
Mostow 19871. SOAR optimizes rules by
reordering the conditions [Laird et al.
1986a]. Other optimizations for SOAR are
discussed in Tambe and Newell [1988].

51.5 Basic Methods for Analyzing Explanations

Numerous techniques have been developed
for analyzing explanations to produce
chunks or generalized schemata. A sum-
mary of these techniques is shown in
Table 1. The methods are categorized ac-
cording to the language used to represent
the domain theory from which explanations
are built. Methods have been developed for
analyzing explanation structures built from
STRIPS operators, Horn clauses, and
OPS5 operators, among others.2” Each
performs a function conceptually similar
to Waldinger’s goal regression proce-
dure [Nilsson 1980; Waldinger 19771 or
Dijkstra’s notion of weakest preconditions

” Inasmuch as Horn clauses may he viewed as special
cases of STRIPS operators, the methods listed as
applying to STRIPS operators should apply to Horn
clauses as well, with at most minor modifications.

ACM Computing Surveys, Vol. 21, No. 2, June 1989

206 l Thomas Ellman

Table 1. Methods of Analyzing Explanations

Method Operator language Reference

EGGS
STRIPS
EBS
MGR
PROLOG-EBG
MRS-EBG
PROLEARN
SOAR
Unnamed
EGR

STRIPS operators
STRIPS operators
STRIPS operators
Horn clauses
Horn clauses
Horn clauses
Horn clauses
OPS5 operators
OPS5 operators
Black boxes

Mooney and Bennett [1986]
Fikes et al. [1972]
Minton and Carbonell I1987 1
Mitchell et al. [1986] - .
Kedar-Cabelli and McCarty [1987]
Hirsh [1987]
Prieditis and Mostow [1987]
Laird et al. [1987]
Benjamin [1987]
Porter and Kibler]1986]

[Dijkstra 19761. For a comparison of MGR, cause additional cells would require cor-
EGGS, and the STRIPS proof generalizer, rectness proofs with a greater number of
see Mooney and Bennett [19861. inference steps.

Kibler and Porter [19861 have developed
a technique called “experimental goal
regression” to handle types of operators for
which all known analytical methods fail.
This empirical technique has the advantage
of not requiring access to the internal rep-
resentation of the operators; however, it
has the disadvantage that only approxi-
mate weakest preconditions are found. Por-
ter and Kibler [1985] have also presented
some criteria that operator description lan-
guages must meet in order for analytical
goal regression to succeed. Additional re-
search is needed to extend the range of
operator languages that can be analyzed
and to determine the types of languages
that are analyzable in principle.

51.6 Enhanced Methods for Analyzing
Explanations

A number of techniques have recently been
developed to create schemata of greater
generality than can be obtained with the
methods listed in Table 1. The basic meth-
ods generalize explanations into schemata
that are provable using the original expla-
nation structure. Thus, the resulting sche-
mata are no more general than the original
explanation structure. As observed by
DeJong [DeJong and Mooney 19861, it may
be necessary in some cases to generalize the
explanation structure itself. For example,
this need arises in the shift-register exam-
ple described by Ellman [1985]. The num-
ber of cells in the register cannot be
generalized by the standard methods be-

Methods for generalizing the number of
inference steps in an explanation are dis-
cussed by Shavlik and DeJong [1987a,
1987b], Cohen [19881, Cheng and Carbonell
[19861, and Prieditis [19861. Shavlik’s
BAGGER system uses a technique that
transforms a single rule into a schema rep-
resenting the effect of repeated applications
of the rule. Cohen’s ADEPT system ana-
lyzes explanations to produce finite-state
automata. The automata are used to deter-
ministically guide a theorem prover. Moo-
ney has developed an extension of EGGS
that can generalize the order of operators
in a macro operator [Mooney 19881. Given
a sequence of STRIPS operators, his
method finds the most general partial or-
dering of the sequence-preserving con-
straints related to interaction of operator
preconditions and effects. Empirical meth-
ods for generalizing the explanation struc-
ture are discussed in Kedar-Cabelli [1985]
and Flann and Dietterich [1986]. By com-
paring explanation structures taken from
multiple examples, commonly used sub-
structures can be identified, extracted, and
generalized.

5.1.7 Representation of Domain Theories
and Explanations

The results of EBL appear to depend crit-
ically on the representation of domain the-
ories and explanations. A number of
authors have commented on this relation.
Gupta [1988] has identified cases in which
the generality of learned rules is influenced

ACM Computing Surveys, Vol. 21, No. 2, .June 1989

Explanation-Based Learning: Programs and Perspectives l 207

by details of the domain theory represen-
tation. DeJong has argued that a schema-
based representation is important to the
success of EBL systems [DeJong and Moo-
ney 19861. Several authors have observed
that EBL generalization can be influenced
by the grain size of a domain theory [Brav-
erman and Russell 1988; Roy and Mostow
19881. Although there appears to be wide-
spread agreement that the representation
is critical, very little is known in general
about what makes a representation good
for the purposes of EBL. Future research
might attempt to identify a set of guidelines
to be used by people encoding the initial
domain theories used in EBL.

5.1.8 Generality and Operationality

Much of the foregoing discussion has as-
sumed that general schemata are to be pre-
ferred over specific ones. Although a
general schema will have wider applicabil-
ity than a specific schema, general ones are
not always better. In order to apply to new
examples, schemata must be instantiated.
General schemata are presumably harder
to instantiate than specific ones. A more
general schema may therefore be deemed
less operational owing to the high cost of
instantiation. This issue has been discussed
by several authors in terms of the “opera-
tionality/generality trade-off” [Segre 1987;
Shavlik and DeJong 1987c]. Segre presents
some preliminary empirical evidence for
the existence of this trade-off. Keller argues
that the operationality/generality trade-off
does not occur in all contexts in which EBL
systems can be used [Keller 1988a]. He
suggests that generality and operationality
should be seen as separate, potentially
independent dimensions.

The existence of an operationality/gen-
erality trade-off would place two demands
on EBL systems. To begin with, EBL sys-
tems need the capability of generating sche-
mata at various levels of generality.
Methods of controlling schema generality
are presented by Segre [1987] and Braver-
man and Russell [19881. Given the ability
to generate schemata of varying generality,
EBL systems also need methods of deter-
mining which ones will have the most

favorable impact on overall performance.
The empirical techniques described above
for deciding when to retain schemata may
be useful in this context.

5.1.9 Criteria of “Operationality”

Several researchers have offered new meth-
ods of defining the term operationality for
the purpose of explanation-based learning.
EBG considers a concept description to be
“operational” if it is expressed using pred-
icates drawn from a predefined list of
operational predicates; otherwise the de-
scription is “nonoperational” (see Section
3.1). DeJong points out that operationality
can sometimes depend on the arguments to
a predicate, as well as the predicate itself
[DeJong and Mooney 19861. He also argues
that operationality can vary with the
knowledge contained in the system. DeJong
suggests that a goal be considered “opera-
tional” whenever the system possesses a
schema for solving the goal. As the system
acquires more schemata, more goals are
considered operational. In contrast to the
binary operational/nonoperational distinc-
tion used by Mitchell et al. [1986] and
DeJong and Mooney [1986], both
MetaLEX [Keller 1987a, 1987b] and
PRODIGY [Minton 1988a, 1988b] use con-
tinuous measures of operationality. Contin-
uous measures seem more appropriate
when operationality is intended to capture
some notion of computational efficiency.

Keller and Segre have each argued that
efficiency alone is not sufficient for defin-
ing operationality. Segre suggests a set of
criteria would be more appropriate to real-
world planning problems [Segre 19881. His
five criteria include efficiency, generality,
robustness, recoverability, and obvious-
ness. Keller takes the position that no sin-
gle set of criteria will be appropriate in all
learning situations [Keller 1988b]. He pro-
poses that operationality be defined in re-
lation to the context in which learning
occurs. The operationality of a concept de-
scription will depend on (1) the perfor-
mance system using the description and
(2) the performance objectives of the sys-
tem. When the context changes, the defi-
nition of operationality changes as well.

ACM Computing Surveys, Vol. 21, No. 2, June 1989

208 l Thomas Ellman

Several authors have argued that EBL
systems should be given the power to ex-
plicitly reason about operationality [De-
Jong and Mooney 1986; Hirsh 1988a; Keller
1988b]. Mostow’s BAR program and
Hirsh’s ROE program both use special rules
to reason about the operationality of
expressions [Hirsh 1988a; Mostow 1983a,
1987b]. Keller’s MetaLEX and Minton’s
PRODIGY programs each perform empir-
ical tests of the operationality of concept
descriptions [Keller 198713; Minton 1988131.

5.1.10 Automatic Formulation of Learning Tasks

In order to attack the problem of “wander-
ing bottlenecks” [Mitchell 19831, systems
must have the ability to automatically for-
mulate their own learning tasks. Keller
[1987a] has outlined an approach to this
problem in the context of his MetaLEX
system (see Section 2.4.2). Taking a de-
scription of the performance system and
the performance objectives as input, his
method would automatically generate the
goal concept and operationality criterion
used by EBG. Kedar-Cabelli’s PurForm
system does something similar [Kedar-Ca-
belli 19871. PurForm automatically gener-
ates a goal concept describing an everyday
artifact, when given the “purpose” of the
artifact as input. SOAR may also achieve a
similar capability to deal with wandering
bottlenecks. “Universal subgoaling” is in-
tended to provide a framework within
which SOAR can formulate goals to im-
prove any aspect of the system’s perfor-
mance (see Section 2.3). All these
approaches require tackling serious knowl-
edge representation problems. The repre-
sentation must support reasoning about the
presence of bottlenecks within the system’s
performance element, and reasoning about
potential methods of alleviating the bottle-
necks.

