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Preface

Programming is enjoyable  

To study programming is to do programming. Program is an interesting artifact that 
can be very fascinating.  The best way to learn is to enjoy it by doing it.  This book 
will introduce you to a journey of creating a computer language.  The story tells an 
evolution of a computer language, its internal working mechanism and the ideas 
behind it. The medium of this journey is a computer language and its accompany 
source code and executable code, called Som language.  All the materials can be 
found at:

http://www.cp.eng.chula.ac.th/faculty/pjw/project/som/ind
ex.htm

Programming is still an art  

It requires skill which is acquired through a lot of practice.  Its foundation lays in 
mathematics.  The study of programs as an object in itself is interesting and useful.  
By such study we can understand more thoroughly the relationship between a 
program and the result we want it to accomplish.  It is my intension in this short 
lecture to initiate you towards the study of programs.  Hopefully, to give you some 
insight into programming but my higher hope is to make you appreciate programs as 
beautiful man-made objects.

(Picture of a girl drew by my young daughter)

P. Chongstitvatana
Chulalongkorn University, 2010

Quick introduction



Som is a simple language that is complete enough to be self-hosting, that is, its 
compiler and its virtual machine are written in Som.  It is small. The whole package is 
around 2,000 lines of code written in Som so it can be read and understood by one 
person in a short time. Som language has been used in teaching computer architecture, 
compiler and machine language in my classes for the past 10 years.  Its compiler front 
end is driven by an automatically generated parser.  The parser generator in Som is 
provided. The back end is easily retargeted to different machine languages.

Here is a sample of the language: Matrix multiplication with macro

: index i j = (i * N) + j    // this is a macro

to matmul | i j s k =
    for i 0 N-1
        for j 0 N-1
            s = 0
            for k 0 N-1
                s = s + (a[index i k] * b[index k j])
            c[index i j] = s

Som's virtual machine has an interesting development.  It started the life as a zero-
address (stack-based) instruction set and evolved through one-address and then three-
address formats.  In fact, the history of Som's virtual machine read like a study in 
instruction set evolution.  Som's environment includes a batch-mode compiler and an 
interactive one. An expression can be typed in and is evaluated immediately. Here is 
an example of an interactive session:

> print 2 + 3 nl
5
> to sq x = x * x
> print sq 4 nl
16
>

If you are curious about language design, compiler construction or virtual machine 
instructions, then you are welcome to try Som.  The package is extremely small.  All 
source files and the executable virtual machine plus the compiler object is under 200K 
bytes. The release includes all source of compiler system (in Som) and the virtual 
machine (in C). The executable vm is compiled on Windows XP platform, Vista and 
Windows 7. Because of its smallness, it can be used as an embedded language, or it 
can be modified for a domain-specific language (through the change of grammar) 
easily. Hope you enjoy playing with Som.

PS. “Som” is usually a nickname of a girl in Thai language.  “Som” is translated to 
English as a colour “orange” or a fruit “orange” or “tangerine”. 

Chapter 1  The language

Motivation



The aim of Som language is for teaching. It has been used in computer architecture 
class to teach how high level programming languages and machine codes are related. 
The whole language translation process is simple enough that students can modify it 
to generate code for their projects easily.  Som has a familiar syntax, infix operators 
and it is designed to be minimal.  The basic element in Som is an expression. An 
expression returns a value. A variable is evaluated to its value.  Som has a minimal set 
of operators.  It has small set of reserved words:

to, if, else, while, for, case, break, enum.

Operators 

arithmetic:     + - * / %
logic:         & |  !  ^  <<  >>
relation:             == != < <= >= > 
assignment:        = 
other:         array (memory allocation)

Som has three types of variable: global, local, and array. A global variable must be 
declared outside a function definition before it is used. A local variable's scope is in 
its defined function.  An array variable has its space allocated by calling the "array" 
operators and assigns the return value to the array variable.  If an array variable is 
defined outside a function definition, i.e. global, it is static.  A static memory is in 
data segment.  The compiler knows the base address at compile time and can perform 
some optimisation to achieve faster execution.  An array that is defined inside a 
function definition, i.e. local, is dynamic.  Its space is allocated in the heap.  The life 
time of a dynamic memory depends on the use.  When there is no reference to it, it is 
said to be garbage.  The run-time system may support garbage collection.  Som's 
programming environment allows using indentation for grouping expressions.  

