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ABSTRACT 
 
   Providing gameplay that is satisfying to a broad player 
audience is an appealing goal to game developers.  
Considering the wide range of player skill, emotional 
motivators, and tolerance for frustration, it is simply 
impossible for developers to deliver a game with an 
appropriate level of challenge and difficulty to satisfy all 
players using conventional techniques.  Auto-dynamic 
difficulty, however, is a technique for adjusting gameplay 
to better suit player needs and expectations that holds 
promise to overcome this problem. 
 
   This paper presents an experimental testbed to enable 
auto-dynamic difficulty adjustment in games.  Not only 
does this testbed environment provide facilities for 
conducting user studies to investigate the factors involved 
in auto-dynamic difficulty, but this testbed also provides 
support for developers to build new algorithms and 
technologies that use auto-dynamic difficulty adjustment to 
improve gameplay.  Initial experiences in using this auto-
dynamic difficulty testbed have been quite promising, and 
have demonstrated its suitability for the task at hand. 
  
INTRODUCTION 
 
   The goal of producing a game is to provide many things 
to players, including entertainment, challenge, and an 
experience of altered state.  Ultimately, however, a game 
must be fun. One major source of polarization among 
players on this issue is the level of difficulty in a game.  
There is a great degree of variation in players with respect 
to skill levels, reflex speeds, hand-eye coordination, 
tolerance for frustration, and motivations.  
 
   In (Csikszentmihalyi 1996), the concept of “flow” is used 
to refer to an individual’s “optimal experience”.  In a state 
of flow, the individual experiences intrinsic enjoyment 
from undertaking a task that feels almost effortless and 
natural, while also causing the individual to feel focussed 
and challenged.  One facet of flow is that there is a balance 
between the challenge presented by the task and the 
increasing skill of the individual, as discussed in (Falstein 
2004).  This closely resembles the concept of a zone of 

proximal development as discussed in (Woolfolk et al. 
2003), in which a balance between skill and challenge is 
needed in educational settings in order for learning to take 
place.  This zone of proximal development was found to be 
different for each student, and that tasks considered easy by 
some may be too difficult for others.  Assigning difficulty 
levels in games must address this problem so as to hit the 
“optimal experience” for as many players as possible, each 
of which may have very different zones of proximal 
development.  These issues are important because, as noted 
in (Miller 2004) and (Rouse 2004), a game must balance 
challenging and frustrating the player to provide the best 
overall level of satisfaction and enjoyment. 
 
   Several approaches have been used in the past to attempt 
to provide appropriate difficulty levels in a variety of 
different ways, such as having a single static difficulty level 
(chosen either by the designer or through play-testing of the 
target audience), having several different static difficulty 
levels to choose from at the start of the game, or providing 
cheat-codes.  However, each method has its drawbacks and 
limitations, and ultimately cannot provide an appropriate 
difficulty level to all players, particularly as their skills 
improve as they play and learn.  In the end, this can 
drastically limit the success of a game. 
 
   Auto-dynamic difficulty refers to the ability of a game to 
automatically adapt the difficulty level of gameplay to 
match the skills and tolerances of a player.  If done 
properly, this can provide a satisfying experience to a wider 
variety of players.   The concept of auto-dynamic difficulty 
is not new; it has been used in early arcade games such as 
Xevious to more recent titles such as Max Payne (Miller 
2004).  Typically, however, this technique is used in an ad 
hoc and unrepeatable fashion, applied to a particular game 
or gameplay element within a game.  Often, there is little 
regard or understanding for the various factors that 
influence player experience and how these factors interact 
with one another; as long as the current game is improved, 
that is all that matters. 
 
   In this paper, we discuss the development of an 
experimental testbed to facilitate the development of auto-
dynamic difficulty enabling technologies for games.  This 
testbed serves two key purposes.  The first is to support 
experimentation to better understand what shapes player 
experience and how gameplay and difficulty can be altered 
to produce the best experience possible.  The second is to 



 
 

serve as a vehicle for testing new algorithms and 
methodologies for supporting auto-dynamic difficulty 
developed as part of this work.  The goal is that this work 
will provide both a better understanding of how to create 
more enjoyable and satisfying gameplay experiences for a 
wider range of players, and that it will deliver enabling 
technologies to make use of this new understanding in a 
wide variety of games and gameplay scenarios. 
 