5.1.11 Interacting with Humans

for EBL to be truly useful as a knowledge
acquisition tool, it must not make inordi-
nate demands on human experts’ time.
LEAP requires a human expert to supply
the initial domain theory. Building the ini-
tial theory may be as difficult for a human
as directly building the “expert” theory that
the EBL system would produce. Perhaps
the cost of building an initial theory could
be amortized over time as the theory gets
reformulated for a variety of purposes. In
any case, only practical experience will
determine whether EBL can make eco-
nomical use of a human expert’s time.

Other issues of human-computer inter-
action must also be addressed. Human ex-
perts will inevitably supply examples that
are erroneous or suboptimal. An EBL sys-
tem may be able to use the domain theory
to detect and correct such errors; however,
it must do so in an unobtrusive manner.
DeJong has suggested that an EBL system
can use the domain theory to improve sub-
optimal plans [DeJong and Mooney 19861.
Lebowitz [1986a] has discussed filtering out
erroneous examples by combining EBL
with empirical learning techniques.

5.2 EBL and Theory Revision

Most EBL methods are based on the as-
sumption that the initial domain theory is
adequate to explain all the examples to be
processed by the learning system. Although
this condition may be met in highly con-
strained domains, it will not be met in the
context of most real-life situations. If the
domain theory cannot explain a training
example, then the EBG method will fail to
operate. Methods must be developed that
enable explanation-based learning to pro-
ceed in the absence of an adequate domain
theory. Of course, this objective is not an
end in itself. The real purpose of learning
is to improve the system’s domain theory.
Methods must be developed by which EBL
can remedy the deficiencies in an initial

A final group of issues involves so-called domain theory.
“Learning Apprentice” programs such as An initial domain theory can suffer from
the LEAP system [Mitchell et al. 19851. a number of distinct deficiencies. A classi-
LEAP is intended to use EBL methods to fication of defects is shown in Figure 37.
learn by watching a human expert in the This diagram shows four dimensions along
course of normal problem solving. In order which an initial theory can be evaluated,

ACM Computing Surveys, Vol. 21, No. 2, .June 1989

Explanation-Based Learning: Programs and Perspectiues 209

Completeness: Does the theory ent.ail at least one
positive or negative classification for each example
in the domain?

Consistency: Does the theory entail at most one
positive or negative classification for each example?

Correctness: Are all the predictions entailed by the
theory actually correct?

Tractability: Can explanations of all examples be
constructed without exhausting specified time and
space resources?

Figure 37. Classification of theory defects.

including “completeness,” “correctness,”
“consistency,” and “tractability.” Two sim-
ilar typologies are outlined by Mitchell
et al. [1986] and Rajamoney and DeJong
[1987]. These differ from the present
typology in failing to distinguish between
incomplete and incorrect theories. In
addition to classifying imperfect theories,
Rajamoney and DeJong enumerate some
of the possible causes of incompleteness,
inconsistency, and intractability. They
also discuss methods of detecting such
imperfections.

this definition, an “incomplete” theory is
not necessarily “incorrect.” A theory might
be perfectly correct as far as it goes. It
nevertheless would be incomplete if it fails
to say anything about some examples, or
some parts of examples. The distinction
between incomplete and incorrect theories
is important. A correct but incomplete
theory presents less difficulty than an in-
correct theory. If a theory is merely
incomplete, the EBG method may succeed
on some examples. If any explanation
can be found, it is certain to be correct,
and the generalization process can proceed
as if the theory were perfectly adequate.
In comparison, an incorrect theory might
produce an explanation of an example
that omits key details, leading to incorrect
generalizations.

In some contexts the distinctions be-
tween imperfect theory types can become
blurred. Consider the case of a nonmono-
tonic theory, that is, a theory in which the
addition of new information can invalidate
previously derived explanations. If some
rules are missing, the theory may entail
conclusions that would be considered in-
correct if the missing rules were present.
Thus, incompleteness can cause incorrect-
ness. Another ambiguity involves intracta-
ble theories. An intractable theory becomes
incomplete if explanations exceeding re-
source limits are forbidden. It becomes
incorrect if approximations are used to
simplify the theory. Owing to these blurred
distinctions, some of the techniques dis-
cussed in the following sections may be
validly understood as addressing more than
one of the imperfect theory types.

5.2.1 Incomplete Domain Theories

A number of techniques use “partial ex-
planations” to handle incomplete theories
[Berwick 1985; Hall 1988; Pazzani 1988;
Roy and Mostow 1988; Sleeman et al. 1987;
VanLehn 1987; Wilkins 19881. When faced
with an example that cannot be fully ex-
plained, these systems attempt to explain
as much as possible. By focusing on gaps in
the resulting partial explanations, they
identify and conjecture new rules that
would make the explanations complete. In
most cases, more than one alternative rule
can complete an explanation. Methods are
therefore needed to guide the generation
and evaluation of alternative conjectures.
Analytic methods that evaluate alterna-
tives using a separate “confirmation the-
ory” are described by Wilkins [1988] and
Hall [1988]. Empirical methods would also
appear to be relevant; that is, multiple
examples could be used to choose among
alternative conjectures [Pazzani 19881.
Partial explanations appear to be most ef-
fective when the initial domain theory is
nearly complete, or when a teacher care-
fully selects and orders examples to intro-
duce one new rule at a time [VanLehn
19871. Inasmuch as these techniques add
new rules, but do not revise or retract old
ones, they implicitly assume the correct-
ness of the initial, incomplete theory.

A domain theory is considered “incom- Incomplete theories can be handled by
plete” if it fails to explain some examples approaches that combine both empirical
from the domain under study. According to and analytical learning techniques. Given

ACM Computing Surveys, Vol. 21, NO. 2, clune 1989

210 l Thomas Ellman

an initial domain theory, one could con-
struct a version space containing only con-
cept descriptions that are consistent with
the theory. As long as the initial theory is
incomplete, the space will contain more
than one concept description. The candi-
date elimination algorithm [Mitchell 19781
then could be used to process training ex-
amples and pare down the set of candidates
(see Section 2.2.2). Russell and Grosof have
shown how an incomplete theory contain-
ing “determinations” can be used to prune
an initial, unbiased version space [Russell
1988; Russell and Grosof 19871. Mahade-
van and Tadepalli [19881 have analyzed the
information complexity of learning from
such incomplete theories represented in the
form of determinations.

5.2.2 Incorrect Domain Theories

A variety of explanation-based methods
have been developed to deal with incorrect
domain theories. These methods can be
best understood by considering two pro-
cesses involved in revising an incorrect the-
ory that is found to commit an error. The
first step is “blame assignment,” that is,
identifying the parts of the theory that
caused the error. After identifying the
faulty portions of the theory, suitable
changes to these parts must be found.

Blame assignment is sometimes handled
with the technique of tracing dependency
links [Bylander and Weintraub 1988; Clan-
cey 1988; Doyle 1979; Pazzani 1988; Smith
et al. 19851. By starting at the erroneous
conclusion and tracing backward through
the explanation structure, it is possible to
identify pieces of domain knowledge that
might have caused the error. In most cases,
the flawed knowledge cannot be uniquely
identified, In order to ameliorate this dif-
ficulty, Smith’s system uses an enriched
representation that can describe “belief
types” and “error types,” among other
things [Smith et al. 19851. The system
propagates error types through the network
and can reason about the relation between
error types and belief types. As a result, the
search for faulty knowledge is more tightly
constrained than that in simpler methods
of tracing dependencies.

Blame can also be assigned by special
domain-dependent rules for identifying
faulty knowledge [Carbonell and Gil 1987;
Hunter 1988; Rajamoney 19881. Such rules
classify errors and associate possible causes
with each error type. Rajamoney’s system
uses special domain-dependent rules to
generate “high-level explanations” of errors
in the domain of chemical processes. For
example, a high-level explanation might
conclude that “some process has erroneous
effects” or “some process has erroneous
preconditions.” Each high-level explana-
tion makes an “abstract hypothesis” about
which piece of knowledge is faulty; that is,
the fault is characterized in a general way,
but not specifically identified.

Blame assignment takes a special form
when an incorrect domain theory can be
viewed as an “abstraction” or “approxima-
tion” of another, more accurate theory, as
in Doyle [19861 and Davis [1985]. These
systems explicitly represent the approxi-
mations or abstractions that were applied
to the accurate theory to generate the in-
correct one. Blame assignment then re-
duces to the problem of finding faulty
approximations or abstractions. This view-
point is especially relevant to the problem
of diagnosing faults in devices. Diagnosis is
sometimes viewed as a problem of revising
an ideal model of device behavior by relax-
ing abstractions underlying the ideal model
[Davis 19851.

After faulty parts of an incorrect theory
are identified, the theory must be revised.
In most cases, more than one revision will
be possible. This occurs if blame cannot be
uniquely assigned or if faults can be cured
in multiple ways. Several people have in-
vestigated “experimentation” as a method
of resolving such ambiguity [Carbonell and
Gil 1987; Rajamoney and DeJong 19881.
Rajamoney’s system can propose experi-
ments to discriminate between alternative
“abstract hypotheses.” It also designs ex-
periments that help select between various
remedies after a fault is identified.

5.2.3 Inconsistent Domain Theories

An inconsistent domain theory is one that
contains statements that lead to logically
contradictory predictions. Inconsistency

ACM Computing Surveys, Vol. 21, No. 2, June 1989

Explanation-Based Learning: Programs and Perspectives l 211

can lead to serious problems if proof by
contradiction is used in the system. The
problems of inconsistent and incorrect the-
ories are closely related. Both involve “in-
consistency” in a broader sense. In one
case, the inconsistency is internal to the
theory, and in the other case, the incon-
sistency exists between the theory and ob-
servations. For this reason many of the
methods for handling incorrect theories
should apply to inconsistent theories (e.g.,
assigning blame by tracing dependencies).