Example: a program to solve tower of Hanoi problem

num = array 4     // a global array variable

// define function "mov" with 3 arguments: n, from, t
// and one local variable: other

to mov n from t | other =      
  if n == 1 
    num[from] = num[from] - 1
    num[t] = num[t] + 1
  else  
    other = 6 - from - t
    mov n-1 from other
    mov 1 from t
    mov n-1 other t

interactive mode



disk = 3
num[0] = 0
num[1] = disk
num[2] = 0
num[3] = 0
mov disk 1 3

Grammar of Som language

notation:
* zero or more times
+ one or more times
[..] optional
' constant symbol
Indentation is used for grouping, optionally braces can be used  '{ '}

toplevel -> 'to fundef | ex
fundef -> id args '= ex  
args ->    id*  ['| id+ ] 
ex -> '{ ex* '} | ex1        

ex1 -> 
  'if ex0 [ 'else ex ] |
  'while ex0 ex |
  'for lvar ex0 ex0 ex |
  'break |
  'case ex0 caselist |
  'enum '{ [ number ] id+ '}
  id '= ex0 |   
  ex0 

caselist -> caseitem | '{ caseitem+ '}
caseitem -> number ': ex | 'else ': ex

ex0 -> term term* 
term ->    
  number | id | vec |
  fun ex0* |
  '! ex0 |
  'array ex0 |
  '( ex0 ')

vec -> id '[ ex0 ']
bop -> '+ | '- | '* | '/ | '& | '| | '^ | 
  '== | '!= | '< | '<= | '>= | '> | '% | '<< | '>>

There are several interesting points about Som grammar.  First, it is expression-based. 
An expression returns a value. Second, the syntax allows very compact writing with 
minimum number of separator and parentheses. For example, a semicolon at the end 
of statement is not necessary as all operators have known arity.  Third, the language 



has very small vocabulary. This makes it very easy to learn. Recursion is quite natural 
in Som. Look at the following example. It is a definition of Fibonacci number.

to fib n =
  if n < 3 
    1
  else 
    (fib n - 1) + (fib n - 2)

Here are some elegant examples. Define some logical functions using only: if, 
==, <.

to and x y = if x y else 0
to or x y = if x 1 else y
to not x = if x 0 else 1
to eq x y = x == y
to neq x y = not ( x == y )
to lt x y = x < y
to le x y = or ( x < y ) ( x == y )
to gt x y = not ( le x y )
to ge x y = not ( x < y )

Control flow operators: for, break, case

For iteration (loop), there are operators: while, for, break.  For branching, there are 
operators: if (else), case. In "for" loop, the index variable must be a local variable. 
"for i start end body" means: 

i = start
while i <= end
  body
  i = i + 1

See the following example of the use of "for":

// fill in an array and print it
max = 10
N = array max

// array is passed by reference
to fill ar n | i =
  for i 0 n-1
    ar[i] = i

fill N max

The "break" has three meanings: 
1) break for loop 
2) break while loop 
3) force return from a function call.  



This is a rather nice semantics as it is very consistent.