  The remainder of this paper is organized as follows.  We 
begin in the next section with a background discussion of 
auto-dynamic difficulty adjustment, describing what 
adjustments are possible, and the deciding factors in 
determining when and how such adjustments should be 
made.  We then present the architecture and implementation 
of our auto-dynamic difficulty experimental testbed 
environment.  We then provide a brief discussion of our 
experiences to date in using this experimental testbed.  
Finally, we conclude this paper with a summary and 
discussion of potential future work in this area. 
 
AUTO-DYNAMIC DIFFICULTY ADJUSTMENT 
 
   Before discussing our experimental testbed environment, 
it is first important to further explore the key issues behind 
auto-dynamic difficulty adjustment.  Of critical importance 
is to recognize what adjustments can and should be made, 
as well as when and how to make these adjustments.  Any 
adjustments must be made with care in such a way that they 
enhance the satisfaction and enjoyability of the game, 
without disrupting the game in a negative fashion.  (For 
example, changes that are too abrupt could disrupt the 
immersion of the player, causing a negative effect on the 
overall experience.) 
 
What to Adjust 
 
   Designed properly, a good portion of a game’s gameplay 
elements can have difficulty that is adjustable dynamically 
(Bailey 2005).  This includes the following: 
 
   Player character attributes.  The attributes of the player’s 
character can be tuned according to the desired level of 
difficulty in a game.  As examples, to make a game easier, 
the player could be made stronger, move faster, jump 
higher and farther, have more health, have better armour, 
attack with more damage, attack more frequently, and so 
on.  To make a game harder, these attributed can be 
adjusted in the opposite directions.   
 
   Non-player character attributes.   Likewise, the attributes 
of non-player characters controlled by the game’s artificial 
intelligence can change.  Not only does this include the 
attributes affecting the actions they take as above, but this 
also includes the decision making processes used.  To make 
a game less difficult, non-player characters can make 
poorer decisions, provided that these decisions do not make 
the characters appear artificially stupid.  As examples, path-
finding can be adjusted to make the player harder to find, 
aiming can be adjusted so that attacks are less successful, 
and so on.  Similarly, steps can be taken to make better 
decisions that make the game more difficult. 

   Game world and level attributes.  Various elements of 
how the game world and its levels are designed can affect 
game difficulty, including both the structure of the levels, 
and their contents (Bates 2004).  With advancements in 
game engine technologies, it is now possible to do this 
dynamically from within the game.  Adjusting level 
structure depends heavily on the gameplay occurring within 
the gameplay.  For example, in a platformer-genre game 
involving a lot of jumping puzzles, level geometry can be 
adjusted dynamically to make gaps smaller or larger to 
make the game easier or more difficult.  In a shooter game, 
as another example, the amount of cover can be adjusted 
appropriately to make the game easier or more difficult as 
well.  Level contents can also be tuned dynamically to 
adjust difficulty.  By adding or removing items such as 
ammunition, health upgrades, and so on, a game can be 
made easier or more difficult.  Varying the quantity and 
spawning locations of enemy non-player characters can also 
affect difficulty. 
 
   Puzzle and obstacle attributes.  As discussed in (Bates 
2004), there are several ways of adjusting the level of 
difficulty provided by puzzles and obstacles within a game.  
Fortunately, many of these techniques can be applied 
dynamically.  While it might not always be possible to 
dynamically adjust the attributes of the current puzzle or 
obstacle faced by the player (for consistency and other 
reasons), it might be possible to instead adjust the difficulty 
in puzzles faced in the future.  For example, if a player is 
finding one type of puzzle to be difficult to solve, in the 
future, the solution to that same type of puzzle can be 
placed closer to the puzzle itself, making it inherently easier 
to solve (Bates 2004). 
 
   As discussed in (Miller 2004), most earlier attempts at 
auto-dynamic difficulty focussed on a restricted subset of 
gameplay, typically in the adjustment of player or non-
player character attributes.  With this rationale applied 
throughout the game, as discussed above, it is possible to 
create a better overall player experience.  
 
When and How to Adjust 
 
   To determine when to adjust game difficulty and how to 
do so, data must be collected on players and their 
progression through the game.  To provide the best level of 
challenge, we must have a measure of the current skill level 
of the player, as well as their success and failure rates at the 
various elements of gameplay encountered to date in the 
game.  Since different players will tolerate and accept 
different levels of challenge at different times, we must also 
have a sense of the player’s general type, motivations, 
frustration tolerance, and emotional state. 
 
