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Abstract 

Simulated robotic soccer is a frequently used as a test method for 
contemporary artificial intelligence research. It provides a real-time 
environment with complex dynamics and sensor information that is both noisy 
and limited. Team coordination between the robots is essential for success.  

Genetic programming enables machines to learn skills and it is developed 
from the principle of survival of the fittest. A population of computer programs 
is generated and each program is tested against a fitness function. The best 
programs according to the fitness function are cloned, mutated, and recombined 
to create a new generation of programs. This process continues until the evolved 
programs satisfy a user defined criterion. 

In this study, genetic programming is used to teach software robots to play 
soccer. The robots quickly learn to chase and kick the ball towards the goal. 
With time, a number of players in each team develop defensive abilities and 
recognize that team coordination is necessary for further development. 

The fitness evaluation was extremely demanding and therefore, several 
compromises were made to limit the duration of the ‘evolution’. Each run was 
reduced to two weeks and this compromise consequently resulted in weaker 
robots. 

To develop better performing players, additional work should be carried out 
for the fitness evaluation, the set of terminals and functions should be extended, 
and more computational resources are necessary. 
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Chapter 1 

Introduction 

Genetic programming is a method to automatically generate programs and 
algorithms through simulated evolution. These programs are constructed from a 
pre-defined set of functions and terminals. A simulation starts by creating an 
initial population of random programs. Like biological evolution, the process 
continues for generations by letting the best “genes” from every generation 
survive. These genes (parts of programs) are mutated and crossed in every 
evolving step. Genetic programming has proven to be useful in a wide range of 
applications, including multi-agent systems. 

Multi-agent system is the sub field of artificial intelligence, which studies 
systems involving multiple agents and their coordination. An agent can be 
viewed as anything that is able to perceive information about the environment 
and perform actions upon it.  

RoboCup is an annual competition between soccer playing robots for the 
purposes of research and education. It is designed to be an environment for the 
development of agents and it is an uncertain and dynamically changing domain. 
One of the many leagues in RoboCup is the simulated league in which the real 
world is simulated by a very complex system. This relieves researches from 
handling with hardware related problems, as well as today’s limitations in 
robotics.  

This study was initiated by the University of Waterloo’s future plans to 
enter the RoboCup Simulation League. Therefore, the initial stage is focused on 
creating an environment for the development of simulated RoboCup players. 
The goal of this study, which was shaped during the initial stage, is to 
investigate how genetic programming can be used to teach robots to play soccer. 
A secondary goal is to explore their ability to incorporate team coordination.   

This thesis is written for a wide range of readers and the required 
background is equivalent to the education of an upper year engineering and/or 
computer science student. This thesis is organized as follows: 
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  Chapter 2 introduces the most essential background. It includes an 
introduction to RoboCup, multi-agent systems, genetic algorithms, 
genetic programming, and a survey of related work previously made in 
this domain.  

Chapter 3 describes the approach and implementation of the experiments. 

 Chapter 4 presents the results of the most important performed 
experiments. 

 Chapter 5 summarizes and discusses the results.  

 Chapter 6 presents suggestions for future work. 
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Chapter 2 

Background 

2.1 RoboCup 

RoboCup is a competition held between artificial intelligence researchers, 
which allow new ideas and developments to be tested against one another on an 
even basis. There are several separate leagues in the RoboCup competition - the 
robot leagues and the simulator league. Competitions in the robot leagues are 
played with real-world robots, moving a ball around a small soccer field. The 
simulation league allows software robots to compete within a computer 
simulated soccer environment. This relieves the researchers from handling robot 
problems such as object recognition, communications, hardware issues and 
today’s limitations of robotics. The ultimate goal of RoboCup soccer as Noda 
states is “by the mid-21st century, a team of autonomous humanoid robots shall 
beat the human World Cup champion team under the official regulations of 
FIFA1” [Noda et al., 1999]. This thesis deals only with the simulator league and 
all future references to RoboCup therefore refer to this simulated version. 

2.1.1 Simulated League 

A match is carried out in a client/server style with a server that provides a 
virtual field and simulates all movements of a ball and players. Each client (or 
player) in the simulation is its own process with communication between 
players limited to messages passed only through the server. Communication 
between the server and each client is done via UDP/IP sockets. A brief 
description of the RoboCup server follows while a full description can be found 
in [SS Manual, 2002]. 

 

 

 

                                                 
1 Fédération Internationale de Football Association (FIFA) defines the rules of soccer. 
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Command string Description 

(turn 90) This command will turn the player’s body 90 degrees 
relative to the current body direction. 

(kick 70 30) This command will kick the ball with a power of 70 
in a direction of 30 degrees relative to the current 
body direction (if the player is close enough to the 
ball).  

(score) This command requests the server to send score 
information. 

Table 1: Examples of player control commands. A full list of 
commands available to players can be found in [SS Manual, 2002, 
section 6.1]. 

 

Server message string Description 

(see 400 ((b) 15 
50)) 

The see message contains information about 
objects that can be seen from the player’s 
view. This message informs the player that 
at cycle 400, the ball is 15 meters away in a 
relative direction of 50 degrees. 

(hear 3000 referee 
half_time) 

The hear message returns the messages that 
can be heard through the field. This message 
informs the player that the referee 
announced half time at cycle 3000. 

(sense_body 500 
(view_mode high 
narrow) (stamina 
3000 2) ....)  

The sense_body message returns the states of 
the player as well as information to keep 
track of lost or delayed messages. 

Table 2: Examples of server messages. A full list of available server 
messages can be found in [SS Manual, 2002, section 6.1].  

The communication between players and the server is made with messages 
represented as strings. The messages sent by players inform the server of actions 
they wish to execute. The messages from the server inform players of the 
position of the ball, other players, lines, flags and goals which a player sees on 
the field. These soccer games are typically two halves each made up of 5 
minutes and a half-time break. After a game has begun the server sends updated 
percept information to each player. This occurs once every cycle or once every 
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one and a half cycles. However, players are expected to send actions to the 
server once every cycle. A cycle is typically 100 milliseconds. 

2.2 Multi-agent Systems 

What are agents? There is not a general accepted definition of an agent but 
an adaptation from [Russel and Norvig, 1995] is: 

Anything that can be viewed as perceiving its environment through sensors 
and acting upon that environment through effectors. 

Figure 1 illustrates agents in their environment. The agent is autonomous if 
it is capable of interacting independently with the environment and without 
interference by humans or other systems [Woolridge, 2002]. In most domains, 
agents do not have complete control over their environment and therefore, they 
cannot predict the outcome of an action. Each time an action is performed it 
could have a totally different effect on the environment. Also, an action may fail 
to have its supposed effect. Russell and Norvig suggest the following 
classification of an environment’s properties: 

• Accessible vs. inaccessible 

In an accessible environment agents can receive complete, accurate and 
up-to-date information about the environment’s state. Most 
environments of reasonable complexity are inaccessible. 