The case construction is an efficient way for a multiway branch.  The label in each case 
is an integer.  To help readability, "enum" is used to give labels their symbolic names. 
The symbol ":" makes the syntax look more familiar. A label is stored in the symbol 
table with a unique reference.  The following example shows "case" being used to make 
an efficient inner interpreter loop in decode and dispatch each instruction. “case” uses a 
constant time (indexing) to go to the matched label.

enum 
  1 tAdd tSub

while running
  case opcode
    tAdd :  add
    tSub :  sub
    ...
    else : error "undef opcode"

System calls 

To enable input/output and other system functions, Som uses a primitive "syscall". 
Syscall has a variable number of arguments. The first one is a constant, the number 
that identifies the system function.  Syscall is used to implement library functions 
such as print, printc, loadfile etc.  The implementation of syscall is dependent on the 
platform. It is implemented with C in this version.  Here are examples how syscall is 
used in the library.

to print x = syscall {1 x}
to printc c = syscall {2 c}
to getchar = syscall {3}
to loadfile fn = syscall {19 fn}  // fn is som-string
to nl = syscall {2 10}            // 10 is a newline char

Why syscall has variable number of argument?

A syscall instruction is an escape hatch.  It allows new commands to be added to the 
language without changing the compiler.  Only the virtual machine needed to be 
updated.  Therefore the form (number of argument, whether it outputs any value) of a 
particular syscall is not known when writing the compiler.  An open stack coding can 
be used to cope with a variable number of arguments.  This is easy and does not 
require any special treatment in parsing.  However, it makes a program unreadable. 
See how confusing it can be in this code (from eval-s.txt):

  xArray:           // be careful open stack coding
    pop             // get n from user stack
    a = syscall 8   // alloc M
    push a

syscall 8 needs one argument and returns one value.  The complexity arises because 
of open stack coding which does not allow putting argument to syscall like this:



    a = syscall 8 pop

This is syntax error because function call must know the number of argument.

Tuple

An alternative to open stack coding is to use "tuple". A tuple is a special syntax form 
that encloses a list of arguments (similar to "block" enclosing a list of expressions).  
Using tuple appears frequently in the library.  The token "{" "}" are used and they are 
similar to "block".  

  tuple ->  { ex0 ex0 ... }

String  

A string data structure in Som is implemented as an array of integer.  An integer is 32-
bit and contains at most 4 characters. It is right padded with 0 and terminates by an 
integer 0 (an extra one).  This is called a packed string. It is a compromise between 
the ease of manipulating a string (insert and delete a character is slow) and the space 
efficiency (storing each character in a 32-bit integer is expensive). See the following 
example how to manipulate a string.

// copy s2 to s1
to strcpy s1 s2 | i =
  i = 0
  while s2[i] != 0
    s1[i] = s2[i]
    i = i + 1
  s1[i] = 0

s1 = array 20
strcpy s1 "test string"

The compiler translated a constant string in the program into a constant which pointed 
to data segment storing the string. Some thought must be exercised to handle string in 
Som.  String constant is useful in source language, for example, to present an error 
message.  The most convenient way to implement this is to represent string as an 
array of integer and the pointer to this string is an address of the memory and let the 
operator be type-specific, i.e. the operator knows what type its argument is.  The 
pointer to string (similar to char * in C language) is just an integer.

Macro definition

To reduce the overhead of a function call, a function can be defined as a "macro".  A 
macro definition is just like a function definition. The difference is that the body of a 
macro definition is substituted into the call. It is done by textual substitution (similar 
to a macro language).  Hence, the size of a program with a macro is larger than with a 
function (which is reused).  The advantage is that the program will be executed 
faster.  The syntax of a macro definition is similar to a function definition, only the 
keyword is ":" instead of "to".  For example,



: print x = syscall {1 x}

Whenever the macro appears in the program, the macro body is substituted.

to report a b =
  ...
  print a
  ...

will become

to report a b =
  ...
  syscall {1 a}
  ...

Macro is suitable for defining access functions such as,

to setcar a value = cell[a] = value
to setcdr a value = cell[a+1] = value
to car a = if a == NIL a else cell[a]
to cdr a = if a == NIL a else cell[a+1]

These functions will be executed much faster because there is no overhead associated 
with "call" and "return" such as create/destroy the stack frame. Sometimes the use of 
macro can create a new control flow, for example in the library, the "short-
circuit" and/or are defined:

: or a b = if a 1 else b
: and a b = if a b else 0

These and/or evaluated their arguments just enough to decide the outcome.  This is 
different from the use of "&" and "|" which always evaluate both of their arguments. 
A warning is qualified here: an expression written in a macro is different from a 
normal expression and can cause a subtle bug if it is used carelessly.  

