
Natural Language Understanding in Façade:
Surface-text Processing

Michael Mateas*1, Andrew Stern*2

* co-authors listed alphabetically
1College of Computing and LCC, Georgia Tech, michaelm@cc.gatech.edu

2InteractiveStory.net, andrew@interactivestory.net

1 Introduction

Façade is a real-time, first-person dramatic world in which the player, visiting the
married couple Grace and Trip at their apartment, quickly becomes entangled in
the high-conflict dissolution of their marriage. The Façade interactive drama inte-
grates real-time, autonomous believable agents, drama management for coordi-
nating plot-level interactivity, and broad, shallow support for natural language un-
derstanding and discourse management. In previous papers, we have described the
motivation for Façade’s interaction design and architecture [13, 14], described
ABL, our believable agent language [9, 12], and presented overviews of the entire
architecture [10, 11]. In this paper we focus on Façade’s natural language proc-
essing (NLP) system, specifically the understanding (NLU) portion that extracts
discourse acts from player-typed surface text.

The Façade NLP system accepts surface text utterances from the player and
decides what reaction(s) the characters should have to the utterance. For example,
if the player types “Grace isn’t telling the truth”, the NLP system is responsible
for determining that this is a form of criticism, and deciding what reaction Grace
and Trip should have to Grace being criticized in the current context. General
natural language understanding is of course a notoriously difficult problem.
Building a system that could understand open-ended natural language utterances
would require common sense reasoning, the huge open-ended mass of sensory-
motor competencies, knowledge and reasoning skills which human beings make
use of in their everyday dealings with the world. While Façade is a micro-domain,
a dramatically-heightened representation of a specific situation, not the whole
world, there are still no general theories, techniques or systems which can handle
the syntactic, semantic and pragmatic breadth of the language use which occurs in
Façade. Instead, Façade makes use of broad, shallow, author-intensive techniques
to understand natural language typed by the player.

Our approach in Façade it to view the natural language understanding problem
as a dialog management problem, focusing on the pragmatic effects of language
(what a language utterance does to the world) rather than on the syntax (the form
of surface text) or semantics (meaning) of language. In dialog management sys-
tems (e.g. Collagen [19, 7], Trains [1, 4]), language use situations are seen as con-

2!!!!!!Michael Mateas*1, Andrew Stern*2

sisting of a discourse context within which conversants exchange speech acts. A
conversant’s surface utterance is interpreted as a speech act in a manner dependent
on the current discourse context. In Façade, discourse acts have been chosen that
are appropriate for the conflict-filled interaction with Grace and Trip. This ap-
proach of choosing discourse acts that align with player narrative actions has
similarities to the approach described in [2]. The discourse context is determined
by dramatic beats, the smallest unit of dramatic action, and the “atoms” out of
which Façade stories are constructed [10].

NLP is divided into two phases: phase 1 maps surface text into discourse acts
representing the pragmatic effects of an utterance, while phase 2 maps discourse
acts into one or more (joint) character responses. Where phase 1 determines, in a
context specific way, which discourse act was produced by the player, phase 2
determines what effect this act will have, including, potentially, how it changes the
discourse context. It is within Phase 2 that a stack of discourse contexts is actively
maintained and used to determine a context-appropriate response to a given dis-
course act. Phase 1 only makes use of discourse contexts insofar that different
collections of phase 1 rules may be turned on and off in different contexts. The
rest of this paper focuses on the phase 1 (NLU) pipeline.

2 Introduction to Surface Text Rules

Forward chaining rules map surface text to discourse acts. Some rules map spe-
cific patterns of surface text directly to intermediate meaning representations,
while other rules combine intermediate meanings to form more complex mean-
ings. Eventually the process of mapping islands of surface text into intermediate
representations, and combining these representations, produces the final meaning,
consisting of one or more discourse acts.