   Measuring a player’s level of skill in a game, as well as 
their success and failure rates, is inherently tied to the 
particular game or game genre.  Typically, however, there 
are multiple metrics that are applicable and can be 
measured from within the game itself.  For example, in a 
platformer game with a sequence of jumping puzzles, the 
number of attempts before success and time to completion 
could be useful metrics.  In a shooter game, the percentage 



 
 

of enemies eliminated per level, the amount of damage 
taken per level, and time to completion could be useful 
metrics.  One must give careful thought to the metrics 
selected, however, as they could indicate unanticipated 
styles of play or other player activity, and not the skill of 
the player.  For example, tracking the number of game 
saves and loads might be problematic.  One might think that 
a high frequency of saves and loads is indicative of an 
unskilled player, but this pattern of activity could also be 
encountered by a player playing the game during short 
coffee breaks (Bailey 2005).  Counting the number of 
player character deaths might also be misleading, as an 
unskilled player could get frustrated after a single death and 
quit the game with a relatively low death count only to 
return later.  So, while there might be multiple methods of 
tracking player progression through a game, care and 
thought must be put into the process. 
 
   Determining a player’s type and internal factors is more 
difficult to do within a game, but not impossible.  For 
example, (Sykes and Brown 2003) found that the pressure 
of button and key presses correlated strongly to frustration 
and difficulty levels within a game.  The work in (IP and 
Adams 2002) examined ways of quantitatively measuring 
levels of “core” and “casual” in a given player.  As 
discussed in (Bailey 2005), elements of player types 
identified in (Bartle 1996) and (Lazzaro 2004) could be 
identified by tracking player movement and progress 
through a game.  For example, the explorer type identified 
in (Bartle 1996) could be detected by observing players 
lingering in areas of the game world for extended periods of 
time without paying attention to game goals, while the 
achiever type could be detected by observing a linear and 
timely progression through game goals.  As pointed out in 
(Bailey 2005), however, there are ultimately some internal 
factors that are not easily measurable from within a game 
world, and we must rely upon external studies and 
experimentation to calibrate the game and assist in 
correlating observed player behaviour and emotion state.   
 
   Using measurements of player skill, as well as success 
and failure rates, it is not hard to determine when a player is 
encountering difficulty with a certain element of gameplay.  
While these measurements are important, we must be 
careful to also take into consideration player type and 
internal factors; otherwise, we again fall into a “one-size-
fits-all” mentality that does not produce appealing results to 
a broad audience.  It is also important to consider the 
impact of characteristics of the gameplay on the motivation 
of the player, including whether the necessity of the 
gameplay element, the rewards for success, the 
consequences of failure, and so on (Bailey 2005).   
 
   In the end, it is possible to develop rudimentary rules to 
guide when difficulty adjustments should be made and how, 
based on this information.  For example, if a player is 
encountering a challenging task, but is exhibiting 
characteristics of the achiever type, then difficulty should 
not be adjusted as this player type is more likely to enjoy 
the challenge than not (Bartle 1996).  However, to assist in 
the formulation and validation of these rules and decision 
models, experimentation is necessary.  A thorough 

investigation in this area is clearly warranted.  This reality, 
in part, motivated developing the experimental testbed 
discussed in this paper. 
 
AUTO-DYNAMIC DIFFICULTY EXPERIMENTAL 
TESTBED 
 
   To facilitate the study of auto-dynamic difficulty, our 
current work focuses on the construction of an experimental 
testbed that will enable experimentation with players and 
development of new technologies to better tune game 
difficulty automatically to meet their needs.  This testbed is 
depicted in Figure 1, and discussed in more detail in the 
sections below. 
 

 
 

Figure 1:  Auto-Dynamic Difficulty Experimental Testbed 
Architecture 

 
Game Engine Core 
 
   The game engine core is used to provide all of the 
fundamental technologies required to drive a game or 
gameplay scenario.  This includes graphics, audio, 
animation, artificial intelligence, networking, physics, and 
so on.  One could then layer new gameplay logic and 
content on top of this engine to have a complete game, 
without the burden of developing all of the underlying 
technologies.  This saves considerable development time in 
building the testbed, and also allows the use of 
professional-grade tools to produce a gameplay experience 
of very high quality.  
 