More examples and language tutorial

Example 1   Hello world

prints "hello world"  // prints is in the string lib

Example 2  modulo (it is a built-in operator)

to mod m n = m - (n * (m / n))

Example 3   quick sort

enum
  20 N



a = array N

to swap i j | t =
  t = a[i]
  a[i] = a[j]
  a[j] = t

to partition p r | x i j flag =
  x = a[p]
  i = p - 1
  j = r + 1
  flag = 1
  while flag
    j = j - 1
    while a[j] > x
      j = j - 1
    i = i + 1
    while a[i] < x
      i = i + 1
    if (i < j) swap i j else flag = 0
  j

to quicksort p r | q =
  if p < r
    q = partition p r
    quicksort p q
    quicksort q+1 r

quicksort 0 (N - 1)

Example 4   string manipulation (part of the string lib)

// copy s1 = s2
to strcpy s1 s2 | i =
  i = 0
  while s2[i] != 0
    s1[i] = s2[i]
    i = i + 1
  s1[i] = 0

// print string s1, s1 is som-string
to prints s1 | a i c1 c2 c3 c4 =
  i = 0
  a = s1[i]
  while a != 0
    c4 = a & 255
    c3 = (a >> 8) & 255
    c2 = (a >> 16) & 255
    c1 = (a >> 24) & 255
    if c1 != 0 printc c1
    if c2 != 0 printc c2



    if c3 != 0 printc c3
    if c4 != 0 printc c4
    i = i + 1
    a = s1[i]

// b is a constant string, c is a dynamic array
to teststring | b c =
  b = "123456"
  c = array 10
  strcpy c b
  prints c 

Syntax discussion 

The language LISP is an example of a beautiful language.  Its syntax is trivial and 
very flexible.  However, it is not easy to get the matching parentheses right without 
the help from the editor.  Functional programming languages such as Haskell also 
have very elegant syntax, for example pattern matching.  To make a language easy to 
write, the number of parentheses should be minimised.  The rules to reduce the 
amount of parenthesis are:
1)  do not use parenthesis with arguments of function call.  The arity of any function 
is known.
2)  use infix, left association, and override with parenthesis

With these two simple rules, most parentheses are eliminated.  Only 'block' must be 
decided.  The symbols such as { } can be used.  Parentheses should not be used to 
group statements as it is ambiguous between using them to indicate precedency and 
grouping.  The lexical analyser is made so that indentation is recognised and is 
converted into the proper { }, so in the program text { } are never necessary.  Some 
syntax needs more carefully consideration. See the following grammar.

e -> [ e1* ] | e1
e1 -> 'if e e e | 'while e e ... | e Bop t
t -> number | ... | '( e ')

Consider "if cond e e", should the "condition" be restricted to non-block?  The same 
reasoning must be applied for the "while e e".  Another consideration is the use of ( ).  
Here I use "(e)" which allows any expression to be ( ).  Again, should ( ) be restricted 
to non-block i.e. ( ) should not be used over { }?  I decide to allow full flexibility.  
However, semantic is not clear. For example for assignment statement "v = e", e must 
return value. Should a block return a value (perhaps the last e)?  What to do with 
some e that does not return value?  The obvious case is "v = e".  The value returned 
by "if e1 e2 e3" depends on what e2, e3 return or they may not return any value.  User 
defined functions may or may not return any value.  If "v = e" should return a value 
(so that cascading them is possible, a = b = 3) then during execution in a loop the 
evaluation stack will grow. The situation is not too bad because the stack will be clear 
upon returning from a function call.