• Deterministic vs. non-deterministic 

If the environment is deterministic every action has one single 
guaranteed effect. A chess board would be a deterministic environment 
and the real world would be non-deterministic.  

• Episodic vs. non-episodic 

In an episodic environment, an agent’s experience is divided into 
episodes, where the quality of an action does not depend on previous 
episodes. 

• Static vs. dynamic 

A static environment is only changed by the agent’s actions, whereas a 
dynamic environment is affected by other processes beyond the agent’s 
control. 

• Discrete vs. continuous 
An environment is discrete if there are a limited number of clearly 
defined actions and precepts.  
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RoboCup’s environment is inaccessible, non-deterministic, non-episodic, 
dynamic and continuous. Therefore, it is categorized as the most complex class 
of environments.  

Multi-agent systems (MAS) focus on systems in which many autonomous 
agents interact with each other. The agents can share a common goal and be 
cooperative or their interactions can be selfish. 

 

Figure 1: General frameworks for a single-agent system and a multi-
agent system. Agents receive information about the environment 
through their sensors and perform actions on the environment. If other 
agents exist in a single-agent system, they are considered as a part of 
the environment. In multi-agent systems agents may interact directly as 
indicated by the arrows between the agents. 

2.3 Genetic Algorithms 

Genetic Algorithms were invented by John Holland and developed by his 
students and colleagues in the 1970s [Holland, 1975]. The method is inspired by 
the ‘survival of the fittest’ principle or Darwin’s theory of evolution. A solution 
is represented as a genome, which in the basic case, is a string of binary values, 
letters or numbers. The genetic algorithm creates a population of genomes. It 
then applies crossover and mutation operators to those in the population, to 
create the individuals in the next generation. Different criteria are used to select 
the best individuals for the operators. Each individual is assigned a value, which 
determines the fitness of an individual.  

The genetic algorithm is simple and its basics involve nothing more than 
merging and swapping strings. However, numerous modifications to the basic 
algorithm can be made and there are several parameters to tweak. But in most 
cases, modifications only result in minor improvements. Of more importance is 

Environment 

Agent 

sensor 
input 

action 
output 

Environment 

Agent Agent 

 Single-agent System                         Multi-agent System 
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the objective function that determines an individual’s fitness. A good objective 
function sets a value that is proportional to an individual’s real fitness. 

2.3.1 An example 

A genome should contain the solution it represents. The most common 
encoding is binary strings. The genomes would appear as follows: 

    1 1 0 0 1 0 1 1 1 0 1 0 1 0 1 1  

    1 0 1 0 0 0 1 1 0 1 0 0 1 1 0 1  

Each bit could possibly represent some characteristics in the solution or the 
whole string could represent a binary number. There are several ways of 
encoding and the choice is primarily arbitrary and depends on the problem.   

The most important parts of the algorithm are the crossover and mutation 
operators along with the objective function. The design of the two operators is 
problem specific but a simple crossover operator is illustrated here: 

  Genome 1:  1 1 0 0 1 0  1 1 1 0 1 0 1 0 1 1  

 Genome 2:  1 0 1 0 0 0  1 1 0 1 0 0 1 1 0 1  

 Offspring 1:  1 1 0 0 1 0  1 1 0 1 0 0 1 1 0 1  

 Offspring 2:  1 0 1 0 0 0  1 1 1 0 1 0 1 0 1 1  

The space illustrates the crossover point and is picked randomly. The 
crossover operator simply crosses two genomes to create two offspring and copy 
them into the next generation.  

To prevent the solutions from getting stuck at a local optimum, some 
genomes in each generation are normally mutated.  A mutation operator 
randomly changes some characteristics in a solution. In this example the 
mutation operator picks a few bits on random basis and inverts them: 

 Genome:  1 1 0 0 1 0 1 1 1 0 1 0 1 0 1 1  

 Mutated genome: 0 1 0 1 1 0 1 1 1 0 0 0 1 0 0 1  

2.4 Genetic Programming 

Genetic Programming is an extension of the genetic algorithm in which the 
genomes are computer programs. The idea of combining genetic algorithms and 
computer programs originated in the 1970s but it was John Koza [1992] who 
successfully applied genetic algorithms to the programming language LISP. 
Koza has showed in his books that this method can be applied to a wide range of 
problems [Koza, 1992, 1994 and 1999]. Examples of solutions to these 
problems include the automated synthesis of analog electrical circuits, the 
automatic discovery of detectors for letter recognition, the obstacle-avoiding 
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robot, the minesweeper problem and multi-agent programming. Even though 
genetic programming seems to be a general method, there are types of problems 
for which it has not yet demonstrated success. 

2.4.1 Introduction 

Genetic programming is a method that gives computers the capability to 
automatically learn problem-solving abilities without explicitly being 
programmed. It uses the genetic algorithm to evolve programs. The evolved 
programs are made up of functions and terminals, which are combined into a 
tree-like hierarchal structure. Functions form the internal nodes and terminals 
form the leaf nodes. When a program is executed, the tree is traversed by 
evaluating the root node first, which in turn evaluates its arguments and so forth. 
This continues on until the leaf nodes are traversed.  

Genomes are evolved in every generation. Between generations, each 
genome is assigned a fitness value, which determines its probability to become a 
part of following generations. The fitness value should reflect the performance 
of a genome. Therefore, the best performing programs will be more likely 
represented in following generations. This is the fundamental concept 
underlying genetic algorithms and is an imitation of Darwin’s theories on 
biological evolution. Figure 2 illustrates the flow sequence of the genetic 
algorithm. 

2.4.2 Preparatory Steps 

Before genetic programming can be applied to a problem a few preparatory 
steps must be taken. These steps include: 

• Defining the set of terminals and functions. 

• Determining the fitness measure. 

• Specifying control parameters for the run. 

• Defining the termination criterion. 

Terminals and Functions 

The terminals correspond to the inputs of a program. These inputs can be 
constants, random values, variables, instructions, etc. The functions may be 
logical expressions, mathematical functions, operations or problem specific 
functions and operators.  

A genome or program is made up of terminals and functions that express a 
trial solution. These two sets must be defined so that a program is capable of 
expressing the solution. Successfully designing the sets of functions and 
terminals may not be trivial. 
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Figure 2: The flow sequence of the genetic algorithm. The flowchart 
illustrates the standard implementation of the genetic algorithm. An 
equivalent illustration for genetic programming would be identical as 
only the design of the genomes and operators differ. Gen refers to the 
current generation number M is the population size and i is the current 
genome index in the generation. The genetic operators are selected with 
the different probabilities PR, PC and PM, whose sum is one.  
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Fitness Assignment 

The fitness assignment is what drives the population towards the solution. 
Its purpose is to reward genomes depending on how close they are to the 
solution. An optimal solution should receive a high reward and reasonably good 
solutions should also be rewarded. 