As an example of inconsistency, consider
the so-called “promiscuous theories.”
These theories have the property that they
can generate plausible explanations of
nearly anything that might be observed.
Considering the congressional voting do-
main as an example, one can imagine ex-
planations of why a liberal senator from
Connecticut would vote either “yes” or “no”
on a defense-spending bill. As a liberal, he
should vote “no.” Coming from a state with
a large defense industry, he should vote
“yes.” Lebowitz [1986a] has attacked the
problem of inconsistent, promiscuous the-
ories by combining EBL with empirical
learning techniques. Riesbeck [1983] has
also developed explanation-based methods
for dealing with promiscuous theories in
the domain of macroeconomics.

5.2.4 Intractable Domain Theories

A theory is considered “intractable” if it
cannot be used to make predictions or
explain observations without consuming
inordinate computational resources. For
example, consider the game of chess. In
order to fully explain a training example
from chess, an EBL system would exhaus-
tively search the game tree-a task that is
not possible in practice. An intractable the-
ory may be complete and correct in princi-
ple. Time and space limitations make it
behave as an incomplete theory since many
consequences of the theory cannot be in-
ferred in a reasonable length of time.

The intractable theory problem might be
solved by finding simplifying assumptions
or approximations that make the theory
more tractable. By introducing approxi-
mations into a correct but intractable the-
ory, one hopes to trade accuracy in return

for a gain in efficiency. A difficulty arises
when a theory can be approximated in mul-
tiple, inconsistent ways. In such cases, em-
pirical methods can be used to determine
which of several alternative approxima-
tions yields the most accurate predictions.

Quite a variety of approximation types
have been considered by investigators tak-
ing the approach outlined above. These in-
clude (1) making functions or expressions
invariant with respect to their arguments,
in algebraic domains [Bennett 1987; Ell-
man 1988; Keller 1987b; Mostow and Faw-
cett 19871; (2) assuming the absence of
counterplanning by adversaries in planning
domains and games [Chien 1987a; Tade-
palli 19861; (3) ignoring constraints limit-
ing possible causal interactions among
physical devices [Doyle 19861; (4) assuming
persistence of state variables after state
changes [Chien 1987b]; and (5) treating
random variables as independent or equi-
probable [Ellman 19881.

Two general architectures have been sug-
gested for systems that learn approxima-
tions to intractable theories. One involves
generating a search space in which each
point corresponds to a different approxi-
mate theory [Ellman 1988; Keller 1987b;
Mostow and Fawcett 19871. Explanations
of training examples are used to guide a
search through the approximate theory
space. Another approach uses a simple,
highly approximate theory until a failure
is generated. Analysis of the failure leads
to revising or retracting approximations
[Chien 1987a, 1988; Doyle 1986; Gupta
1987; Mostow and Bhatnagar 1987; Tade-
palli 1986; Zweben and Chase 19881.

5.3 Integrated Learning

A major outstanding problem in machine
learning involves the relation between the
analytical techniques of explanation-based
learning and empirical learning methods.
Several reasons for integrating EBL with
empirical methods have been discussed in
previous sections. Integrated methods were
shown to be relevant in the context of “EBL
and theory reformulation” for several rea-
sons. These include (1) empirically evalu-
ating the utility of schemata; (2) comparing
explanations of multiple examples to find

ACM Computing Surveys, Vol. 21, No. 2, June 1989

212 l Thomas Ellman

common parts; (3) handling noisy or erro-
neous examples; and (4) experimental goal
regression. In the context of “EBL and
theory revision,” integrated learning meth-
ods have been suggested to remedy each of
the types of imperfect theories.

Several investigators have built systems
that incorporate both explanation-based
and empirical methods in a single architec-
ture. These fall into three main groups:
(1) using explanations to process the results
of empirical learning [Lebowitz 1986a];
(2) using empirical methods to process the
results of an explanation phase [Carpineto
1988; Danyluk 1987; Dietterich and Flann
1988; Flann and Dietterich 1986; Salzberg
19831; and (3) using integrated combina-
tions of explanation-based and empirical
methods [Bergadano and Giordana 1988;
Danyluk 1988; Swaminathan 19881. Hirsh
[1988b] describes a framework for charac-
terizing these hybrid systems in terms of
a space of possible generalizations. The
relative importance of empirical and
explanation-based methods is discussed by
Lebowitz [1986b] and Pazzani et al. [19861.

In order to illuminate such hybrid sys-
tems, it helps to consider the ways in which
empirical and explanation-based methods
can enhance each other. First consider
how empirical methods can improve
explanation-based learning. When empiri-
cal methods are used before an explanation
phase, the process of building an explana-
tion can become computationally simpler.
This occurs in Lebowitz’s UNIMEM sys-
tern [Lebowitz 1986a], which uses empirical
methods to filter out erroneous and irrele-
vant features that would slow down the
explanation process. When empirical meth-
ods are used after an explanation phase,
they can filter out erroneous explanations
that are inconsistent with the empirical
data, [Dietterich and Flann 19881.

Now consider how explanations can en-
hance empirical learning methods. When
the explanation phase occurs before empir-
ical learning, the explanations can improve
the representation of training examples.
Explanations can be used to derive features
that are only implicit in the training data
[Buchanan and Mitchell 1978; Carpineto
1988; Danyluk 1987; Flann and Dietterich

1986; Mitchell 19831. They can also be used
to remove irrelevant features [Danyluk
1987; Salzberg 19831. When the explana-
tion phase occurs after an empirical phase,
it can act as a filter on the results of em-
pirical learning. By discarding empirical
generalizations that cannot be explained,
the results will be less influenced by coin-
cidental correlations in the data.

No one has yet formulated a principled
method of combining explanation-based
and empirical learning methods. Such prin-
ciples might well result from analyzing the
relation between EBL and the inductive
bias used by empirical techniques. As sug-
gested above, EBL may be equivalent to a
“bias toward explainability” represented in
terms of a declarative domain model (see
Section 1). This relation might be clarified
by trying to express traditional types of
inductive bias in a declarative manner.
Some initial efforts in this direction have
been made by Russell and Grosof [Russell
1988; Russell and Grosof 19871 and by
Dietterich [19861. If biased generalization
languages and algorithms are expressed in
a declarative representation, they might be
equated with the initial domain theory used
in explanation-based learning. The dis-
tinction between explanation-based and
empirical methods would be reduced to
an instance of the declarative/procedural
controversy.

6. SUMMARY

This paper has provided an overview of t.he
field of explanation-based learning. The
EBL field was placed in the context of other
knowledge-intensive approaches to ma-
chine learning. EBL was described as a
merging of four trends in machine learning
research, including generalization, chunk-
ing, operationalization, and analogy. Ex-
amples of EBL programs from each of these
areas were discussed. In this paper an
attempt to formally define EBL methods
and the problems they can handle was also
described. The formalization raises fun-
damental questions about the types of
learning that EBL can and cannot perform.
Directions for future research were also
discussed. Three main areas for future

ACM Computing Surveys, Vol. 21, No. 2, June 1989

Explanation-Based Learning: Programs and Perspectives l 213

work are “EBL and theory reformulation,”
“EBL and theory revision,” and “integrated
learning.”

7. GLOSSARY OF SELECTED TERMS

Analytic learning: Any learning method
that relies mainly on processing preexist-
ing background knowledge and requires
few, if any, externally provided examples
(contrasts with empirical learning)
[Mitchell 1982b] (Introduction).

Bias: Any criteria used by a concept
learning program to choose among alter-
native generalizations that are each
consistent with the observed training
instances [Mitchell 19801 (Section 1.1).

CBP: See Constraint back-propagation.
Chunking: In the context of explanation-

based learning, chunking is a process of
compiling a linear or tree-structured
sequence of operators into a single oper-
ator. The single operator has the same
effect as the entire original sequence [Ro-
senbloom and Newell 19861 (Sections 1.2
and 2.3).

Constraint back-propagation (CBP):
A procedure used in LEX-II for analyzing
goals and operator sequences. Given an
operator OP and a goal pattern P, CBP
finds a new pattern P’ such that the state
OP(S) matches P if and only if S matches
P’ [Utgoff 19861 (Section 2.2.2).

Contextual knowledge: Knowledge of
the context in which learning takes place.
Contextual knowledge has several com-
ponents [Keller 1987a], including (1) a
description of the performance element
to be improved by learning and (2) a
specification of performance objectives,
among other things (Section 2.4.2).

EBA: See Explanation-based analogy.
EBG: See Explanation-based generaliza-

tion.
EBL: See Explanation-based learning.
EGGS: An algorithm used in GENESIS

for generalizing explanations [Mooney
and Bennett 19861. Given an explanation
structure ES as input, EGGS finds the
most general instantiation of ES that
represents a valid explanation (Section
2.2.1).

Empirical learning: Any learning tech-
nique that relies mainly on examining
multiple, externally provided training
examples and requires little or no back-
ground knowledge of the domain under
study (contrasts with Analytic learning)
[Langley 1986; Mitchell 1982131 (Intro-
duction and Section 5.3).

Explanation-based analogy (EBA): A
method of analogical reasoning that in-
volves transferring explanations, deriva-
tions, or networks of causal relations
from analogs to target examples (Section
2.5).

Explanation-based generalization
(EBG): A formalism that attempts
to capture the elements of most
explanation-based learning programs.
EBG takes as input a domain theory, a
goal concept, an operationality criterion,
and a training example. It finds an op-
erational concept description that in-
cludes the example and is a sufficient
condition for the goal concept [Mitchell
et al. 19861 (Section 3.1).