Chapter 2   Internals



<more on code generation> 

Compiler

The compiler takes a source file and compiles it in two steps. The first step is to read 
every token (so called lexical analysis) and generates a parse tree representing a 
syntax tree of the source file.  In this step a symbol table containing the names and 
attributes of all identifiers in the source is also created.  The second step takes the 
parse tree and generates the target language. The parser is a recursive descent parser 
generated automatically from Som grammar. The parser generator is explained in a 
separate section. The target language is Som virtual machine instructions.  This virtual 
machine allows Som to be independent of platforms which the code will be executed.  
It is portable across platforms, only the virtual machine needs to be implemented on 
the target platform to run all Som programs. 

Som virtual machine has a long line of evolution. The first version, s-code, is a simple 
stack-based instruction set. The current version, t2-code, is a high performance three-
address instruction set.  To explain how the compiler works, s-code will be used as it 
is very easy to understand. S-code is briefly explained here.  A full detail of s-code 
can be read in the chapter of virtual machines. 

S-code

S-code is a linear sequence of instructions that resemble machine codes.  S-code can 
be executed on a stack-based virtual machine.   The goal of S-code is to be a simple 
language. Essentially it has only around 40 instructions.  Two types of instructions are 
zero-argument and one-argument.  The zero-argument instructions do not have any 
argument embedded in the instructions.  They take arguments from the evaluation 
stack, operate and push the result back to the stack.  The most frequently used zero-
argument instructions are the binary operators such as add, sub.  The one-argument 
instruction has one argument embedded in the instruction. Mostly this argument is a 
reference to a local variable.  All control instructions (jmp, call etc) need a 
displacement as their arguments.  

zero argument instructions

s-code description
add,sub,mul,
div, mod

integer arithmetic, take two operands from the stack and push the result.

shl, shr take two operands: number, no-of-bit and shift the number and push 
the result back.  shr is an arithmetic shift, preserved sign.

band, bor, 
bxor

bit-wise, take two operands from the stack and push the result.

not logical, take one operand and push the result.
eq, ne, lt, 
le, ge, gt

logical, take two operands from the stack and push (T/1, F/0).

ldx take an address, an index and return data at [ads+idx].
stx take an address, an index, a value x, and store x to data at [ads+idx].



case take a value (key), compare it to the range of label, goto 
the matched label, or goto else/exit if the key is out of range. 

array allocate x words in data segment, return ref v to the allocated data. 

one argument instructions

s-code description
lit n push n 
inc v increment local variable
dec v decrement local variable
ld v load a global variable, push data[v].
st v store a global variable, take a value x and store to data[v].
get v get local variable v.
put v store a value x to local variable v
call f call a function, create new activation record, goto f 
callt f      tail call, use old activation record.
ret n return from a function call, n is the size of activation record. remove 

the current activation record, return a value if function returns a value.
fun n function header, n is the number of local variables.
jmp n goto  pc+n 
jt n goto pc+n if top of stack != 0, pop
jf n goto pc+n if top of stack = 0, pop
sys n call a system function n, interface to external functions, the arguments are 

in the stack, the number of arguments can vary.

Scheme of compiling is as follows:

notation:  op.arg   /label

if e1 e2 e3     =>  e1 jf.a e2 jmp.b /a e3 /b
while e1 e2     =>  jmp.a /b e2 /a e1 jt.b
for e1 e2 e3    =>  for loop
case e0 ...     =>  case lit.low lit.hi jmp.else jump-
table
v = e           =>  e st.v  (global var)
                =>  e put.v (local var)
v               =>  ld.v    (global var)
                =>  get.v   (local var)
f arg*          =>  arg* call.f
n               =>  lit.n
e1 bop e2       =>  e1 e2 bop
unaryop e       =>  e unaryop
  v[i] = e        =>  ld/get.v i e stx
... = v[i]      =>  ld/get.v i ldx ...