A genome’s fitness value is based on how well it performs a certain task. 
This value can be based on the error in relation to a known optimal solution or a 
desired goal. The value may also be acquired by letting the genomes in a 
population compete against each other. This is often referred to as a competitive 
fitness assignment. 

An error driven fitness measurement works fine for problems with a known 
desired solution. This is often the case for simple problems. However, in more 
complex domains, the desired goal is often too weakly defined for an error 
driven measurement. A more common alternative is that a measurement for 
comparing genomes against each other is available. Such a measurement will 
assign a genome’s fitness in comparison to the rest of the population. One 
strategy for the use of a competitive fitness assignment is to hold a tournament 
where every genome plays against all other genomes. This strategy requires 

2
)1( −MM  fitness evaluations for a population of size M, which in most cases are 

too expensive. Several alternative strategies have been investigated to overcome 
this problem.  

Angeline and Pollack examined a strategy that they called ‘tournament 
fitness assignment’ on the game of Tic Tac Toe [Angeline and Pollack, 1993]. 
Genomes in a population are paired up randomly to make a match and the 
winner will advance to the next round. If a match ends in a draw, one of the two 
genomes is selected at random to continue to the next round. This persists until 
there is only one winner. The genomes are then ranked based on the round they 
were eliminated in the tournament. This method has an advantage because it 
only requires M-1 fitness evaluations. Angeline and Pollack compared their 
method with other strategies and found that ‘tournament fitness assignment’ was 
significantly better for the game of Tic Tac Toe. 

Craig Reynolds explores another tournament design, where each genome 
plays a small number of fixed matches [Reynolds, 1994]. He applied this 
strategy to the game of Tag and each genome in the population played seven 
games against different genomes. The fitness was then set to the average of the 
seven values. If each genome played N other genomes, the number of fitness 
evaluations is

2
MN . 

Control Parameters 

There are several parameters that control a run. The primary parameter is 
the population size, but there are a number of quantitative and qualitative 
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control parameters that must be specified. Koza [1995] described 19 secondary 
parameters. These include probabilities for selecting the different genetic 
operators during a run (shown in Figure 2) as well as the initial and the 
maximum permitted program size. 

Termination Criterion 

The usual termination criterion to stop the run is when the best solution 
passes a fitness test. The maximum number of generations to be run is normally 
specified along with the fitness test. 

2.4.3 Execution Steps 

When the preparatory steps are completed the run may begin. The 
execution steps define the actual run and are illustrated in Figure 2. The basic 
algorithm can be summarized in three steps: 

•  Randomly create an initial population. 

•  Iteratively execute the following sub-step until the termination criterion 
is satisfied. 

  • Assign each genome a fitness value. 

• Create the next generation by repeatedly selecting the following 
genetic   operators based on the operator’s probability. 

• Reproduction 

• Crossover 

• Mutation 

• The run is stopped and a solution may be presented.  

2.4.4 Genetic Operators 

There are mainly three operators as previously mentioned.  

Reproduction Operator 

A genome is selected based on its fitness and copied into the next 
generation. 

Crossover Operator 

Crossover operates on two parental genomes that are selected based on 
fitness. Swapping sub-trees between the parental genomes creates two offspring. 
The operator is demonstrated in Figure 3. 
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Mutation Operator 

A genome is selected based on its fitness. A copy of the selected genome is 
mutated and inserted into the next generation. Koza tried to claim in his two first 
books [1992 and 1994] that genetic programming does not perform a random 
search, thus mutation is not necessary. A wide range of problems is solved 
without the use of mutation. However, the use of mutation in genetic 
programming is increasing and is used particularly for small population sizes. 
There are several ways of mutating a genome. The method used in this study is 
called sub-tree mutation and is demonstrated in Figure 4. 

2.4.5 Premature Convergence 

Premature convergence occurs when the fitness of a population converges 
to a sub-optimal solution. One indicator that a population converges is a 
decreasing diversity in a population. This is a common problem in genetic 
programming but according to Koza, it should be viewed as a part of the nature 
of genetic algorithms.  

Koza believes that the best way to prevent premature convergence is to 
restart the whole run when it occurs. This may be optimal for problems with a 
cheap computational fitness evaluation but not for problems with complex 
fitness measures such as RoboCup. For example, in the RoboCup domain a run 
is computationally very expensive and a re-run might therefore not be the best 
solution. Alternative methods are to increase the population size or the mutation 
rate thereby improving the diversity of a population. 

2.5 Related Work 

Several attempts to apply genetic programming to the RoboCup domain 
have been made since the first international RoboCup competition, 1997.  

Luke et al. [1997] developed a few RoboCup teams with the use of genetic 
programming. They entered the first international RoboCup competition with 
two of these teams and qualified to the third round. One team was 
‘homogenous’ and the other was ‘pseudo-homogenous’. The homogenous team 
consisted of players with identical programs and the other team was made up of 
squads. Each squad was composed of three to four identical programs. A 
program consisted two sub-programs, a kick-tree and a move-tree. The kick-tree 
was executed when the ball was kickable whereas move-tree was executed 
otherwise.  

 

 



CHAPTER 2. BACKGROUND 

 13

 
Figure 3a:  Crossover operator - two parental programs. Crossover 
points are selected randomly over all nodes and are highlighted in the 
figure. 

 
Figure 3b:  Crossover operator - two sub-trees and two remainders. 
The sub-trees are selected with the crossover points as root nodes.  

 
Figure 3c: Crossover operator - two offspring. The sub-trees are 
swapped and inserted back into the remainders.  
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Figure 4a: Sub-tree mutation - initial program. A mutation point is 
selected randomly among all nodes (highlighted in the figure). 

 
Figure 4b: Sub-tree mutation. The sub-tree with the mutation point as 
root node is deleted and a new random tree is created. The random tree 
is then inserted into the tree as showed in the figure. 

 
Figure 4c: Sub-tree mutation - mutated tree.  
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Luke’s players learned to run after the ball and kick it towards the 
opponent’s goal. They also learned some basic defensive abilities. It was the less 
complex homogenous team that performed the best. However, the researchers 
believed that the pseudo-homogenous team would outperform the homogenous 
team if it was given additional time to ‘practice’. 

The fitness function was only based on the number of goals scored by the 
team. To prevent premature convergence on the relatively small population size 
(128 genomes), a high mutation rate of 30 % was used.   