Explanation-based learning (EBL): A
type of analytic learning, the definition
of which constitutes the subject of this
paper (Introduction). EBL is intended
to include explanation-based generaliza-
tion and explanation-based analogy, as
well as certain types of chunking and
operationalization (it may also include
explanation-based concept specialization
[DeJong and Mooney 19861).

Explanation structure: An “overgener-
alized” explanation that results from
replacing each instantiated rule in an
explanation with the associated general
rule (using unique variables for distinct
rule applications) [Mitchell et al. 1986;
Mooney and Bennett 19861 (Sections
2.2.1 and 3.1).

Generalization: The word generalization
can refer to either a concept or a process
of concept formation. In the first sense
of the word, a concept is a “generaliza-
tion” of an example if it includes the
example. In the second sense of the word,
“generalization” is a process that takes
one or more training examples as input
and produces a concept that includes
all the positive examples and excludes all

214 . Thomas Ellman

the negative examples. A discussion
of the term generalization is found
in Langley [1986] (Introduction and
Section 2.2).

Goal regression: A procedure for analyz-
ing sequences of STRIPS operators.
Given an operator sequence S and a goal
G, a goal regression finds a condition C
such that, for any state X, APPLY(S, X)
satisfies G if and only if X satisfies C
[Nilsson 1980; Waldinger 19771 (Sec-
tions 2.2.2, 3.1, and 5.1).

Justified analogy: A logically sound
procedure for reasoning by analogy.
Given some initial background knowl-
edge B, an analog example X, and a tar-
get example Y, find a feature F such that
F(X) is true, and infer that F(Y) is true.
The conclusion F(Y) must be a logical
consequence of F(X) and the background
knowledge B [Davies and Russell 19871
(Sections 1.2 and 2.5).

Justified generalization: A logically
sound procedure for generalizing from
examples. Given some initial background
knowledge B and a set of training exam-
ples T, justified generalization finds a
concept C that includes all the positive
examples and excludes all the negative
examples. The learned concept C must
be a logical consequence of the back-
ground knowledge B and the training
example set T [Russell 19861 (Sections
1.2 and 2.2).

Knowledge-level learning: A system is
said to perform knowledge-level learning
when there is a change over time of the
deductive closure of its knowledge. The
deductive closure of a set of axioms is
defined to include the axioms them-
selves, plus all facts derivable from
the axioms using an arbitrary number
of inference steps [Dietterich 19861
(Section 4).

MGR: See Modified goal regression.
Modified goal regression (MGR): A

procedure used in explanation-based
generalization (EBG) to analyze proof
trees [Mitchell et al. 19861. Given a goal
concept literal G and an explanation
(tree) structure T, MGR finds a set of
generalized antecedents A. Any instance
of A can be proven to satisfy the goal

concept G using the explanation (tree)
structure T (Section 3.1).

Operationalization: A process of trans-
lating a nonoperational expression into
an operational one. The initial nonoper-
ational expression may be a set of in-
structions (as in operationalizing advice
[Mostow 1983a, 1983c]) or a concept
(as in concept operationalization [Keller
19831). Concepts and instructions are
considered to be operational with respect
to an agent if they are expressed in terms
of actions and data available to the agent
[Mostow 1983a] (Sections 1.2 and 2.4).

Similarity-based learning: A synonym
for Empirical learning (see Empirical
learning). The term similarity-based
learning is defined by Lebowitz [1986a].
Issues related to the use of this term are
discussed by Langley [19861 (Introduc-
tion and Section 5.3).

Weak method: A problem-solving tech-
nique that can be used when specific
domain knowledge is not available. Ex-
amples include means-ends analysis and
hill climbing, among others [Newell
19691 (Section 2.3.1).

ACKNOWLEDGMENTS

Many thanks are due to Michael Lebowitz for numer-
ous useful discussions about the material in this paper.
This research was supported in part by the Defense
Advanced Research Projects Agency under Contract
N00039-84-C-0165.

REFERENCES

AHN, W., MOONEY, R. J., BREWER, W. F., AND
DEJONG, G. F. 1987. Schema acquisition
from one example: Psychological evidence for
explanation-based learning. Tech. Rep. UILU-
ENG-87-2231, Coordinated Science Laboratory,
Univ. of Illinois, Urbana-Champaign, Ill.

AMAREL, S. 1968. On representations of problems of
reasoning about actions. In Machine Intelligence
3, D. Michie, Ed. American Elsevier, New York,
pp. 131-171.

ANDERSON, J. R. 1983a. The Architecture of Cogni-
tion. Harvard Univ. Press, Cambridge, Mass.

ANDERSON, J. R. 1983b. Acquisition of proof skills
in geometry. In Machine Learning: An Artificial
Znt&ige&Approach, R. S. Michalski, J. G..Car-
bonell. and T. M. Mitchell, Eds. Morgan Kauf-
mann,’ Los Altos, Calif., pp.‘191-219. -

ACM Computing Surveys, Vol. 21, No. 2, June 1989

Explanation-Based Learning: Programs and Perspectives l 215

ANDERSON, J. R. 1986. Knowledge compilation: The
general learning mechanism. In Machine Learn-
ing: An Artificial Intelligence Approach, Volume
II, R. S. Michalski, J. G. Carbonell, and T. M.
Mitchell, Eds. Morgan Kaufmann, Los Altos,
Calif., pp. 289-310.

ANCLUIN, D., AND SMITH, C. H. 1983. Inductive
inference: Theory and methods. ACM Comput.
Suru. 15, 3 (Sept.), 237-269.

BALZER, R. GOLDMAN, N., AND WILE, D. 1976. On
the transformational implementation approach
to programming. In Proceedings of the 2nd Inter-
national Conference on Software Engineering.
IEEE, New York, pp. 337-343.

BANERJI, R. B., AND ERNST, G. W. 1972. Strategy
construction using homomorphisms between
games. Artif. Intell. 3, 223-249.

BENJAMIN, D. P. 1987. Learning strategies by rea-
soning about rules. In Proceedings of the 10th
International Joint Conference on Artificial Intel-
ligence. Morgan Kaufmann, Los Altos, Calif., pp.
256-259.

BENNETT, S. W. 1987. Approximation in mathemat-
ical domains. In Proceedings of the 20th Znterna-
tional Joint Conference on Artificial Intelligence.
Morgan Kaufmann, Los Altos, Calif., pp.
239-241.

expertise acquisition. In Machine Learning: An
Artificial Intelligence Approach, Volume II,k. S.
Michalski. J. G. Carbonell. and T. M. Mitchell.
Eds. Morgan Kaufmanni Los Altos, Calif.;
pp. 371-392.

CARBONELL, J. G., AND GIL, Y. 1987. Learning by
experimentation. In Proceedings of the 4th Inter-
national Workshop on Machine Learning. Morgan
Kaufmann, Los Altos, Calif., pp. 256-266.

CARPINETO, C. 1988. An approach based on inte-
grated learning to generating stories from stories.
In Proceedings of the 5th International Conference
on Machine Learning. Morgan Kaufmann, Los
Altos, Calif., pp. 298-304.

CHENG, P. W., AND CARBONELL, J. G. 1986. The
Fermi system: Inducing iterative macro-operators
from experience. In Proceedings of the 5th
National Conference on Artificial Intelligence.
Morgan Kaufmann, Los Altos, Calif., pp.
490-495.

CHIEN, S. A. 1987a. Extending explanation-based
learning: Failure-driven schema refinement.
Tech. Rep. UILU-ENG-87-2203, Coordinated
Science Laboratory, Univ. of Illinois, Urbana-
Champaign, Ill.

CHIEN, S. A. 1987b. Simplifications in temporal per-
sistence: An approach to the intractable domain

BERGADANO, F., AND GIORDANA, A. 1988. A knowl- theory problem in explanation-based learning.
edge intensive approach to concept induction. In Tech. Rep. UILU-ENG-87-2255, Coordinated
Proceedings of the 5th International Conference Science Laboratory, Univ. of Illinois, Urbana-
on Machine Learning. Morgan Kaufmann, Los Champaign, Ill.
Altos, Calif., pp. 305-317. CHIEN, S. A. 1988. A framework for explanation-

BERWICK, R. C. 1985. The Acquisition of Syntactic based refinement. In Proceedings of the AAAZ
Knowledge. MIT Press, Cambridge, Mass. Spring Symposium on Explanation-Based Learn-

BRAVERMAN, M. S., AND RUSSELL, S. J. 1988. ing. AAAI, Menlo Park, Calif., pp. 137-141.

Boundaries of operationality. In Proceedings of
the 5th International Conference on Machine

BUCHANAN, B. G., AND MITCHELL, T. M. 1978.

Learning. Morgan Kaufmann, Los Altos, Calif.,

Model-directed learning of production rules. In

pp. 221-234.

Pattern-Directed Inference Systems, D. A. Water-
man and F. Haves-Roth, Eds. Academic Press,
Orlando, Fla., pp. 297-312.

BYLANDER, T., AND WEINTRAUB, M. A. 1988. A
corrective learning procedure using different
explanatory types. In Proceedings of the AAAI
Spring Symposium on Explanation-Based Learn-
ing. AAAI, Menlo Park, Calif., pp. 27-30.

CARBONELL, J. G. 1983a. Derivational analogy and
its role in problem solving. In Proceedings of the
National Conference on Artificial Intelligence.
Morgan Kaufmann, Los Altos, Calif., pp. 64-69.

CARBONELL, J. G. 1983b. Learning by analogy: For-
mulating and generalizing plans from past expe-
rience. In Machine Learning: An Artificial
Intelligence Approach, R. S. Michalski, J. G. Car-
bonell, and T. M. Mitchell, Eds. Morgan Kauf-
mann, Los Altos, Calif., pp. 137-161.