Figure 1. Pseudo-code for simple greeting rules

For example, imagine that the player types “Hello Grace”. The first rule in Fig-
ure 1 matches on the appearance of the word “hello” anywhere in the text and as-
serts an iGreet intermediate fact. The second rule matches on the appearance of
the word “grace” anywhere in the text and asserts an (iCharacter Grace)
fact. The third rule matches on the occurrence of the two intermediate facts and
asserts a (DAGreet Grace) discourse act fact, indicating that a greeting was
directed at Grace. The rule makes use of a variable; ?x binds to the argument of
iCharacter on the left hand side and brings this value over to the assertion of
DAGreet on the right hand side of the rule. In order to capture more ways of

“hello” _ iGreet
“grace” _ iCharacter(Grace)
iGreet AND iCharacter(?x) _ DAGreet(?x)

Natural Language Understanding in Façade: Surface-text Processing!!!!!!3

saying hello (e.g. “how’re you doing?”, “how’s it going?”, “what’s up”, etc.), ad-
ditional iGreet rules can be written without changing the iCharacter or
DAGreet rules.

3 Discourse Acts

Our current set of discourse acts appears in table 1 below. All player utterances
map into one or more of these discourse acts. Phase 1 processing is a strong many-
to-few mapping – the huge, rich range of all possible strings a player could type is
mapped onto this small set of discourse acts. Besides ignoring any nuance in the
tone of the player’s text, the system also focuses almost exclusively on the prag-
matics of the utterance, ignoring most of the semantics (denotative meaning).

Representation of Discourse Acts Pragmatic Meaning of Discourse Acts

(DAAgree ?char)
Agree with a character. (e.g. “certainly”,
no doubt”, “I would love to”)

(DADisagree ?char)
Disagree with a character. (e.g. “No way”,
“Fat chance”, “Get real”, “Not by a long shot”)

(DAPositiveExcl ?char)
A positive exclamation, potentially directed at
a character. (“Yeah”, “Wow”, “Breath of fresh
air”)

(DANegExcl ?char)
A negative exclamation, potentially directed at
a character. (e.g. “Damn”, “That really sucks”,
“How awful”, “I can’t stomach that”, “D’oh!”)

(DAExpress ?char ?type)
Express an emotion, potentially directed at a
character. The emotion types are happy (“I’m
thrilled”, “:-)”), sad (“That bums me out”, “:-
(”), laughter (“ha ha”), and angry (“It really
pisses me off”, “grrrr”).

(DAMaybeUnsure ?char)
Unsure or indecisive, potentially directed at a
character. This discourse act is usually a re-
sponse to a question. (e.g. “I don’t know”,
“maybe”, “I guess so”, “You’ve lost me”)

(DAThank ?char)
Thank a character (e.g. “Thanks a lot”)

(DAGreet ?char)
Greet a character. (e.g. “Hello”, “What’s up”)

(DAAlly ?char)
Ally with a character. (e.g. “I like you”, “You
are my friend”, “I’m here for you”)

(DAOppose ?char)
Oppose a character. (e.g. “Kiss off”, “You’re
the worst, “I hate you”, “Get out of my life”)

(DADontUnderstand ?char)
Don’t understand a character utterance, or the
current situation (e.g. “I’m confused”, “I don’t
get it”, “What are you talking about”)

4!!!!!!Michael Mateas*1, Andrew Stern*2

Representation of Discourse Acts Pragmatic Meaning of Discourse Acts

(DAApologize ?char)
Apologize to a character. (e.g. “I’m sorry”,
“My bad”, “How can I make this up to you”)

(DAPraise ?char)
Praise a character. (e.g. “You’re a genius”,
“What a sweetheart you are”, “You’ve got
good ideas”)

(DACriticize ?char ?level)
Criticize a character. There are two levels of
criticism, light (“You’re weird”, “Don’t be so
up tight”), and harsh (“Idiot”, “What a dip-
shit”)

(DAFlirt ?char)
Flirt with a character. (e.g. “You look gor-
geous”, “Kiss me”, “Let’s get together alone
sometime”)

(DAPacify ?char)
Pacify a character. (e.g. “Calm down”, “Relax,
guys” “Keep your shirt on”, “Take it easy”)