Andre and Teller [1999] explored a fitness measurement, which was 
founded on human coaching principles in soccer. They developed a fitness 
function based on the observed hierarchal behaviour of human soccer players. 
This fitness function rewarded players by taking into consideration their 
position, distance to ball, number of goals scored and number of kicks.  

Gustafson and Hsu [2001] explored an alternative to the basic genetic 
programming method, which applied layered learning techniques. In layered 
learning, several runs are performed in a sequence. Consequently, the initial 
population for one run is the final population from the previous run. This design 
facilitates the use of different control parameters and fitness functions for each 
run.  

This method was applied to keep-away soccer, which is a sub-problem in 
the RoboCup domain and required multi-agent cooperation. The presented 
results showed that layered learning in genetic programming outperformed the 
standard method. 

Ciesielski, Mawhinney and Wilson [2003] presented three different 
approaches to create RoboCup players using genetic programming. In the first 
experiment, the only actions available to the programs were those provided by 
the soccer server. The second experiment employed higher-level actions such as 
‘kicking the ball towards the goal’ or ‘passing to the closest team-mate’. These 
two experiments used a tournament fitness assignment [Angeline and Pollack, 
1993] while the third experiment was a slight modification of the first.  

The teams created by the first and third approaches performed poorly. The 
players from the second experiment were able to follow the ball and kick it 
around. Ciesielski et al. concluded that the use of genetic programming enabled 
teams to perform well. However, a significant amount of work is still needed for 
the development of higher-level functions and the fitness measure. 

Two previous students, Niklas Persson [2001] and Christian Rahm [2001], 
did their master’s graduation projects at the Lund University in the RoboCup 
domain.  

Persson implemented a RoboCup team and explored the design of decision 
trees for different player roles (attacker, midfielder, and defender). He 
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concluded that the design of the players’ low-level behaviour is essential for 
success. 

Rahm explored the use of neural networks to improve RoboCup players’ 
kicking behaviour. The completed experiments demonstrated that his learning 
approach was not successful for this problem. Rahm also discussed the problem 
of synchronisation between the players and the soccer server. 
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Chapter 3 

Implementation 

3.1 Agent Architecture 

A RoboCup agent receives a large amount of unformatted data from the 
soccer server every cycle. The agent must first convert and interpret the server 
messages into a suitable data representation that fits its world model. In this 
project, the RoboCup Client Parser [RCC Manual, 2003] and the RoboSoc 
framework [RS Manual, 2002] are used to parse and update the agent’s world 
model. The RoboCup Client Parser handles the interactions with the Soccer 
Server and parses the server messages to C++ objects. The RoboSoc framework 
processes these objects and updates the world model. Strategies define how the 
world model is updated based on new information and past world models. The 
information from the world model is extracted by Views in the RoboSoc 
framework. The Views present the information in an accessible way to the 
decision-making procedures. An overview of the architecture is presented in 
Figure 5.  

The controller (Figure 5) directs the decision-making. Depending on the 
current state of the game and the agent, it can either use the evolved algorithm 
or a pre-defined behaviour to decide an action. Predicates are used by the 
evolved algorithm to test the current state of the world.  

The evolved algorithm is executed by the controller when play_on [SS 
Manual 2002, section 4.7] is the play mode. The decision making for other play 
modes is pre-defined in the controller. The standard behaviour for kick offs, 
kick ins, free kicks and corner kicks is that the player closest to the ball goes 
towards it and passes it to a free team-mate. If no team-mate is free, the player 
passes the closest team-mate.  

If the agent is a goalkeeper, the evolved algorithm does not affect its 
behaviour. 
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Figure 5: The agent’s architecture. Coloured boxes indicate where 
modifications were made to the RoboSoc framework [RS Manual, 
2002, page 6].  

3.2 Genetic Representation 

3.2.1 Implementation 

An evolved algorithm is constructed as a decision tree with predicates as 
terminals and actions as functions. A list of all predicates and actions is 
presented in Appendix A. The algorithm is as follows: 

 

Soccer Server 

The RoboCup Client Parser 

Interface 

World Model 

Strategies Views 

Predicates

Actions 

Evolved Algorithm 

 RoboSoc Framework (with modifications) 

Controller
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If the ball’s position is unknown 
  Turn to look for ball 
 Else if the player can kick the ball 
  If the player has a good chance to score 
   Shoot to score 
  Else 
   Call the player’s Kick Tree 
 Else if a team-mate passes the ball to the player 
  Intercept ball 
 Else 
  Call the player’s Move Tree 

The only parts of the algorithm that actually are evolved through genetic 
programming are the Move Tree and the Kick Tree. These trees will output an 
action each time they are executed. The move tree is executed when the position 
of the ball is known but the ball is too far away for a kick. The other tree is only 
executed if the ball is kickable.  

The evolved decision trees are built of nodes and each node is either a 
predicate or an action as presented in Figure 6. A predicate tests if the world is 
in a certain state and returns either true or false. An action sends a command to 
the soccer server.  

The population consists of several individuals and each individual has one 
kick tree and one move tree. The initial trees are created randomly under a 
number of restrains. For example, the initial height is pre-defined to an interval.  

If a genetic operator is applied to an individual, the same kind of operator is 
applied to both its trees. A crossover is not allowed between a move tree and a 
kick tree. For example, if a crossover operator is applied to two individuals, the 
two move trees and the two kick trees are crossed separately. If the crossover 
results in a larger tree than maximally permitted tree size, the sub-tree added by 
the operator is shrunk to one node. This one node is randomly picked among the 
sub-tree’s leaf nodes.  

The mutation operator will first pick a random node in the decision tree. All 
nodes have an equal probability of being picked. The sub-tree with the picked 
node as a root node is deleted and replaced by a new tree. This new tree is 
constructed in the same way as the initial individuals. An upper limit for the 
tree’s size is established so that the whole tree will not exceed the maximum 
size allowed. The reproduction operator merely copies an individual to the next 
generation without restrictions. 
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Figure 6: The structure of a decision tree. A leaf node is always an 
action and all other nodes are predicates. 

3.2.2 Motivation 

The approach utilized in the evolution of the two different trees (a move 
tree and a kick tree) has previously been tested by Luke et al. [1997]. Another 
obvious approach is the use of only one tree and allowing the agent to learn 
when it can and cannot kick the ball. With the two trees approach, a player will 
always try to kick the ball whenever it has the opportunity. This may not be the 
best alternative for all situations. For example, some situations may be enhanced 
if the agent turned around to look for open team-mates before kicking the ball. 
However, this would result in a more complex problem because the agent needs 
to learn when the ball is kickable. The RoboCup environment is already very 
complex and therefore, it may be beneficial to limit the search space of 
algorithms. The second approach has been applied by David Andre and Astro 
Teller [1999] and by Vic Ciesielski, Dylan Mawhinney, and Peter Wilson 
[2003]. My motivation for using the first approach is to limit the search space 
without drastically weakening the quality of possible solutions. 