CARBONELL, J. G. 1986. Derivational analogy: A
theory of reconstructive problem solving and

CLANCEY, W. J. 1988. Detecting and coping with
failure. In Proceedings of the AAAI Spring Sym-

COHEN, P. R., AND FEIGENBAUM, E. A. (Eds.) 1982.

posium on Explanation-Based Learning. AAAI,

The Handbook of Artificial Intelligence, Volume 3.
William Kaufmann, Inc., Los Altos, Calif., pp.

Menlo Park, Calif., pp. 22-26.

323-511.

COHEN, W. W. 1988. Generalizing number and
learning from multiple examples in explanation-
based learning. In Proceedings of the 5th Inter-
national Conference on Machine Learning. Mor-
gan Kaufmann, Los Altos, Calif., pp. 256-269.

CULLINGFORD, R. 1978. Script application: Com-
puter understanding of newspaper stories. Tech.
Rep. 116, Dept. of Computer Science, Yale Univ.,
New Haven, Conn.

DANYLUK, A. P. 1987. The use of explanations for
similaritv-based learning. In Proceedings of the
10th Int&zational Join;Conference on Artificial
Intelligence. Morgan Kaufmann, Los Altos, Calif.,
pp. 274-276.

DANYLUK, A. P. 1988. Integrated learning is a two
way street. In Proceedings of the AAAI Spring
Symposium on Explanation-Based Learning.
AAAI, Menlo Park, Calif., pp. 36-40.

ACM Computing Surveys, Vol. 21, No. 2, June 1989

216 . Thomas Ellman

DAVIES, T. R., AND RUSSELL, S. J. 1987. A logical
approach to reasoning by analogy. In Proceedings
of the 10th International Joint Conference on
Artificial Intelligence. Morgan Kaufmann, Los
Altos, Calif., pp. 264-270.

DAVIS, R. 1985. Diagnostic reasoning based on struc-
ture and behavior. In Qualitative Reasoning about
Physical Systems, D. G. Bobrow, Ed. MIT Press,
Cambridge, Mass., pp. 347-410. Also found in
Artif. Zntell. 24.

DAWSON, C., AND SIKLOSSY, L. 1977. The role of
preprocessing in problem solving systems. In Pro-
ceedings of the 5th International Joint Conference
on Artificial Intelligence. Morgan Kaufmann, Los
Altos, Calif., pp. 465-471.

DEJONG, G. F. 1981. Generalizations based on
explanations. In Proceedings of the 7th Znterna-
tional Joint Conference on Artificial Intelligence.
Morgan Kaufmann, Los Altos, Calif., pp. 67-69.

DEJONG, G. F. 1986. An approach to learning from
observation. In Machine Learning: An Artificial
Intelligence Approach, Volume ZZ, R. S. Michalski,
J. G. Carbonell, and T. M. Mitchell, Eds. Morgan
Kaufmann, Los Altos, Calif., pp. 571-590.

DEJONG, G. F., AND MOONEY, R. 1986. Explanation-
based learning: An alternative view. Mach. Learn.
1, 2, 145-176.

DIETTERICH, T. G. 1986. Learning at the knowledge
level. Mach. Learn. 1, 3, 287-315.

DIETTERICH, T. G., AND FLANN, N. S. 1988. An
inductive approach to the imperfect theory prob-
lem. In Proceedings of the AAAZ Spring Sympo-
sium on Explanation-Based Learning. AAAI,
Menlo Park, Calif., pp. 42-46.

DIETTERICH, T. G., AND MICHALSKI, R. S. 1981.
Inductive learning of structural descriptions:
Evaluation criteria and comparative review of
selected methods. Artif. Zntell. 16, 257-294.

DIJKSTRA, E. W. 1976. A Discipline of Programming.
Prentice-Hall, Englewood Cliffs, N.J.

DOYLE, J. 1979. A truth maintenance system. Artif.
Intell. 12, 231-272.

DOYLE, R. J. 1986. Constructing and refining causal
explanations for an inconsistent domain theory.
In Proceedings of the 5th National Conference
on Artificial Intelligence. Morgan Kaufmann, Los
Altos, Calif., pp. 538-544.

ELLMAN, T. 1985. Generalizing logic circuit designs
by analyzing proofs of correctness. In Proceedings
of the 9th International Joint Conference on
Artificial Intelligence. Morgan Kaufmann, Los
Altos, Calif., pp. 643-646.

ELLMAN, T. 1988. Approximate theory formation:
An explanation-based approach. In Proceedings
of the 7th National Conference on Artificial Zntel-
ligence. Morgan Kaufmann, Los Altos, Calif., pp.
571-574.

FIKES, R. E., HART, P. E., AND NILSSON, N. J.
1972. Learning and executing generalized robot
plans. Artif. Zntell. 3, 251-288.

FLANN, N. S., AND DIETTERICH, T. G. 1986.
Selecting appropriate representations for learn-
ing from examples. In Proceedings of the 5th
National Conference on Artificial Intelligence.
Morgan Kaufmann, Los Altos, Calif.

FORGY, C. L. 1981. OPS5 user’s manual. Tech. Rep.
CMU-CS-81-135, Dept. of Computer Science.
Carnegie-Mellon Univ., Pittsburgh, Pa.

GENTNER, D. 1983. Structure mapping: A theoret ical
framework for analogy. Cognitive Sci. 7, 155-170.

GIBSON, W. B. 1974. HoyleS Modern Encyclopedia
of Card Games. Doubleday, Garden City, N.Y.

GUPTA, A. 1987. Explanation-based failure recovery.
In Proceedings of the 6th National Conference on
Artificial Intelligence. Morgan Kaufmann, Los
Altos, Calif., pp. 606-610.

GUPTA, A. 1988. Significance of the explanation lan-
guage in EBL. In Proceedings of the AAAZ Spring
Symposium on Explanation-Based Learning.
AAAI, Menlo Park, Calif., pp. 73-77.

HALL, R. J. 1988. Learning by failing to explain:
Using partial explanations to learn in incomplete
or intractable domains. Mach. Learn. 3, 1,45-77.

HAMMOND, K. J. 1986. Learning to anticipate and
avoid planning problems through the explanation
of failures. In Proceedings of the 5th National
Conference on Artificial Intelligence. Morgan
Kaufmann, Los Altos, Calif., pp. 556-560.

HAMMOND, K. J. 1987. Learning and reusing expla-
nations. In Proceedings of the 4th International
Workshop on Machine Learning. Morgan Kauf-
mann, Los Altos, Calif., pp. 141-147.

HAYES-ROTH, F., AND MOSTOW, D. J. 1981.
Machine transformation of advice into a heuristic
search procedure. In Cognitive Skills and Their
Acquisition, J. R. Anderson, Ed. Erlbaum, Hills-
dale, N.J., pp. 231-253.

HILL, W. L. 1987. Machine learning for software
reuse. In Proceedings of the 10th International
Joint Conference on Artificial Intelligence. Mor-
gan Kaufmann, Los Altos, Calif., pp. 338-344.

HIRSH, H. 1987. Explanation-based generalization
in a logic programming environment. In Proceed-
ings of the 10th International Joint Conference
on Artificial Intelligence. Morgan Kaufmann, Los
Altos, Calif., pp. 221-227.

HIRSH, H. 1988a. Reasoning about operationality for
explanation-based learning. In Proceedings of the
5th International Conference on Machine Leorn-
ing. Morgan Kaufmann, Los Altos, Calif., pp.
214-220.

HIRSH, H. 1988b. Empirical techniques for repairing
imperfect theories. In Proceedings of the AAAZ
Spring Symposium on Explanation-Based Learn-
ing. AAAI, Menlo Park, Calif., pp. 57-61.

HUHNS, M. N., AND ACOSTA, R. D. 1987. Argo: An
analogical reasoning system for solving design
problems. Tech. Rep. AI/CAD-092-87, Microelec-
tronics and Computer Technology Corporation,
Austin, Tex.

ACM Computing Surveys, Vol. 21, No. 2, June 1989

Explanation-Based Learning: Programs and Perspectives l 217

HUNTER, L. 1988. Explanation-based discovery. In
Proceedings of the AAAI Spring Symposium on
Explanation-Based Learning. AAAI, Menlo Park,
Calif., pp. 2-7.

IBA, G. A. 1985. Learning by discovering macros in
puzzle solving. In Proceedings of the 9th Inter-
national Joint Conference on Artificial Intelli-
gence. Morgan Kaufmann, Los Altos, Calif., pp.
640-642.

KEDAR-CABELLI, S. T. 1985. Purpose-directed anal-
ogy. In Proceedings of the 7tk Annual Conference
of the Cognitive Science Society. Lawrence Carl-
baum, Hillsdale, N.J.

KEDAR-CABELLI, S. T. 1987. Formulating concepts
according to purpose. In Proceedings of the 6th
National Conference on Artificial Intelligence.
Morgan Kaufmann, Los Altos, Calif., pp.
477-481.

KEDAR-CABELLI, S. T., AND MCCARTY, L. T. 1987.
Explanation-based generalization as resolution
theorem proving. In Proceedings of the 4th Znter-
national Workshop on Machine Learning. Morgan
Kaufmann, Los Altos, Calif., pp. 383-389.

KELLER, R. M. 1983. Learning by re-expressing con-
cepts for efficient recognition. In Proceedings of
the National Conference on Artificial Intelligence.
Morgan Kaufmann, Los Altos, Calif., pp.
182-186.