(DAExplain ?param ?char)
Give an explanation about the social situation
to a character (e.g. “Grace is lying”, “Trip is
having an affair”, “You’re not happy to-
gether”)

(DAAdvice ?param ?char)
Give advice to a character. (e.g. “You should
get a divorce”, “Try to work it out”)

(DAReferTo ?char ?obj)
Refer to an object, potentially directed at a
character. There are a number of different ob-
jects in the room, including the couch (“I like
the couch”), the wedding picture (“Your wed-
ding picture looks nice”), and paint ings
(“Where did you get these paintings”).

(DAIntimate ?char)
Ask a character to share their thoughts or
feelings with you. (e.g. “What’s wrong”, “Let
it all out”, “Talk to me”)

(DAGoodbye ?char)
Say goodbye to a character. (e.g. “Catch you
later”, “So long”, “I’m out of here”)

(DAInappropriate ?char)
Utterances containing vulgar or socially inap-
propriate words or phrases. (e.g. “blow job”,
“slut”)

(DAMisc ?char ?type)
Miscellaneous specialized discourse acts, often
specific to certain beats or contexts. The type
encodes the specialized act, e.g. ask for drink
(“I’d like a drink”), and should I leave (“Is this
a bad time”, “Should I leave”).

Natural Language Understanding in Façade: Surface-text Processing!!!!!!5

Representation of Discourse Acts Pragmatic Meaning of Discourse Acts

(DASystemCannotUnderstand)
Catch-all for all utterances which trigger no
other discourse acts.

Table 1. Façade discourse acts

4 The Template Language

The rules which map surface text to discourse acts are written in a custom rule
language that compiles to Jess [6], a java implementation of the CLIPS rule lan-
guage [15]. The custom rule language is a superset of Jess, adding an embedded
template description language that allows compact descriptions of surface text
patterns to appear on the left hand side of rules. An initial implementation of the
template compiler was done by Mehmet Fidanboylu, an undergraduate working
under Michael’s direction.

Figure 2. Rule example using the template sublanguage

The rule in Figure 2 contains a template test on the LHS – a specification of a
pattern that will be tested over the input string. If the input string matches this
pattern, the RHS asserts an iAgree fact (an intermediate fact) that will eventu-
ally be combined with an intermediate fact indicating the character addressed
(potentially the null character none) to produce the final DAAgree fact.

4.1 The Pattern Language

The sub-language for specifying template patterns consists of a combination of
regular expressions and occurrence expressions. Regular expressions are sensitive
to the positions of terms in a pattern – for the regular expression (love it) to
match a string, “it” must appear right after “love” in the string. Occurrence ex-
pressions don’t care about position, only term occurrence – for the expression
(tand love it) to match a string, “love” and “it” must both appear in the
string, but do not have to be contiguous and can appear in either order. Note that
when an occurrence expression is embedded in a regular expression, the occur-

;; A template rule for agreement
(defrule global-agree-rule1
 (template (toc (love (to | it | that))))
 =>
(assert (iAgree)))

6!!!!!!Michael Mateas*1, Andrew Stern*2

rence expression only tests across the substring delimited by the regular expres-
sion. Examples of all the template pattern language expressions appear in Table 2.

Example Expressions Meaning

(X Y) An and regular expression. Matches an input string if
it consists of X immediately followed by Y.

(X | Y) An or regular expression. Matches an input string if it
consists of X or Y.

([X]) An optional regular expression. Matches an input
string if it consists of X or nothing.

* A match all wildcard. Matches any number of words
in an input string.

? A match one wildcard. Matches any one word in an
input string.

(tand X Y) An and occurs expression (tand is short for template-
and). Matches an input string if it contains X and Y in
any order.

(tor X Y) An or occurs expression (tor is short for template-or).
Matches a input string if it contains X or Y.

(toc X) An occurrence occurs expression (toc is short for tem-
plate-occurs). Matches an input string if it contains X.