Those players that believe they have a good chance to score, will attempt to 
score. This behaviour overrides the evolved algorithm only if a player has an 
obvious chance of scoring. An expected result is that the agents will concentrate 
more on team coordination and positioning than on kicking the ball towards the 
goal. 

The number of possible predicates limits the agents’ input. The design of 
the set of predicates is not obvious. If a small set is used, the implementation of 
each predicate will be important and a gap between the predicates and desired 
solutions must not be present. A large set would minimize this problem even 
though it is still important that an algorithm is capable of expressing the desired 
solution. However, a large set results in a large search space.  
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3.3 Fitness 

Each player is assigned a value based on its performance during a game. If 
a player plays several games the value is the average of all assigned values. The 
performance is calculated as weighted sum of the assessments in Table 3. 

After the fitness assignment the genomes are ranked based on their fitness. 
The genomes are then assigned a probability value, which correspond to the 
probability to be picked by an operator. Figure 7 illustrates how the probability 
depends on order of fitness.  

Assessment Value 

Won 1 if the player’s team won the game and 0 
otherwise. 

Team score The number of goals made by the team. 

Opponent score The number of goals made by the opponent 
team. 

Score The number of goals made by the player. 

Attempts The number of shoots on goal made by the 
player. 

Kicks The number of times the player kicked the 
ball. 

Passes The number of passes made by the player.  

Active 1 if the player kicked the ball during a game 
and 0 otherwise. 

Ball Close 2 if the average distance to ball is less than 
15, otherwise 1 if this distance is less than 20 
or 0 if this distance is greater than 20. 

Average y The player’s average y position during a 
game. 

Time free The time the player was free during a game, 
measured in the percentage of total time. A 
player is free when no other player is closer 
than a distance of 10. 
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Time offensive The time the player spent on the opposite half 
of the field, measured in the percentage of 
total time. 

Table 3: Fitness assessments. 

 
Figure 7: Selection probability depending on rank. M is the population 
size and one is the highest ranking. Quota is a parameter that modifies 
the quadratic probability function.  
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Chapter 4 

Experiments 

Several experiments have been performed throughout this research. Two 
selected experiments are presented in this chapter. These experiments are 
representative of what has been done and provide support for later conclusions. 

All experiments were performed under Linux RedHat 9 on a Toshiba laptop 
with a Celeron 1.33 GHz processor. This configuration was not sufficient for the 
use of a full size team for the fitness evaluation. Therefore, a team of 9 
members, including a goalkeeper was used instead of the 11 players.  

4.1 Experiment 1 

This experiment may be perceived to be a first investigation into the kind of 
behaviour that the evolved soccer robots can develop. In this investigation each 
player in a team is based on a separate algorithm. Players with different 
algorithms must cooperate in order to achieve team coordination. 

4.1.1 Approach 

Each player in the population is regarded to be an individual player. 
Matches are carried out between teams that are made up of players randomly 
picked from the population so that each player plays a fixed number of games. 
The fitness is then calculated in this manner (refer to Table 3 for more details): 

  200 * Won 
  200 * Team Score – Opponent Score 
  250 * Score 
  200 * Attempts 
  30 * Kicks 
  100 * Passes 
 + 200 * Active 
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Parameters used in this experiment are presented below: 

Parameter Value 

Population size 128 

Number of generations 52 

Probability for crossover  60 % 

Probability for reproduction 20 % 

Probability for mutation 20 % 

Number of games per player 4 

Quota (Figure 7) 8 

4.1.2 Result 

Most players from the early generations are drifting around the field with 
what appears to be unsystematic movements. The players that run after and kick 
the ball increase in number rapidly until most players are chasing the ball (after 
approximately fifteen generations). Typically, most players will run after the 
ball and kick it towards the goal or eventually pass to a team-mate. This strategy 
is often referred to as “kiddie-soccer”. The average fitness reaches a maximum 
after approximately twenty generations and fluctuates around this value within 
the remaining generations. This is demonstrated in Figure 8. The game statistics 
are presented in Figure 9. A screenshot from a match between an early team and 
a ‘developed’ team is shown in Figure 10. 

By manually observing games, players are perceived to improve slightly in 
the later generation. Particularly, a number of players develop defensive abilities 
that reduce the efficiency of the early strategy. In later generations, more players 
use the dribble skill rather than just kicking the ball towards the goal. Kicking 
the ball towards the goal was early a very successful tactic to quickly position 
the ball close to the goal. However, a defensive player would intercept a ball 
without difficulty, which headed in the direction of the goal. The dribble skill 
allows a player to dispense the ball around opponent players and thereby avoid 
the defence. However, the dribble skill also results in a slower advancement, as 
the ball is not going in a straight line. Figure 11 illustrates how two defensive 
players are positioned to defend their home goal.  
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Figure 8: Average fitness in experiment one. 

 
Figure 9: Game statistics from experiment one. The values are the 
average per player and match.  
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Figure 10: A screenshot from a match between an early team (on the 
right) and a team from generation 32. 

 
Figure 11: A screenshot from a match between two later teams. The 
arrows indicate two players that are using the BlockGoal action to 
defend the home goal, while other players are chasing the ball. 

4.1.3 Conclusion 

The software robots clearly improve their playing techniques throughout the 
generations. Initially, most players are wandering around the field illogically. 
The players rapidly develop a strategy that basically, is to run after the ball and 
kick it towards the goal. This strategy is very efficient against opponents that do 
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not have a defence besides the goalkeeper. Finally, the population learns 
defensive abilities and dribble skills. 

 The average fitness for the populations converges after approximately 
fifteen generations. However, the fitness is measured amongst players within the 
same generation and not in comparison to earlier teams. This is most likely the 
reason why the development of defence did not appear on the fitness scale 
(Figure 8). 

4.2 Experiment 2 

In previously performed work, a homogenous team configuration has been 
used. Luke et al. [1997] claimed that the evolution of a team with separate 
algorithms is a more complex problem than evolution of a homogenous team. 
This is because all players use the same algorithm. Luke also explored a pseudo-
homogenous approach, where the players are put into different squads. This 
experiment investigates the pseudo-homogenous team configuration. 

4.2.1 Approach 

Instead of allowing each player to have its own algorithm, a team is built of 
three squads (each consisting of identical players). In order to increase the team 
coordination, each squad is given a separate role. The assigned roles are: 
attacker, midfielder, and defender. A team consists of 3 attackers, 3 midfielders, 
and 2 defenders. 