KELLER, R. M. 1987a. The role of explicit contextual
knowledge in learning concepts to improve per-
formance. Ph.D. thesis and Tech. Rep. ML-
TR-7, Dept. of Computer Science, Rutgers Univ.,
New Brunswick, N.J.

KELLER, R. M. 1987b. Concept learning in context.
In Proceedings of the 4th International Workshop
on Machine Learning. Morgan Kaufmann, Los
Altos, Calif., pp. 91-102.

KELLER, R. M. 1988a. Operationality and generality
in explanation-based learning: Separate dimen-
sions or opposite endpoints? In Proceedings of
the AAAI Spring Symposium on Explanation-
Based Learning. AAAI, Menlo Park, Calif., pp.
153-157.

KELLER, R. M. 1988b. Defining operationality for
explanation-based learning. Artif. Intell. 35,
227-241.

KORF, R. E. 1985. Macro operators: A weak method
for learning. Artif. Intell. 26, 35-77.

LAIRD, J. E. 1984. Universal subgoaling. Ph.D. the-
sis, Dept. of Computer Science, Carnegie-Mellon
Univ., Pittsburgh, Pa.

LAIRD, J. E., AND NEWELL, A. 1983a. A universal
weak method: Summary of results. In Proceedings
of the 8th International Joint Conference on
Artificial Intelligence. Morgan Kaufmann, Los
Altos, Calif., pp. 771-773.

LAIRD, J. E., AND NEWELL, A. 1983b. A universal
weak method. Tech. Rep. CMU-CS-83-141, Dept.
of Computer Science, Carnegie-Mellon Univ.,
Pittsburgh, Pa.

LAIRD, J. E., NEWELL, A., AND ROSENBLOOM, P. S.
1987. SOAR: Architecture for general intelli-
gence. Artif. Intell. 33, l-64.

LAIRD, J. E., ROSENBLOOM, P. S., AND NEWELL, A.
1984. Towards chunking as a general learning
mechanism. In Proceedings of the National Con-
ference on Artificial Intelligence. Morgan Kauf-
mann, Los Altos, Calif., pp. 188-192.

LAIRD, J. E., ROSENBLOOM, P. S., AND NEWELL, A.
1986a. Chunking in SOAR: The anatomy of a
general learning mechanism. Mach. Learn. 1, 1,
11-46.

LAIRD, J. E., ROSENBLOOM, P. S., AND NEWELL, A.
1986b. Over-generalization during knowledge
compilation in SOAR. In Proceedings of the
Workshop on Knowledge Compilation. Depart-
ment of Computer Science, Oregon State Univer-
sity, Otter Crest, Or., Sept 24-26, pp. 46-57.

LANGLEY, P. 1986. The terminology of machine
learning. Mach. Learn. 1, 2, 141-144.

LEBOWITZ, M. 1983. Generalization from natural
language text. Cognitiue Sci. 7, 1, l-40.

LEBOWITZ, M. 1986a. Integrated learning: Control-
ling explanation. Cognitiue Sci. 10, 2, 219-240.

LEBOWITZ, M. 1986b. Not the path to perdition: The
utility of similarity-based learning. In Proceed-
ings of the 5th National Conference on Artificial
Intelligence. Morgan Kaufmann, Los Altos, Calif.,
pp. 533-537.

LENAT, D. B. 1982. AM: Discovery in mathematics
as heuristic search. In Knowledge-Based Systems
in Artificial Intelligence, R. Davis and D. B. Lenat,
Eds. McGraw-Hill, New York, pp. l-225.

LENAT, D. B., PRAKASH, M., AND SHEPHERD, M.
1986. CYC: Using common sense knowledge to
overcome brittleness and knowledge acquisition
bottlenecks. AI Mag. 6, 4, 65-85.

LEWIS, C. H. 1978. Production system models of
practice effects. Ph.D. thesis, Computer Science
Dept., Univ. of Michigan, Ann Arbor, Mich.

MAHADEVAN, S. 1985. Verification-based learning:
A generalization strategy for inferring problem-
decomposition methods. In Proceedings of the 9th
International Joint Conference on Artificial Intel-
ligence. Morgan Kaufmann, Los Altos, Calif., pp.
616-623.

MAHADEVAN, S., AND TADEPALLI, P. 1988. On the
tractability of learning from incomplete theories.
In Proceedings of the 5th International Conference
on Machine Learning. Morgan Kaufmann, Los
Altos, Calif., pp. 235-241.

MANO, M. M. 1976. Computer System Architecture.
Prentice-Hall, Englewood Cliffs, N.J.

MARKOVITCH, S., AND SCOTT, P. D. 1988. The role
of forgetting in learning. In Proceedings of the 5th
International Conference on Machine Learning.
Morgan Kaufmann, Los Altos, Calif., pp.
459-465.

MCCARTHY, J. 1968. Programs with common sense.
In Semantic Information Processing, M. Minsky,
Ed. MIT Press, Cambridge, Mass., pp. 403-418.

ACM Computing Surveys, Vol. 21, No. 2, June 1989

218 l Thomas Ellman

MICHALSKI, R. S. 1980. Pattern recognition as rule-
guided inductive inference. ZEEE Z’rans. Pattern
Anal. Mach. Zntell. 2, 4, 349-361.

MICHALSKI, R. S. 1983. A theory and methodology
of inductive learning. Artif. Zntell. 20, 111-161.

MICHALSKI, R. S., CARBONELL, J. G., AND MITCHELL,
T. M., Eds. 1983. Machine Learning: An Artifi-
cial Intelligence Approach. Morgan Kaufmann,
Los Altos, Calif.

MILLER, G. A. 1956. The magic number seven, plus
or minus two: Some limits on our capacity for
processing information. Psychol. Reu. 63,81-97.

MINTON, S. 1984. Constraint-based generalization:
Learning game playing plans from single exam-
ples. In Proceedings of the National Conference
on Artificial Intelligence. Morgan Kaufmann, Los
Altos, Calif., pp. 251-254.

MINTON, S. 1985. Selectively generalizing plans for
problem-solving. In Proceedings of the 9th Znter-
national Joint Conference on Artificial Zntelli-
gence. Morgan Kaufmann, Los Altos, Calif., pp.
596-599.

MINTON, S. 1988a. Learning effective search control
knowledge: An explanation-based approach.
Ph.D. thesis and Tech. Rep. CMU-CS-88-133,
Dept. of Computer Science, Carnegie-Mellon
Univ., Pittsburgh, Pa.

MINTON, S. 1988b. Quantitative results concerning
the utility of explanation-based learning. In Pro-
ceedings of the 7th National Conference on Arti-
ficial Intelligence. Morgan Kaufmann, Los Altos,
Calif., pp. 564-569.

MINTON, S., AND CARBONELL, J. G. 1987. Strategies
for learning search control rules: An explanation-
based approach. In Proceedings of the 10th Znter-
national Joint Conference on Artificial Zntelli-
gence. Morgan Kaufmann, Los Altos, Calif., pp.
228-235.

MITCHELL, T. M. 1978. Version spaces: An approach
to concept learning. Tech. Rep. HPP-79-2. Com-
puter Science Dept., Stanford Univ., Palo Alto,
Calif.

MITCHELL, T. M. 1980. The need for biases in learn-
ing generalizations. Tech. Rep. CBM-TR-117,
Dept. of Computer Science, Rutgers Univ., New
Brunswick, N.J.

MITCHELL, T. M. 1982a. Generalization as search.
Artif. Zntell. 18, 203-226.

MITCHELL, T. M. 1982b. Toward combining emnir-
ical and analytical methods for inferring heuris-
tics. Tech. Ren. LCSR-TR-27. Dent. of Comouter
Science, Rutgers Univ., New Brunswick, N.J.

MITCHELL, T. M. 1983. Learning and problem solv-
ing. In Proceedings of the 8th International Joint
Conference on Artificial Intelligence. Morgan
Kaufmann, Los Altos, Calif., pp. 1139-1151.

MITCHELL, T. M., KELLER, R. M., AND KEDAR-
CABELLI, S. T. 1986. Exulanation-based learn-
ing: A unifying view. Mach. Learn. I, 1, 47-80.

MITCHELL, T. M., MAHADEVAN, S., AND STEINBERG,
L. 1. 1985. LEAP: A learning apprentice system

for VLSI design. In Proceedings of the 9th Znter-
national Joint Conference on Artificial Zntelli-
gence. Morgan Kaufmann, Los Altos, Calif., pp.
573-580.

MITCHELL, T. M., UTGOFF, P. E., AND BANERJI, R.
1983a. Learning by experimentation: Acquiring
and refining problem-solving heuristics. In
Machine Learning: An Artificial Intelligence
Approach, R. S. Michalski, J. G. Carbonell, and
T. M. Mitchell, Eds. Morgan Kaufmann, Los
Altos, Calif., pp. 163-190.

MITCHELL, T. M., UTGOFF, P. E., NUDEL, B., AND
BANERJI, R. 1981. Learning problem solving heu-
ristics through practice. In Proceedings of the 7th
International Joint Conference on Artificial Zntel-
ligence. Morgan Kaufmann, Los Altos, Calif., pp.
127-134.

MITCHELL, T. M., et al. 198313. An intelligent aid for
circuit redesign. In Proceedings of the National
Conference on Artificial Intelligence. Morgan
Kaufmann, Los Altos, Calif., pp. 274-278.

MOONEY, R. J. 1985. Generalizing explanations of
narratives into schemata. M.S. thesis and Tech.
Rep. T-159, Coordinated Science Laboratory,
Univ. of Illinois, Urbana-Champaign, 111.