For loop

"for i start end body" means 

i = start
while i <= end
  body
  i = i + 1

To generate S-code for “for loop” a new local variable is created to be used to store 
"end".   In terms of speed, it is faster because the "end" is evaluated and stored in a 
local variable just once in the initialization, so testing "if i <= end" is faster than 
evaluate the expression every time around the loop. The code generation is simple.  A 
new local is created to store "stop" value, let's call it "end". The simple form is: 
(assuming i is local)

  lit start 
  put i  
  lit stop
  put end
  /loop
  get i 
  get end
  le
  jf exit
  body
  inc i
  jmp loop
  /exit

This is inefficient as it executes two jumps (jf, jmp) per loop. The following form 
requires only one jump in the loop.

    lit start
  put i
  lit stop
  put end
  jmp test
  /loop
  body
  inc i
  /test
  get i
  get end
  le
  jt loop

This is also applicable to while loop.

case



There are two alternatives to compile case.  The first alternative is to generate table-
lookup instruction of the form:

<case, else, n, value1, goto1, ... valuen, goton>

follows by the code of each case item.  The code for each case item is ended with 
jump to exit. (perhaps using "break" which is transformed into jump) where n is the 
number of case list, else is the default goto, value is the case label.  The jump list is 
sorted according to value to enable the matching (searching) in log n time using for 
example binary search.  This is very similar to lookup instruction in JVM.

The above compare-and-jump table is the most general form. It can handle all cases of 
"case".  However it is not the most efficient method.  A jump table can be constructed 
that take constant time in searching.  When the case label is densed, which is usually 
the case, the index can be used to access the jump table directly without search.  

<case2, low, hi, else, goto1...goton>

where low, hi is the range of label.  If the index is out of range then use "else".  hi-
low+1 is the size of jumptable.  index-lo is used to access the gotos.  This is the form 
we used in Som compiler. Each case action is compiled into a normal sequence of 
code ended with jmp.end.  The entry into the jump table is the code "jmp" to the 
corresponding ex.

case e0 ecase   =>  
  e0
  case 
  lit.low 
  lit.hi 
  jmp.else 
  jmp.L1
  ... 
  jmp.Ln        // jump table
  /L1 
  e1 
  jmp.end      // each case action
  /L2 
  ...
  /Ln 
  en 
  jmp.end 
  /else 
  e-else       // default action
  /end

An example

Here is some source snippet (from bubble sort), data[ ] is a global array, maxdata = 
20.



to swap a b | t =
  t = data[a]
  data[a] = data[b]
  data[b] = t

to sort | i j =
  for i 0 maxdata-1
    for j 0 maxdata-2
      if data[j+1] < data[j]
        swap j j+1

The code below shows the output listing of S-code (from Som v 2.4).  The left column 
is the function swap.  The right column is the inner for-loop of sort. The local variable 
is numbered in reversed order (to fit the offset from fp). For example, in swap: a is 3, 
b is 2, t is 1.

45 Fun swap
46 Ld data
47 Get 3
48 Ldx
49 Put 1
50 Ld data
51 Get 3
52 Ld data
53 Get 2
54 Ldx
55 Stx
56 Ld data
57 Get 2
58 Get 1
59 Stx
60 Ret 4

69 Lit 0
70 Put 3
71 Lit 20
72 Lit 2
73 Sub
74 Put 1
75 Jmp 92
76 Ld data
77 Get 3
78 Lit 1
79 Add
80 Ldx
81 Ld data
82 Get 3
83 Ldx
84 Lt
85 Jf 91
86 Get 3
87 Get 3
88 Lit 1
89 Add
90 Call swap
91 Inc 3
92 Get 3
93 Get 1
94 Le
95 Jt 76
96 Inc 4
97 Get 4
98 Get 2
99 Le
100 Jt 69

Interactive mode 



Som programming system is interactive. The input source program is typed in and the 
compiler translates the source into S-codes which then are executed immediately. All 
expressions are stored in the code segment. We need some markers in the code 
segment to mark out the defined function so that when a S-code file is loaded it is 
possible to know which section is to be executed immediately and which section is the 
function definition.  The symbol table is not required when executing the S-code. 
However the presence of a symbol table facilitates the debugging.  

A defined function is marked in CS by "fun m" and ended with "ret n". The layout in 
CS is like this:

to name arg* e  =>   fun m, ... body ..., ret n.