The squads are co-evolved so that each squad is evolved from a separate 
population with a separate fitness function. The following are the formulas for 
the fitness functions: 

Attacker 

  500 * Score 
  400 * Attempts 
  50 * Kicks 
  100 * Passes 
  200 * Active 
  150 * Ball Close 
  3 * Time Free 
 + 6 * Time Offensive 
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Midfielder 

  100 * Won 
  200 * Team Score – Opponent Score 
  100 * Score 
  100 * Attempts 
  50 * Kicks 
  300 * Passes 
  200 * Active 
  6 * Time Free 
 + 2 * Time Offensive 

Defender 

  200 * Won 
  200 * Team Score – Opponent Score 
  50 * Kicks 
  100 * Passes 
  200 * Active 
 + 5 * Time Free 

Control parameters used in this experiment are presented below: 

Parameter Value 

Population size 3 * 32 

Number of generations 55 

Probability for crossover  60 % 

Probability for reproduction 20 % 

Probability for mutation 20 % 

Number of separate games per player 2 

Quota (Figure 7) 8 

4.2.2 Result 

The early random teams acted uncoordinated and approximately one third 
of the initial players chased the ball like the initial teams from experiment one. 
After five to ten generations, the populations reached sub-optima that they 
essentially sustained for the remaining generations. This is demonstrated in 
Figure 12. These optima refer to kiddie-soccer players but they did not kick the 
ball towards the goal in the same amount as players from the first experiment. 
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An improved scoring strategy for the fitness function was then established – the 
players surrounded the ball and passed it around. This strategy generated many 
kicks and passes, which is also apparent in Figure 13 and 14. The number of 
performed passes per game is approximately two times the number completed in 
the first experiment.  

However, the players were occasionally spread out and were able make 
long passes. This situation permitted a faster game because the ball quickly 
travelled all over the field. After a few long passes, one player usually failed to 
intercept the ball and cause all players to chase the ball. The players had 
problems intercepting passes especially the long passes because the ball had a 
higher speed.  

The average distance between players and the ball decreased rapidly during 
the very first generation and then maintained a reasonably constant level when 
most players developed the kiddie-soccer strategy. For the defenders, this 
average distance was significantly larger. This is due to the fact that their initial 
positions were the furthest away from the ball’s initial position. Figure 15 
illustrates how the average distances are dependent on the generation number. 

It appears that the different squads did not develop separate behaviours. The 
attackers did not attempt to score more frequently than the midfielders. For 
example, in generation 50 – 55, the attackers made 39 % of all scored goals, the 
midfielders 47 %, and the defenders 13 %. 

Nearly all of the top ranked individuals from the populations of attackers 
and defenders executed the PassBeckham action when introduced with a 
chance to kick the ball and the DashToBall action otherwise. The midfielders 
showed greater variability and the winning algorithms changed frequently 
throughout the generations.  

In order to compare players with those in the previous experiment, thirty-
two matches between the two populations were carried out. The teams were 
selected randomly for each match. The teams from the previous population won 
eighteen games, the pseudo-homogenous teams from this experiment won nine, 
and five matches ended in a draw.  
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Figure 12: Average fitness for experiment two. 

 
Figure 13: Average number of kicks performed during a match. 
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Figure 14: Average number of passes performed during a match. 

 
Figure 15: Average distance between the player and the ball. 
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Figure 16: Screenshot of a typically situation in experiment two. All 
players are chasing the ball. 

4.2.3 Conclusion 

The populations converged after five to ten generations, which is twice as 
fast as in the previous experiment. This rapid convergence is referred to 
premature convergence and a lower complexity compared to the previous 
experiment (three separate algorithms compared to eight separate algorithms). 
However, the players did not seem to improve more after the ten generations.  

Premature convergence clearly occurred amongst the populations of 
attackers and defenders. The high rate of identical genomes strongly reduced the 
efficiency of the genetic operators and the population was trapped in what 
appeared to be a troublesome suboptimum. The obvious approach to deal with 
this suboptimum is to restart the population at generation 0 or drastically 
increase the mutation rate. Preliminary testing showed that premature 
convergence occurs even if the population is restarted. This is likely due to the 
very small population size consisting of thirty-two individuals. 

The resulting players from the first experiment did better than the players 
from this experiment. It can be concluded that this is due to the lack of defensive 
abilities in the second teams. 
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Chapter 5 

Discussion 

The goals of this study were to use genetic programming to teach software 
robots play simulated soccer, and secondarily to investigate the development of 
multi-agent strategies. 

The two experiments only differ in the team set-up. In the first experiment, 
each team consisted of eight randomly picked players (excluding the 
goalkeeper) from a population of one hundred and twenty-eight individuals. The 
teams in the second experiment were made up of eight players consisting of 
three different genomes and they are evolved in separate populations of thirty-
two individuals each. 

Initially, the players from both experiments learned to chase and kick the 
ball towards the goal or pass it to a team-mate. The players in the second 
experiment converged and did not develop further. However, the players from 
the first experiment continued to develop slowly and recognized that team 
coordination was essential for further development.  

The following are a number of reflections and possible explanations about 
why the robots did not develop further. 

• Premature convergence 

The population size was very small for a problem of this complexity. In 
order to prevent premature convergence and increase diversity amongst 
the evolved players, a larger population size should have been used. 
Koza [1994] suggests a population size of 4000 for a typical problem. 

• Limited search space 

The sets of predicates and actions provide a limited search space.  A 
significantly improved solution may not be possible to express with the 
current sets. 
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• Functions  

Ultimately, it is the action functions that control the software robot. The 
players’ performances were directly related to the quality of the 
functions. The players generated in this study had for example, troubles 
with the interception of passes. 

• Credit assignment 

The fitness function may not correspond to the actual desired behaviour. 
The primary difficulty was to determine which individuals to credit for 
the whole team’s success. 

• Overfitness 

Each algorithm is only tested for a limited number of situations or in this 
case, number of matches. The fitness assignment used in the experiment 
is inaccurate. If a larger number of evaluations were used, it would 
minimize the fitness deviation and give a more accurate measurement.  

• Computational resources 

The fitness evaluation is computationally expensive. The presented 
experiments were completed in roughly one month (computer time). 
Numerous compromises were made in this study to reduce the evaluation 
time and this eventually resulted in weaker players.  

This study demonstrates that software robots are able to learn to play the 
game of simulated soccer despite its very complex dynamics. The strategies that 
the robots developed are most likely to be inferior to human coded algorithms, 
but are significantly better than the initial random strategies.  
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Chapter 6 

Future Work 

The approach used in this study is just one of several possible approaches. 
This chapter lists some suggestions and ideas about future investigations into 
this subject. 

• The population size used in these experiments is simply too small. 
Various methods for accelerating the fitness evaluation should be 
investigated.  

• The decision tree approach with fixed predicates and actions certainly 
limits the search space over possible solutions. To modify this, allow the 
predicates and actions to be dependent on some parameters that are 
initially set in a random manner. The genetic operators could then alter 
these parameters. Another modification is to allow some actions and 
predicates to evolve separately. Koza [1994] introduces this as 
automatically defined functions. 