(tnot x) A not occurs expression (tnot is short for template-
not). Matches an input string if X does not occur in it.

Table 2. Template pattern language expressions

The tor, tand and toc expressions are syntactic sugar for classes of regular
expressions: (tor X Y) can be rewritten as ((* X *) | (* Y *)) (toc
is a special case of tor), and (tand X Y) can be rewritten as ((* X * Y
) | (Y * X *)).

Of course the various expressions can be recursively nested to produce com-
pound patterns such as (tand (X (tnot Y)) Z) or (X | ([(tor Y
Z)] W)).

Individual words are not the only atomic terms in the pattern language: besides
matching an individual word, one can also match a positional fact, match an entire
collection of words determined by WordNet [3] expansion, and match stemmed
forms of words, using a WordNet stemming package.

4.2 Matching Positional Facts

Facts asserted by template rules can be positional facts. A positional fact includes
information about the substring range matched by the rule which asserted the fact,
and, potentially, author-determined information. Positional facts can then be
matched as atomic terms within other templates. An example appears in Figure 3.

Natural Language Understanding in Façade: Surface-text Processing!!!!!!7

The first rule, positional_Is, asserts a positional fact (iIs ?startpos
?endpos) when an “is” word is recognized, such as “is” “seems”, or “looks”.
The appearance of the special variables ?startpos and ?endpos is what
makes this a positional fact – these variables are bound to the starting and ending
position of the substring matched by the template.

Figure 3. Example rule for recognizing praise discourse act using positional facts

The second rule, positional_PersonPosDesc, asserts a positional fact
when a word or phrase that is a positive description of a person appears.

The last rule, Praise_you_are_PersonPos, one of the rules for recog-
nizing praise discourse acts, recognizes praises that consist of only a positive de-
scription (e.g. “friend”), or of a sentence of the form “You are <positive descrip-
tion>” (e.g. “You are a friend”). When an atomic term appear in curly braces, this
tells the template compiler to treat the term as the name for a positional fact, and
to use the positional information (start position and end position) associated with
the fact to determine if the pattern matches.

Positional facts make the template language as powerful as a context free
grammar – when template patterns are combined with arbitrary Jess matches on
the left-hand-side, the language becomes Turing complete. However, the spirit of
the template language is to recognize simple text patterns and map them to dis-
course acts, not to build grammars that accept all and only the set of grammati-
cally correct strings. Positional rules such as those in Figure 3 can be viewed as
noise-tolerant parsing rules.

4.3 Term Retraction

;; Rule for recognizing positional “is” fact
(defrule positional_Is
 (template (tor am are is seem seems sound sounds look
 looks))
=>
 (assert (iIs ?startpos ?endpos)))

;; Rule for recognizing positional “positive
;; description” fact
(defrule positional_PersonPosDesc
 (template (tor buddy comrade confidant friend genius
 go-getter pal sweetheart))
=>
 (assert (iPersonPosDesc ?startpos ?endpos)))

;; Rule for recognizing praise
(defrule Praise_you_are_PersonPos
 (template ({iPersonPosDesc} | (you [{iIs}] [a | my]
 {iPersonPosDesc} *)))
=>
 (assert (iPraise)))

8!!!!!!Michael Mateas*1, Andrew Stern*2

When a template matches terms (words and patterns) within a string, it can re-
move terms to prevent other templates from matching on the same terms. This is
particularly useful when matching idiomatic phrases (e.g., “fat chance”) that could
potentially trigger other templates that match on the same words according to their
more typical meanings. The retraction operator “–” can be placed in front of any
term in a LHS template pattern; if the rule matches, the marked words are re-
tracted from the internal representation of the string, and any facts that were as-
serted directly or indirectly from those words are also retracted (compiled tem-
plate rules enforce proper truth maintenance). The retraction operator can be
thought of as creating an implicit retraction action on the right hand side of the
rule.