   At the core of our testbed is Epic’s Unreal engine (Epic 
Games 2004).  The Unreal engine is a modern, state-of-the-
art game engine that can be used to support a wide variety 
of game genres and gameplay elements.  It also supports 
rendering in both first and third person views, which makes 
it easier to support more varied gameplay.    The Unreal 
engine itself is written in C and C++, but provides a flexible 
object-oriented scripting language, UnrealScript, to make it 
easy to extend the engine and deliver new functionality.  
Since this engine is based on leading edge technologies and 
still in use commercially today, there are no concerns of 
confounding that could have arisen from using older, 



 
 

obsolete technologies.  (For example, in such a case, one 
would have to determine if a player had an unsatisfactory 
experience because of game difficulty or because the 
game’s graphics were not up to the standards set by modern 
games.)  In the end, the Unreal engine was a natural choice 
of foundation on which to build our testbed. 
 
Monitoring, Analysis, and Control 
 
   Monitoring, analysis, and control services are used in the 
testbed to support both auto-dynamic difficulty 
experimentation and software developed to implement new 
auto-dynamic difficulty algorithms and methodologies.  
These services are used by gameplay scenarios, and directly 
make use of the game engine core. 
 
   To conduct experimentation within a particular gameplay 
scenario, the experimental environment must monitor and 
collect the appropriate player and progression data, as 
discussed in the previous section.  The analysis service is 
used to provide support in the aggregation and correlation 
of data collected through monitoring.  The control service is 
used to manipulate the experiment in the gameplay 
scenario, including starting, suspending, resuming, and 
halting a particular experiment.  It is important to note that 
some aspects of monitoring, analysis, and control may need 
to be completed offline outside of the testbed software.  
(For example, augmenting recorded data with audio and 
video recordings, as well as surveys and interviews 
currently must be done offline.  In the future, it is hoped to 
add these elements to the testbed software as well for a 
more integrated solution.  Analyses of these elements 
would still likely require manual intervention, however.)   
 
   To support new auto-dynamic difficulty algorithms and 
methodologies, the monitoring service still collects player 
and progression data as before.  The analysis service in this 
case is now focussed more on analysing this data to 
formulate decisions on when and how to adjust game 
difficulty using rules and decision models formulated based 
on experience and experimentation conducted using the 
testbed.  The control service in this case still manipulates 
the gameplay scenario, but is focussed this time on the 
relevant attributes of the player character, non-player 
characters, the game world, or game puzzles and obstacles 
to adjust the game’s difficulty according to the decisions 
developed by the analysis service. 
 
   In our testbed, the monitoring, analysis, and control 
services are written in UnrealScript.  All three services are 
integrated into a single new Unreal game type derived from 
the base Unreal game type class.  This new game type 
provides instrumentation suitable for embedding in 
gameplay scenarios to enable monitoring, analysis, and 
control activities.  This facilitates the development of new 
gameplay scenarios and entire games using these auto-
dynamic difficulty services, as these new games would 
simply need to derive their own game type from this new 
type, instead of the base class. 
 
   At present, rudimentary monitoring, analysis, and control 
services are provided; more sophisticated facilities are 

currently under development.  Currently, the monitoring 
service can collect time to completion, success and failure 
rates, and other metrics, the analysis service can support 
simple correlations and decision rules, and the control 
service can control experiment operation, and tune certain 
player and non-player character attributes, as well as 
selected game world attributes.  
 
Gameplay Scenarios 
 
   Gameplay scenarios are used to contain playable elements 
of games and game content.  These can range in scale from 
mini-games depicting as few as one game activity for the 
player, all the way up to complete entire games. 
 
   In the current version of the testbed, we have 
implemented a variety of mini-game gameplay scenarios 
using UnrealScript and UnrealEd (Busby et al. 2005). 
These include two jumping mini-games (one with fatal 
consequences, the other with no failure consequences), a 
timed maze navigation mini-game, a turret mini-game 
requiring the player to navigate a short hallway lined with 
automated, indestructible gun turrets, and a fighting mini-
game requiring the player to make their way through a 
room full of heavily armed enemy non-player characters.  A 
screenshot from one of these scenarios is given below in 
Figure 2. Recognizing the limitations of experimenting with 
mini-games, as discussed in the next section, we are also 
building the Neomancer project (Katchabaw 2005) based 
on our new game type, to provide a complete 
action/adventure/role-playing game experience for 
experimentation and development activities. 