• More information about the game could be available to the players by 
expanding the set of predicates or introducing game states. A game state 
can be based on past information and contain data such as coach 
messages, previous playing styles, when the opponents attacked last 
time, etc. 

• Introduce an online coach that broadcasts values to some predicates. 
These values concern the whole team and are difficult for an individual 
player to calculate with its limited perceptions. Examples of such 
predicates could be: “Is any team attacking?” or “Do they have good 
defence?”. 

• Instead of using a fixed fitness function for all generations, one that 
changes as the players improve could be used. For developing basic 
skills, a simple fitness function may be sufficient or even better than a 
complex one. In order to teach the robots advanced behaviours, it may be 
necessary to customize the fitness function to a particular skill. One 
approach could be the development of a system similar to the way 
humans learn to play soccer with the help of trainers. This system could 
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analyse the players throughout the generations and output statistics and 
data to a human operator regulating the fitness function.  
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Appendix A 

Predicates and Actions 

A.1 Predicates 

IAmClosestToTheBall is true if and only if: 

• The position of the ball relative to the agent is known. 

• The agent is closest to the ball amongst the players it can see.  

IAmClosestToTheBallOnOurTeam is true if and only if: 

• The position of the ball relative to the agent is known. 

• The agent is closest to the ball amongst the agent’s team-mates that it 
can see.  

WeAreClosestToBall is true if and only if: 

• The position of the ball relative to the agent is known. 

• The agent or a team-mate that the agent can see is the closest to the ball 
amongst the players it can see and distance to the ball is less than 10. 

BallIsClose is true if and only if: 

• The position of the ball relative to the agent is known. 

• The distance between the agent and the ball is equal to or less than 5. 

BallIsFarAway is true if and only if: 

• The position of the ball relative to the agent is known. 

• The distance between the agent and the ball is greater than 35. 

BallIsNearGoal is true if and only if: 

• The position of the ball is known. 

• The distance between the ball and centre of the opponent’s goal is less 
than 32. 
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BallIsNearOurGoal is true if and only if: 

• The position of the ball is known. 

• The distance between the ball and the centre of home goal is less than 
32. 

OpponentIsClose is true if and only if: 

• The agent can see at least one opponent. 

• An opponent in the agent’s field of vision is closer than a distance of 5. 

IAmAlone is true if and only if no player in the agent’s field of vision is closer 
than a distance of 15. 

WeAreWinning is true if and only if the agent’s team is leading with at least 2 
points. 

IAmNearGoal is true if and only if: 

• The agent’s position is known. 

• The distance between the agent and the centre of opponent’s goal is less 
than 25. 

IAmNearOurGoal is true if and only if: 

• The agent’s position is known. 

• The distance between the agent and the centre of home goal is less than 
25. 

WeAreAttacking is true if and only if: 

• The agent’s position is known. 

• The agent is located on the fifth of the field furthest away from home. 

Or 

• The positions of at least two team-mates (including the agent) are 
known. 

• At least two team-mates (including the agent) are located on the 30 % of 
the field furthest away from home. 

OpponentsAreAttacking is true if and only if: 

• The positions of at least two opponents are known. 

• At least two opponents are located on the 30 % of the field which is 
closest to home. 
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TeammatesAreFree is true if and only if: 

• The agent cannot see any opponents. 

Or 

• The position of at least one team-mate is known. 

• A team-mate is further than a distance of 10 away from all opponents 
visible to the agent. 

WeAreSpreadOut is true if and only if: 

• There is only one team-mate visible to agent. 

• The team-mate is at least a distance of 15 away from the agent. 

Or 

• More than one team-mate is in the agent’s field of view. 

• V({x})+V({y}) > 200, where V is the variance function. {x} and {y} are 
the coordinates for visible team-mates, including the agent. 

A.2 Actions 

A.2.1 Move Actions 

Move Actions are only executed in the move tree. 

DashToBall 

If the agent’s body direction is not facing the ball (±8º), the agent will turn 
towards the ball otherwise a dash command will be executed. 

DashToGoal 

A target point is set as one of the corners of the penalty area at the opponent’s 
goal (e.g. if the agent is playing on the left side team, the target point will be 
either (32, 20) or (32, -20)). If the agent’s body direction is not facing the point 
(±5º), the agent will turn towards the ball otherwise a dash command will be 
executed. 

BlockGoal 

A virtual vector is set between the ball and the centre of the home goal. A target 
point is then set to be on this vector. If the agent is close to the ball (<7), the 
target point will set to the ball’s position instead. If the agent’s body direction is 
not facing the point (±8º), the agent will turn towards the ball otherwise a dash 
command will be executed. 
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InterceptBall 

This action is included in RoboSoc and will determine an intersection point 
between the agent and the ball. The agent will then execute a dash or turn 
command to get to this point in the same time or before the ball does. 

SpreadTeam 

A list with normalized vectors will be constructed for each team-mate that the 
agent sees. A vector is determined as an average of all of these vectors. The 
agent will then move in the opposite direction from this vector. 

A.2.2 Kick Actions 

Kick actions are only executed in the kick tree ensuring that the ball will be 
kickable. If the action is a pass, the agent will execute a say command to inform 
the targeted player.  

PassPlayer1 

If the agent sees one or more team-mates, it will pass the one closest to the 
agent. If no team-mate is in the agent’s field of vision, no command will be 
executed. 

PassPlayer2 

If the agent sees more than one team-mate, it will pass the second closest team-
mate. If only one team-mate is in the agent’s field of view, the agent will pass it. 
If no team-mate is in the agent’s field of vision, no command will be executed. 

PassPlayerFarAway 

If the agent sees one or more team-mates, it will pass the ball to the one closest 
to the opponent’s goal. If no team-mate is in the agent’s field of vision, no 
command will be executed. 

PassBeckham 

This action is included in RoboSoc and enables the agent to pass to the team-
mate that is most suitable for a pass (according to a number of criterions). If no 
suitable team-mate is found, no command will be executed.  

DribbleToGoal 

This action is included in RoboSoc and the agent will dribble the ball towards 
the opponent’s goal while avoiding its opponents.  

KickGoal 

The agent will kick the ball towards the centre of the opponent’s goal. 
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Appendix B 

Evolved Algorithms 

This appendix presents a few examples of evolved algorithms from the 
experiments presented in chapter 4. Throughout the experiments, more than 
10000 different algorithms were evolved and evaluated. The following examples 
are intended to give the reader an idea of the algorithms’ composition. A 
number of statistical data follows each example. 