4.4 Compilation Strategy

Input strings are represented as a collection of facts, one fact for each word. Each
unique word is represented as a unique word occurrence fact; each of these unique
facts includes the start position and end position of the word, which are always the
same1. For example, for performing te mplate matching on the input string “I like
it”, the string is represented as a collection of three facts: (wo-i 1 1) (wo-
like 2 2) (wo-it 3 3). The fact names for each word in a string are con-
structed by appending the word onto “wo-” (for word occurrence).

The template compiler compiles template patterns into collections of rules
whose LHSs ultimately test word occurrence facts. Thus word occurrence (wo)
facts are chained together by generated rules to produce intermediate phrase oc-
currence (po) facts. The intermediate phrase occurrence facts are ultimately tested
on the LHS of the authored rules, which assert author defined facts (e.g. discourse
acts, positional facts). By representing the individual words of an input string as
word occurrence facts, and compiling templates into networks of rules which test
these facts, the expensive string tests which would potentially have to be run for
every template rule LHS are eliminated. Further matching efficiencies are gained
through Jess’ use of the Rete [5] matching algorithm.

5 Idioms for Template Rules

The general (non-beat specific) template rules are organized in the following way.
First, a collection of high salience template rules recognize generically useful pat-
terns and synonyms. An example is the “is” rule in Figure 3; others include sets of
synonyms for positive and negative words, greets, flirts, insults, curses, and so on.

1 Even though words always have the same start and end position, explicitly repr esenting

the start and end position makes it easier for compiler generated rules to combine word
occurrence facts with phrase facts, which do have different start and end positions.

Natural Language Understanding in Façade: Surface-text Processing!!!!!!9

Salience declarations can be used to declare that some rules should be preferred
over others. We use salience to create tiers of template rules, with higher salience
rules recognizing lower-level features than lower-salience rules.

After general low-level patterns, the next (lower-salience) tier of rules recog-
nizes idiomatic expressions. Each idiomatic rule uses the retraction operator to re-
tract the idiomatic expression once it is found – this prevents other rules from in-
correctly matching on individual words in the idiomatic expression. There are
generally a large number of idiomatic expression rules for each discourse act (e.g.
agree) or sub-discourse act “meaning” (e.g. idioms for “person positive descrip-
tion”, used by the praise rule in Figure 3). To compile an initial list of such idi-
oms, we examined the phrase resources [8, 16, 17, 18] to compile a large number
of expressions (~ 9000 phrases); ~1000 of these were applicable to our domain
and were categorized in terms of our discourse acts.

The next tier of rules uses retraction to cancel out adjacent negative words. For
example, for the surface text “you are not bad”, the words “not” and “bad” get re-
tracted and replaced with iAgree, as if the original surface text had been “you
are good”.

The final tier(s) of rules consists of keyword and combination rules. Keyword
rules watch for individual words or short, non-idiomatic phrases that are indicative
of a discourse act or sub-discourse act meanings. The
positional_PersonPosDescription rule in Figure 3 is an example of a
sub-discourse act keyword rule. Discourse act keyword rules similarly match on
words or short phrases, but directly assert a discourse act. In an attempt to reduce
the number of false positives, discourse act keyword rules tend to impose a limit
on the total number of words that can appear in the surface utterance. Unlike sub-
discourse act keyword rules, which can depend on combination rules further along
the chain to impose additional constraints, discourse act keyword rules are more
likely to be fooled by a longer utterance because something else in the utterance
contradicts the keyword assumption.

Combination rules, such as the Praise_you_are_PersonPos rule in Fig-
ure 3, combine intermediate positional facts, and impose constraints on the rela-
tive positions of these facts, to recognize discourse acts.

Anaphora resolution occurs by simply looking up a stored referent for each
anaphoric reference. In the Façade architecture, the autonomous characters are re-
sponsible for updating referents as they deliver different dialog lines, particularly
the referent for “it”.