    

 
 

Figure 2: Screenshot from Turret Hallway Mini-Game 
 
EXPERIENCES AND DISCUSSION 
 
   Initial user studies and testing using the auto-dynamic 
difficulty experimental testbed were conducted with a small 
number of family members and co-workers of researchers 
at Western.  Results of this early experimentation have been 
rather positive, indicating that the testbed is suitable for the 
task at hand.   While the initial version of the testbed can 
only monitor a small number of player and progression 
metrics, analyse through simple correlations and a restricted 
rule set, and control through only simple operations, we 
have been able to gather interesting results from 
experimentation and implement several auto-dynamic 



 
 

difficulty algorithms.  It is clear, however, that more 
thorough experimentation using a large study group is 
necessary, both to better understand the interplay of the 
factors involved in auto-dynamic difficulty, and to develop 
better algorithms and technologies for games (Bailey 2005). 
 
   During initial experimentation using the mini-game game 
scenarios, it also became apparent that mini-games on their 
own might not be sufficient for investigating auto-dynamic 
difficulty fully.  Mini-games, by their very nature, do not 
have a broader story, context, or reward system, which was 
found to produce a different emotional state in the player 
than playing a full game.  Repetition of mini-games was 
also found to grow tedious, resulting in a negative 
impression of the mini-game independent of its challenge 
or difficulty.  Consequently, it is necessary to have a 
complete gaming experience to fully explore auto-dynamic 
difficulty.  Fortunately, through our development efforts in 
the Neomancer project (Katchabaw 2005), we have access 
to a commercial scale action/adventure/role-playing game 
that will fill this need nicely. 
 
   Game performance is a crucial factor to game players and 
game developers alike.  Consequently, it is critical to ensure 
that there be minimal overhead imposed by auto-dynamic 
difficulty on the game as it plays.  During initial 
experimentation, frame rate tests were conducted using the 
Unreal engine’s own frame rate monitors, with and without 
the use of auto-dynamic difficulty and the instrumentation 
required for monitoring and control.  This testing found that 
there was no measurable difference between frame rates 
delivered with and without auto-dynamic difficulty in 
place, and so performance was deemed acceptable. 
 
   The approach to auto-dynamic difficulty currently taken 
in this work is reactive.  In other words, once measurements 
indicate that a game is too easy or too difficult for the 
player, gameplay can be adjusted to produce a more 
favourable experience.  Unfortunately, a reactive approach 
means that a player must encounter such problems before 
any corrective actions are taken, and that the player could 
lose patience with the game before auto-dynamic difficulty 
has a chance to become active.  It was found during initial 
experimentation that some mini-game scenarios could be 
made so easy or so difficult that the player is turned off 
almost instantaneously, sharply reducing the benefits of 
reactive auto-dynamic difficulty in these extreme situations.  
Proactive auto-dynamic difficulty, on the other hand, 
attempts to adjust game difficulty before a player 
encounters the above problems through an analysis of non-
critical gameplay tasks.  Doing so, however, would likely 
require calibration through more user studies to develop an 
appropriate predictive model, and introduces other 
problems if predictions are inaccurate.  It would seem, 
however, that investigating proactive adjustments, perhaps 
in conjunction with reactive techniques, would be a 
worthwhile endeavour. 
 
CONCLUDING REMARKS 
 
   Delivering satisfying gameplay experiences to a variety 
of players is a challenging task.  To do so, gameplay 

difficulty must be tuned to suit player needs, as in auto-
dynamic difficulty.  Our current work is aimed at 
addressing this, by providing an experimental environment 
for studying this problem and assisting in the formulation of 
acceptable solutions.  Initial experience through using this 
auto-dynamic difficulty experimental testbed has been quite 
positive, showing much promise for the future. 
 
   In the future, there are many interesting avenues for 
continuing research to take.  We plan to refine the 
monitoring, analysis, and control capabilities of the testbed, 
to enable more thorough user studies.  Using this enhanced 
testbed, we intend to expand experimentation to include a 
larger, more diverse player population.  Based on the results 
of this experimentation, we will develop additional rules 
and decisions models for use in the testbed’s analysis 
service to better support a wider variety of auto-dynamic 
difficulty algorithms.  At the same time, we will continue 
work on the Neomancer project to provide a full length, 
feature rich gameplay scenario for studies with the testbed.  
Finally, we plan to continue investigating other open 
research issues in auto-dynamic difficulty adjustment, 
including reactive versus proactive techniques. 
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