MOONEY, R. J. 1988. Generalizing the order of
operators in macro-operators. In Proceedings of
the 5th International Conference on Machine
Learning. Morgan Kaufmann. Los Altos. Calif..
pp. 270-283. _

MOONEY, R. J., AND BENNETT, S. W. 1986. A do-
main independent explanation-based generalizer.
In Proceedings of the 5th National Conference
on Artificial Intelligence. Morgan Kaufmann, Los
Altos, Calif., pp. 551-555.

MOONEY, R., AND DEJONG, G. F. 1985. Learning
schemata for natural language processing. In Pro-
ceedings of the 9th International Joint Conference
on Artificial Intelligence. Morgan Kaufmann, Los
Altos, Calif., pp. 681-687.

MOSTOW, D. J. 1981. Mechanical transformation of
task heuristics into operational procedures. Ph.D.
thesis and Tech. Rep. CMU-CS-81-113, Dept. of
Computer Science, Carnegie-Mellon Univ.,
Pittsburgh, Pa.

MOSTOW, D. J. 1983. Machine transformation
of advice into a heuristic search procedure. In
Machine Learning: An Artificial Intelligence
Approach, R. S. Michalski, J. G. Carbonell, and
T. M. Mitchell, Eds. Morgan Kaufmann, Los
Altos, Calif., 367-403.

MOSTOW, J. 1983a. Operationalizing advice: A
problem-solving model. In Proceedings of the Zn-
ternational Workshop on Machine Learning.
Dept. of Computer Science, Univ. Illinois,
Urbana, Ill., pp. 110-116.

MOSTOW, J. 1983b. A problem solver for making
advice operational. In Proceedings of the Nationtrl
Conference on Artificial Intelligence. Morgan
Kaufmann, Los Altos, Calif., pp. 279-283.

MOSTOW, J. 1986. Why are design derivations hard
to replay? In Machine Learning: A Guide to Cur-

ACM Computing Surveys, Vol. 21, No. 2, June 1989

Explanation-Based Learning: Programs and Perspectives l 219

rent Research, T. M. Mitchell, J. G. Carbonell,
and R. S. Michalski, Eds. Kluwer, Norwell, Mass.

MOSTOW, J. 1987a. Design by derivational analogy:
Issues in the automated replay of design plans.
Tech. Rep. ML-TR-22, Computer Science Dept.,
Rutgers Univ., New Brunswick, N.J.

MOSTOW, J. 1987b. Searching for operational con-
cept descriptions in BAR, MetaLEX and EBG.
In Proceedings of the 4th International Workshop
on Machine Learnitzg. Morgan Kaufmann, Los
Altos, Calif., pp. 376-382.

MOSTOW, J., AND BARLEY, M. 1987. Automated
reuse of design plans. Tech. Rep. ML-TR-14,
Computer Science Dept., Rutgers Univ., New
Brunswick, N.J.

MOSTOW, J., AND BHATNAGAR, N. 1987. Failsafe-
A floor planner that uses EBG to learn from its
failures. In Proceedings of the 10th International
Joint Conference on Artificial Intelligence. Mor-
gan Kaufmann, Los Altos, Calif., pp. 249-255.

MOSTOW, J., AND COHEN, D. 1985. Automatingpro-
gram speedup by deciding what to cache. In Pro-
ceedings of the 9th International Joint Conference
on Artificial Intelligence. Morgan Kaufmann, Los
Altos, Calif., pp. 165-172.

MOSTOW, J., AND FAWCETT, T. 1987. Approxi-
mating intractable theories: A problem space
model. Tech. Rep. ML-TR-16, Dept. of Computer
Science, Rutgers Univ., New Brunswick, N.J.

NATARAJAN, B. K., AND TADEPALLI, P. 1988. Two
new frameworks for learning. In Proceedings of
the 5th International Conference on Machine
Learning. Morgan Kaufmann, Los Altos, Calif.,
pp. 402-415.

NEVES, D. M., AND ANDERSON, J. R. 1981.
Knowledge compilation: Mechanisms for the au-
tomatization of cognitive skills. In Cognitive
Skills and Their Acquisition, J. R. Anderson, Ed.
Erlbaum, Hillsdale, N.J.

NEWELL, A. 1969. Heuristic programming: Ill-
structured problems. In Progress in Operations
Research, III, J. Aronofsky, Ed. Wiley, New York.

NEWELL, A. 1980. Reasoning, problem solving, and
decision processes: The problem space as a fun-
damental category. In Attention and Performance
VIII, R. Nickerson, Ed. Erlbaum, Hillsdale, N.J.

NILSSON, N. J. 1980. Principles of Artificial Intelli-
gence. Tioga Publ., Palo Alto, Calif.

O’RORKE, P. 1984. Generalization for explanation-
based schema acquisition. In Proceedings of the
National Conference on Artificial Intelligence.
Morgan Kaufmann, Los Altos, Calif., pp.
260-263.

O’RORKE, P. 1986. Recent progress on the mathe-
matician’s apprentice project. In Machine Learn-
ing: A Guide to Current Research, T. M. Mitchell,
J. G. Carbonell, and R. S. Michalski, Eds. Kluwer,
Nowell, Mass.

O’RORKE, P. 1987. LT revisited: Experimental re-
sults of applying explanation-based learning to
the logic of the Principia Mathematics. In Pro-

ceedings of the 4th International Workshop on
Machine Learning. Morgan Kaufmann, Los Al-
tos, Calif., pp. 148-159.

PARTSCH, H., AND STEINBR~GGEN, R. 1983. Program
transformation systems. ACM Comput. Suru. 15,
3 (Sept.).

PAZZANI, M. J. 1988. Integrated learning with incor-
rect and incomplete theories. In Proceedings of
the 5th International Conference on Machine
Learning. Morgan Kaufmann, Los Altos, Calif.,
pp. 291-297.

PAZZANI, M. J., DYER, M., AND FLOWERS, M.
1986. The role of prior causal theories in gen-
eralization. In Proceedings of the 5th National
Conference on Artificial Intelligence. Morgan
Kaufmann, Los Altos, Calif., pp. 545-550.

PORTER, B. W., AND KIBLER, D. F. 1985. A compar-
ison of analytic and experimental goal regression
for machine learning. In Proceedings of the 9th
International Joint Conference on Artificial Intel-
ligence. Morgan Kaufmann, Los Altos, Calif., pp.
555-559.

PORTER, B. W., AND KIBLER, D. F. 1986.
Experimental goal regression: A method for
learning problem solving heuristics. Mach. Learn.
1, 3, 249-285.

PRIEDITIS, A. E. 1986. Discovery of algorithms from
weak methods. In Proceedings of the International
Meeting on Advances in Learning (July), Les Arc,
France.

PRIEDITIS, A. E. 1988a. Environment-guided pro-
gram transformation. In Proceedings of the AAAI
Spring Symposium on Explanation-Bused Leurn-
ing. AAAI, Menlo Park, Calif., pp. 201-209.

PRIEDITIS, A. E., Ed. 198813. Analogicu. Morgan
Kaufmann, Los Altos, Calif.

PRIEDITIS, A. E., AND MOSTOW, J. 1987.
PROLEARN: Towards a Prolog interpreter that
learns. In Proceedings of the 6th National Confer-
ence on Artificial Intelligence. Morgan Kaufmann,
Los Altos, Calif., pp. 494-498.

RAJAMONEY, S. A. 1988. Experimentation-based
theory revision. In Proceedings of the AAAZ
Spring Symposium on Explanation-Based Leurn-
ing. AAAI, Menlo Park, Calif., pp. 7-110.

RAJAMONEY, S. A., AND DEJONG, G. F. 1987. The
classification, detection and handling of imper-
fect theory problems. In Proceedings of the 10th
Znternutionul Joint Conference on Artificial Zntel-
ligence. Morgan Kaufmann, Los Altos, Calif., pp.
205-207.

RAJAMONEY, S. A., AND DEJONG, G. F. 1988. Active
explanation reduction: An approach to the mul-
tiple explanations problem. In Proceedings of the
5th International Conference on Machine Leurn-
ing. Morgan Kaufmann, Los Altos, Calif., pp.
242-255.

RIESBECK, C. K. 1983. Knowledge reorganization
and reasoning style. Tech. Rep. YALEU/DCS/
RR#270, Dept. of Computer Science, Yale Univ.,
New Haven, Conn.

ACM Computing Surveys, Vol. 21, No. 2, June 1989

220 l Thomas Ellman

ROSENBLOOM, P. S. 1983. The chunking of goal
hierarchies: A model of practice and stimulus-
response compatibility. Ph.D. thesis and Tech.
Rep. CMU-TR-83-148, Dept. of Computer Sci-
ence, Carnegie-Mellon Univ., Pittsburgh, Pa.

ROSENBLOOM, P. S., AND LAIRD, J. E. 1986.
Mapping explanation-based generalization onto
SOAR. In Proceedings of the 5th National Con-
ference on Artificial Intelligence. Morgan Kauf-
mann, Los Altos, Calif., pp. 561-567.

ROSENBLOOM, P. S., AND NEWELL, A. 1986. The
chunking of goal hierarchies: A generalized model
of practice. In Machine Learning: An Artificial
Intelligence Approach, Volume II, R. S. Michalski,
J. G. Carbonell. and T. M. Mitchell. Eds. Mornan
Kaufmann, Los Altos, Calif., pp. 247-288. ”

ROY, S., AND MOSTOW, J. 1988. Parsing to learn
fine grained rules. In Proceedings of the 7th
National Conference on Artificial Intelligence.
Morgan Kaufmann, Los Altos, Calif., pp.
547-551.

RUSSELL, S. J. 1986. Preliminary steps toward the
automation of induction. In Proceedings of the
5th National Conference on Artificial Intelligence.
Morgan Kaufmann, Los Altos, Calif.: pp.
477-484.