6 Templates And Ungrammatical Inputs

Template rules tend to be promiscuous, mapping a large number of ungrammatical
inputs to discourse acts. Keyword rules, in particular, tend to produce false posi-
tives. False positives can be reduced by writing ever more elaborate combination
rules (in essence, moving towards full parsing), but at the expense of increasing

10!!!!!!Michael Mateas*1, Andrew Stern*2

false negatives (player utterances that should be recognized as a discourse act but
aren't).

Given this tradeoff, the template rules for Façade err on the side of being
overly permissive. This is based on the design approach that it is more interesting
for the characters to eke some meaning out of a broad set of utterances, and thus
have some interesting response for this broad set, than to only have interesting re-
sponses for a narrow set, and respond with some form of “huh?” to the rest. While
players will sometimes try to break the NLU by seeing what kinds of ludicrous
sentences they can get the characters to respond to, the templates are designed not
to robustly support this meta-activity, but rather to extract meaning from a broad a
collection of “natural” utterances likely to arise during the course of playing Fa-
çade.

7 Relationship to Chatterbots

Our approach for mapping surface text to discourse acts, while bearing some
similarities to chatterbot approaches such as AIML [20], significantly extends the
capabilities of these approaches. As AIML is representative of contemporary
chatterbot language processing, here we briefly summarize AIML’s features. In
AIML, the fundamental unit is a pattern-template pair, where patterns match
player input and templates produce output text in response to the player input
matching the corresponding pattern (note that in our NLU approach, we use the
word “template” for what AIML calls a “pattern”). AIML pattern syntax is a sub-
set of regular expression syntax, excluding regexp-or and optional subexpressions.
Templates can recursively invoke pattern matching, potentially introducing new
words into the recursively matched expression. Templates can get and set (side-
effecting) the value of unary predicates; unary predicates cannot be accessed in
patterns. AIML's support for anaphora resolution is similar to ours, using a collec-
tion of unary predicates to keep track of the current referents for he, she and it,
placing the burden of maintaining the current referents on the author. Pattern
matching can depend on the bot’s previous utterance, introducing limited support
for discourse context.

There are a number of differences between our approach and AIML.
1. Our NLU template language doesn’t map surface text directly to a reaction,

but rather to a discourse act; phase II of our NLP processing is responsible for
selecting a reaction to the discourse act. This separation supports reasoning
that can take into account more sophisticated discourse context than just the
last agent utterance. When given ambiguous input, our NLU system produces
all possible interpretations, letting the next layer of the NLP decide which
discourse act(s) to respond to. AIML uses implementation-dependent, non-
author-accessible heuristics to decide which single response to give.

2. Positional facts are the mechanism through which we introduce recursion into
the NLU matching process. The support for the inclusion of author-
determined information in positional facts, plus the ability to match facts and

Natural Language Understanding in Façade: Surface-text Processing!!!!!!11

chain variables on the left-hand-side of our NLU rules, makes our rule lan-
guage more expressive than AIML. Our framework supports rule strategies
ranging from simple pattern matching, through (noise tolerant) context-free
and context-sensitive parsing, to arbitrary computation, all of which can co-
exist within a single rule set.

3. Author-declared rule salience allows authors to specify their own tiers of rule
processing. In contrast, the matching order for AIML patterns is fixed by the
AIML interpreter.

4. Retraction supports more robust handling of idioms and double negatives.
5. Wordnet expansions and stemming supports the matching of a wider variety

of player inputs.

8 Experiences with the Template Language

In the course of authoring Façade we’ve written ~800 template rules, which com-
pile to ~6800 Jess rules. On a 2GHz machine, with the rest of the Façade AI run-
ning, as well as the animation engine, the rules fire to completion (generally pro-
posing several discourse acts) in 300 milliseconds or less, giving us adequate real-
time performance.

As we continue play testing, we use session traces to find NLU failures and
modify the rules. However, preliminary play testing has found our initial set of
rules to be surprisingly robust. The context of the Façade dramatic situation does,
as we’d hoped, guide the player to use language appropriate to the situation.

References

1. Allen, J., Byron, D., Dzikovska, M, Ferguson, G., Galescu, L., and Stent, A. 1998. An
Architecture for a Generic Dialog Shell. Natural Language Engineering 6 (3).