B.1 Experiment 1 

The top ranked algorithm from generation 3 

Kick Tree Move Tree 
IF WeAreSpreadOut 
  IF WeAreAttacking 
    IF IAmNearGoal 
      IF OpponentsAreAttacking 
        DribbleToGoal 
      ELSE 
        IF TeammatesAreFree 
          PassPlayerFarAway 
        ELSE 
          PassPlayer2 
    ELSE 
      KickGoal 
  ELSE 
    PassPlayer1 
ELSE 
  PassBeckham 

IF WeAreWining 
  IF IAmAlone 
    IF IAmNearOurGoal 
      SpreadTeam 
    ELSE 
      IF IAmNearGoal 
        InterceptBall 
      ELSE 
        DashToBall 
  ELSE 
    BlockGoal 
ELSE 
  DashToBall 

 
 Match average Population match average 
Number of kicks 24 20 
Number of passes 22 9 
Distance to ball 17 22 
Made goals 0 0.3 
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The top ranked algorithm from generation 20 

Kick Tree Move Tree 
IF IAmNearGoal 
  PassPlayer2 
ELSE 
  PassBeckham 

IF WeAreWining 
  IF OpponentIsClose 
    DashToBall 
  ELSE 
    IF IAmNearGoal 
      IF BallIsClose 
        InterceptBall 
      ELSE 
        BlockGoal 
    ELSE 
      SpreadTeam 
ELSE 
  DashToBall 

 

 Match average Population match average 
Number of kicks 59 28 
Number of passes 32 14 
Distance to ball 14 20 
Made goals 0.5 0.3 

The top ranked algorithm from generation 51 

Kick Tree Move Tree 
IF OpponentIsClose 
   PassBeckham 
ELSE 
   IF IAmNearGoal 
      IF WeAreAttacking 
         PassPlayer2 
      ELSE 
         IF TeammatesAreFree 
            PassBeckham 
         ELSE 
            PassPlayer2 
   ELSE 
      IF WeAreAttacking 
         PassBeckham 
      ELSE  
         PassPlayer1 

IF WeAreWining 
   IF BallIsNearOurGoal 
      IF OpponentsAreAttacking 
         DashToGoal 
      ELSE 
         DashToBall 
   ELSE 
      DashToBall 
ELSE 
   DashToBall  

  
 Match average Population match average 
Number of kicks 83 22 
Number of passes 28 9 
Distance to ball 18 20 
Made goals 0.5 0.3 
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The second ranked algorithm from generation 51 

Kick Tree Move Tree 
IF IAmNearGoal                
  IF WeAreAttacking 
    KickGoal 
  ELSE 
    IF TeammatesAreFree 
      IF OpponentsAreAttacking 
        DribbleToGoal 
      ELSE 
        PassBeckham 
    ELSE 
      PassPlayerFarAway 
ELSE 
  PassBeckham 

IF WeAreWining 
  DashToBall 
ELSE 
  IF OpponentsAreAttacking 
    IF IAmNearOurGoal 
      BlockGoal 
    ELSE 
      SpreadTeam 
  ELSE 
    DashToBall 

 
 Match average Population match average 
Number of kicks 56 22 
Number of passes 30 9 
Distance to ball 14 20 
Made goals 1.5 0.3 

The 64th ranked algorithm from generation 51 

Kick Tree Move Tree 
IF OpponentsAreAttacking 
  IF IAmNearGoal 
    PassPlayer2 
  ELSE 
    PassPlayerFarAway 
ELSE 
  PassBeckham 

IF WeAreWining 
  IF BallIsFarAway 
    DashToBall 
  ELSE 
    IF OpponentIsClose 
      IF OpponentsAreAttacking 
        IF IAmClosestToBallOnOurTeam 
          BlockGoal 
        ELSE 
          DashToGoal 
      ELSE 
        InterceptBall 
    ELSE 
      InterceptBall 
ELSE 
  IF BallIsNearOurGoal 
      BlockGoal 
  ELSE 
    DashToBall 
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 Match average Population match average 
Number of kicks 46 22 
Number of passes 7 9 
Distance to ball 18 20 
Made goals 0 0.3 

B.2 Experiment 2 

The top ranked attacker algorithm from generation 5 

Kick Tree Move Tree 
PassBeckham IF BallIsNearOurGoal 

  BlockGoal 
ELSE 
  DashToBall 

 
 Match average Population match average 
Number of kicks 211 37 
Number of passes 149 21 
Distance to ball 5 16 
Made goals 0.3 0.3 

The top ranked midfielder algorithm from generation 5 

Kick Tree Move Tree 
IF OpponentsAreAttacking 
  KickGoal 
ELSE 
  PassBeckham 

IF OpponentsAreAttacking 
  IF OpponentIsClose 
    InterceptBall 
  ELSE 
    DashToBall 
ELSE 
  DashBall 
 

 
 Match average Population match average 
Number of kicks 122 46 
Number of passes 88 23 
Distance to ball 7 15 
Made goals 0 0.4 
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The top ranked defender algorithm from generation 5 

Kick Tree Move Tree 
IF WeAreSpreadOut 
  PassPlayer1 
ELSE 
  IF WeAreAttacking 
    PassPlayer2 
  ELSE 
    PassPlayerFarAway 

IF BallIsFarAway 
  InterceptBall 
ELSE 
  IF OpponentsAreAttacking 
    DashToBall 
  ELSE 
    DashToGoal 
 

 
 Match average Population match average 
Number of kicks 43 18 
Number of passes 48 9 
Distance to ball 26 32 
Made goals 0 0.2 

The top ranked attacker algorithm from generation 55 

Kick Tree Move Tree 
PassBeckham DashToBall 

 
 Match average Population match average 
Number of kicks 103 25 
Number of passes 52 11 
Distance to ball 15 17 
Made goals 0 0.3 

The top ranked midfielder algorithm from generation 55 

Kick Tree Move Tree 
IF OpponentsAreAttacking 
  IF IAmAlone 
    PassPlayer1 
  ELSE 
    PassBeckham 
ELSE 
  IF WeAreSpreadOut 
    PassBeckham 
  ELSE 
    IF IAmAlone 
      PassPlayer1 
    ELSE 
      PassBeckham 

IF BallIsNearOurGoal 
  IF IAmAlone 
    IF OpponentsAreAttacking 
      DashToBall 
    ELSE 
      BlockGoal 
  ELSE 
    DashToBall 
ELSE 
  DashToBall 
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 Match average Population match average 
Number of kicks 98 32 
Number of passes 75 16 
Distance to ball 26 16 
Made goals 0 0.2 

The top ranked defender algorithm from generation 55 

Kick Tree Move Tree 
PassBeckham DashToBall 

 
 Match average Population match average 
Number of kicks 40 21 
Number of passes 18 8 
Distance to ball 21 27 
Made goals 1 0.2 

 