RUSSELL, S. J. 1988. Tree-structured bias. In Pro-
ceedings of the 7th National Conference on Arti-
ficial Intelligence. Morgan Kaufmann, Los Altos,
Calif., pp. 641-645.

RUSSELL, S. J., AND GROSOF, B. N. 1987. A declar-
ative approach to bias in concept learning. In
Proceedings of the 6th National Conference on
Artificial Intelligence. Morgan Kaufmann, Los
Altos, Calif., pp. 505-510.

SALZBERG, S. 1983. Generating hypotheses to ex-
plain prediction failures. In Proceedings of the
National Conference on Artificial Intelligence.
Morgan Kaufmann, Los Altos, Calif., pp.
352-355.

SCHANK, R. C. 1982. Dynamic Memory: A Theory of
Reminding and Learning in Computers and Peo-
ple. Cambridge Univ. Press, Cambridge, U.K.

SCHANK, R. C. 1987. Explanation Patterns. Cam-
bridge Univ. Press, Cambridge, U.K.

SCHANK, R. C., AND ABELSON, R. P. 1977. Scripts,
Plans, Goals and Understanding: An Inquiry into
Human Knowledge Structures. Erlbaum, Hills-
dale, N.J.

SEGRE, A. M. 1986. Explanation-based manipulator
learning. In Machine Learning: A Guide to Cur-
rent Research, T. M. Mitchell, J. G. Carbonell,
and R. S. Michalski, Eds. Kluwer, Norwell, Mass.

SEGRE, A. M. 1987. On the operationality/generalitv
trade-off in explanation-based learning. In Pro-
ceedings of the 10th International Joint Confer-
ence on Artificial Intelligence. Morgan Kaufmann,
Los Altos, Calif., pp. 242-248.

SEGRE, A. M. 1988. Operationality and real world
plans. In Proceedings of the AAAI Spring Sym-
posium on Explanation-Based Learning. AAAI,
Menlo Park, Calif., pp. 158-163.

ACM Computing Surveys, Vol. 21, No. 2, June 1989

SEGRE, A. M., AND DEJONG, G. F. 1985.
Explanation-based manipulator learning: Acqui-
sition of planning ability through observation. In
Proceedings of the IEEE International Conference
on Robotics and Automation. IEEE, New York,
pp. 555-560.

SHAVLIK, J. W. 1985. Learning about momentum
conservation. In Proceedings of the 9th Interna-
tional Joint Conference on Artificial Intelligence.
Morgan Kaufmann, Los Altos, Calif., pp.
667-669.

SHAVLIK, J. W. 1986. Learning classical phvsics. In
Machine Learning: A Guide to Current Research,
T. M. Mitchell, J. G. Carbonell, and R. S. Mich-
alski, Eds. Kluwer, Norwell, Mass.

SHAVLIK, J. W., AND DEJONG, G. F. 1987a. An
explanation-based approach to generalizing num-
ber. In Proceedings of the 10th International Joint
Conference on Artificial Intelligence. Morgan
Kaufmann, Los Altos, Calif., pp. 236-238.

SHAVLIK, J. W., AND DEJONG, G. F. 198713.
BAGGER: An EBL system that extends and gen-
eralizes explanations. In Proceedings of the 6th
National Conference on Artificial Intelligence.
Morgan Kaufmann, Los Altos, Calif., pp.
516-520.

SHAVLIK, J. W., AND DEJONG, G. F. 1987c.
Acquiring special case schemata in explanation-
based learning. In Proceedings of the 9th Annual
Conference of the Cognitive Science Society (July),
Seattle, Wash., pp. 851-860.

SILVER, B. 1986a. Precondition analysis: Learning
control information. In Machine Learning: An
Artificial Intelligence Approach, R. S. Michalski,
J. G. Carbonell, and T. M. Mitchell, Eds. Morgan
Kaufmann, Los Altos, Calif., pp. 647-670.

SILVER, B. 1986b. Learning control information. In
Machine Learning: A Guide to Current Research,
T. M. Mitchell, J. G. Carbonell, and R. S. Mich-
alski, Eds. Kluwer, Norwell, Mass.

SILVER, B. 1988. A hybrid approach in an imperfect
domain. In Proceedings of the AAAI Spring Sym-
posium on Explanation-Based Learning. AAAI,
Menlo Park, Calif., pp. 52-56.

SLEEMAN, D., HIRSH, H., AND KIM, I. 1987.
Expanding an incomplete domain theory: Two
case studies. Tech. Rep. AUCSTR8704, Univ. of
Aberdeen, Aberdeen, Scotland.

SMITH, R. G., WINSTON, H. A., MITCHELL, T. M.,
AND BUCHANAN, B. G. 1985. Representation
and use of explicit justifications for knowledge
base refinement. In Proceedings of the 9th Inter-
national Joint Conference on Artificial Intelli-
gence. Morgan Kaufmann, Los Altos, Calif.,
673-680.

SOLOWAY, E. M. 1978. Learning = Interpretation +
Generalization: A case study in knowledge-
directed learning. Ph.D. thesis and Tech. Rep.
COINS-TR-78-13, Computer and Information
Science Dept., Univ. of Massachusetts, Amherst,
Mass.

STALLMAN, R. M., AND SUSSMAN, G. J. 1977. UTGOFF, P. E., AND MITCHELL, T. M. 1982.
Forward reasoning and dependency-directed Acquisition of appropriate bias for inductive con-
backtracking in a system for computer-aided cir- cept learning. In Proceedings of the National Con-
cuit analysis. Artif. Intell. 9, 135-196. ference on Artificial Intelligence. Morgan

STEINBERG, L. I., AND MITCHELL, T. M. 1985. The Kaufmann, Los Altos, Calif., pp. 414-417.

redesign system: A knowledge-based approach to Van Harmelen, F., and Bundy, A. 1988. Explanation-
VLSI CAD. IEEE Des. Test Comput. 2, 1,45-54. based generalization-partial evaluation. Artif.

STEPP, R. E., AND MICHALSKI, R. S. 1986.
Intell. 36, 401-412.

Conceptual clustering: Inventing goal oriented VANLEHN, K. 1987. Learning one subprocedure per

classifications of structured objects. In Machine
lesson. Artif. Intell. 31, l-40.

Learning: An Artificial Intelligence Approach, Vol- VERE, S. A. 1977. Induction of relational productions

ume II, R. S. Michalski, J. G. Carbonell, and T. in the presence of background information. In

M. Mitchell, Eds. Morgan Kaufmann, Los Altos, Proceedings of the 5th International Joint Confer-

Calif., pp. 471-498. ence on Artificial Intelligence. Morgan Kaufmann,

SUBRAMANIAN, D., AND SMITH, D. 1988. Knowledge
Los Altos, Calif., pp. 349-355.

level learning: An alternative view. In Proceedings
WALDINGER, R. 1977. Achieving several goals si-

of the AAAI Spring Symposium on Explanation-
multaneously. In Machine Intelligence 8, E. El-

Based Learning. AAAI, Menlo Park, Calif., pp.
cock and D. Michie, Eds. Ellis Horwood, London.

196-200. WILENSKY, R. 1978. Understanding goal-based sto-

SUSSMAN, G. J. 1975. A Computer Model of Skill
ries. Tech. Rep. 140, Dept. of Computer Science,

Acquisition. American Elsevier, New York.
Yale Univ., New Haven, Conn.

WILKINS, D. C. 1988. Knowledge base refinement
SWAMINATHAN, K. 1988. Integrated learning with using apprenticeship learning techniques. In Pro-

an incomplete and intractable domain theory: ceedings of the 7th National Conference on Arti-
The problem of epidemiological diagnosis. In ficial Intelligence. Morgan Kaufmann, Los Altos,
Proceedings of the AAAI Spring Symposium on Calif., pp. 646-651.
Explanation-Based Learning. AAAI, Menlo Park,
Calif.

WINSTON, P. H. 1972. Learning structural descrip-
tions from examples. In The Psychology of Com-

SWARTOUT, W. R. 1983. XPLAIN: A system for puter Vision, P. H. Winston, Ed. McGraw-Hill,
creating and explaining expert consulting pro- New York.
grams. Artif. Intell. 21, 285-325. WINSTON, P. H. 1982. Learning new principles from

TADEPALLI, P. V. 1986. Learning approximate plans precedents and exercises. Artif. Intell. 19,

in games. Tech. Rep. ML-TR-8, Computer Sci- 321-350.

ence Dept., Rutgers Univ., New Brunswick, N.J. WINSTON, P. H., BINFORD, T. O., KATZ, B., AND

TAMBE, M., AND NEWELL, A. 1988. Some chunks
LOWRY, M. 1983. Learning physical descrip-

are expensive. In Proceedings of the 5th Interna-
tions from functional definitions, examples, and

tional Conference on Machine Learning. Morgan
precedents. In Proceedings of the National Con-

Kaufmann, Los Altos, Calif., pp. 451-458.
ference on Artificial Intelligence. Morgan Kauf-
mann, Los Altos, Calif., pp. 433-439.

UTGOFF, P. E. 1986. Shift of bias for inductive con- ZWEBEN, M., AND CHASE, M. P. 1988. Improving
cept learning. In Machine Learning: An Artificial operationality with approximate heuristics. In
Intelligence Approach, Volume II, R. S. Michalski, Proceedings of the AAAI Spring Symposium on
J. G. Carbonell, and T. M. Mitchell, Eds. Morgan Explanation-Based Learning. AAAI, Menlo Park,
Kaufmann, Los Altos, Calif., pp. 107-148. Calif., pp. 100-106.

Explanation-Based Learning: Programs and Perspectives l 221

Received June 1987; final revision accepted October 1988.

ACM Computing Surveys, Vol. 21, No. 2, June 1989