2. Cavazza, M., Martin, O., Charles, F., Mead, S. and Marichal, X. Users Acting in Mixed
Reality Storytelling, Second International Conference on Virtual Storytelling (ICVS
2003), Toulouse, France, pp. 189-197.

3. Fellbaum, C. (Ed.). 1998. Wordnet:An Electronic Lexical Database. MIT Press.
4. Ferguson, G., Allen, J. F., Miller, B. W., and Ringger, E. K. 1996. The design and im-

plementation of the TRAINS-96 system: A prototype mixed-initiative planning assistant.
TRAINS Technical Note 96-5, Department of Computer Science, University of Roch-
ester, Rochester, NY.

5. Forgy, C. L. 1982. Rete: A Fast Algorithm for the Many Pattern/ Many Object Pattern
Match Problem. Artificial Intelligence 19, 17-37.

6. Friedman-Hill, E. 1995-2003. Jess, the Rule Engine for Java. Sandia National Labs.
http://herzberg.ca.sandia.gov/jess/.

7. Lesh, N., Rich, C., and Sidner, C. 1999 Using Plan Recognition in Human-Computer
Collaboration. In Proceedings of the Seventh International Conference on User Model-
ing. Banff, Canada.

12!!!!!!Michael Mateas*1, Andrew Stern*2

8. Magnuson, W. 1995-2002. English Idioms, Sayings, and Slang.
http://home.t-online.de/home/toni.goeller/idiom_wm/.

9. Mateas, M. and Stern, A. 2004. A Behavior Language: Joint Action and Behavior Idi-
oms, in Prendinger, Helmut and Ishizuka, Mitsuru (Eds.), Life-Like Characters: Tools,
Affective Functions, and Applications, Springer-Verlag, 2004.

10. Mateas, M and Stern, A. 2003a. Integrating plot, character and natural language proc-
essing in the interactive drama Façade, 1st International Conference on Technologies for
Interactive Digital Storytelling and Entertainment (TIDSE ’03), Darmstadt, Germany ,
March 24 – 26, 2003 .

11. Mateas, M and Stern, A. 2003b. Façade, an experiment in building a fully-realized in-
teractive drama, Game Developers Conference (GDC ’03), San Jose, CA, USA, March 4
– 8, 2003.

12. Mateas, M and Stern, A. 2002. A behavior language for story-based believable agents,
IEEE Intelligent Systems, July/August 2002, 17 (4), 39-47.

13. Mateas, M., and Stern, A. 2001. Façade. Digital Arts and Culture 2001. Brown Univer-
sity, Providence RI. 2001.

14. Mateas, M. and Stern, A. 2000. Towards Integrating Plot and Character for Interactive
Drama. In Working notes of the Social Intelligent Agents: The Human in the Loop Sym-
posium. AAAI Fall Symposium Series. Menlo Park, CA: AAAI Press. 2000.

15. NASA. 1985-2002. C Language Integrated Production Systems (CLIPS). Originally
d e v e l o p e d a t N A S A ’ s J o h n s o n S p a c e C e n t e r .
http://www.ghg.net/clips/WhatIsCLIPS.html.

1 6 . O l i v e r , D . 1 9 9 5 - 2 0 0 2 . T h e E S L I d i o m P a g e .
http://www.eslcafe.com/idioms/id-mngs.html.

17. PhraseFinder. 2002. Phrases, Sayings, Quotes and Cliches at The Phrase Finder.
http://phrases.shu.ac.uk/index.html.

18. Phrase Thesaurus. 2002. http://www.phrasefinder.co.uk/index.html.
19. Rich, C., and Sidner, C. 1998. COLLAGEN: A Collaboration Manager for Software

Interface Agents. User Modeling and User-Adapted Interaction. Vol. 8, No. 3/4, pp.
315-350.

20. Wallace, R. The Anatomy of ALICE. http://www.alicebot.org/anatomy.html.