At the toplevel, evaluating an expression returns a value which may or may not be 
used. The unused values are accumulated and they are purged when "ret" is 
performed.  
e   =>  e end

The action at the toplevel is as follows.  Once S-code is loaded (or having been 
translated into CS), the execution begins.  The state of computation is created causing 
changes in DS and SS.  The "end" will return the control back to the console.

Parser Generator

A parser generator takes a grammar (in some form) of a language and generates a 
parser for that language.  The parser generator generates Som parser. The grammar of 
the parser to be the input of the generator is described as follows:

grammar -> 'string | rule | 'eof
rule -> 'id rule2
rule2 ->  '= es | '[ var
var -> 'id var | '] '= es
es -> e1 es | '| es | '%
e1 -> 'id | 'string 

'string is passed through.  It is the "action" part of the generator.  If 'id  is a terminal 
symbol, it is a token name (tkEQ ...).  If 'id is a nonterminal symbol, it is the rule 
name appeared on the left hand side of other rules. '| indicates alternatives. '% 
terminates a rule. The terminal 'nil indicates empty match (always match). 

Example  This grammar:
  args =
    tkIDEN "enterLocal tokvalue" args |
    tkBAR "ypush Nlv" local |
    "ypush Nlv" nil %
  ex =
    tkBB "ypush MARK" exs tkBE "doblock" |
    ex1 %

turned into Som parser:



  to args =
    while tok == tkIDEN
      enterLocal tokvalue
      lex
    if tok == tkBAR
      ypush Nlv
      lex
      commit local
      1 break
    ypush Nlv
    1

  to ex =
    if tok == tkBB
      ypush MARK
      lex
      commit exs
      expect tkBE
      doblock
      lex
      1 break
    if ex1
      1 break
    0

A rule always returns 0 (fail) or 1 (success). As this is really a one-look-ahead parser, 
returning a 0 means there is an error.  An alternative consists of several "match" 
tokens.  The first match is handled differently from the rest.  If a token starts with "tk" 
(tkXX), it is a terminal symbol, otherwise it is a nonterminal symbol.

match first token
 
   tkXX     ->  if tok == tkXX
   nonterm  ->  if nonterm 

match other token

   tkXX     ->  expect tkXX
   nonterm  ->  commit nonterm

 A match token is followed by "lex" to move over this input token but if there is a 
string (pass through), "lex" is will be placed after the string.

Example
  ex1 =  
    tkIF ex0 ex ... |
    tkBREAK "ypush newatom" 

Becomes



  to ex1 =
    if tok == tkIF
      lex
      commit ex0
      commit ex
      ...
    if tok == tkBREAK
      ypush newatom
      lex
      ... 

An alternative is ended with "1 break" and a rule is ended with "0" except when the 
last one is "nil", then it is 1 (always match). 

Example
  ex = ... | ex1 %

becomes

  to ex =
    ...
    if ex1
      1 break
    0  

When an alternative is recursive, "while" loop is used.

Example
  local =
    tkIDEN "enterLocal tokvalue" local |
    nil %

becomes

  to local =
    while tok == tkIDEN
      enterLocal tokvalue
      lex
    1 

When there is multi-choice and the first set are all terminals then a more efficient 
branch, "case", is used.

Example
  bop =
    tkPLUS "ypush tok" |
    tkMINUS "ypush tok" |
    tkSTAR "ypush tok" % 



becomes

  to bop =
    case tok
      tkPLUS:
        ypush tok  lex 1 break
      tkMINUS:
        ypush tok  lex 1 break
      tkSTAR:
        ypush tok  lex 1 break
     0 

Implementation

The following paragraphs are a short description of how the generator works.  It is 
best read side-by-side with the source code (this is only the main part, for the 
complete source please see the package somv42a.zip ).  Grammar is read by a lex 
syscall in vm (of som 4.2 vm).  This lexical analyser knows Som tokens.  (If the built-
in lex is not used then one can use lex in som from token-s.txt from som 4.1 and 
earlier). The input grammar has the following form:

grammar -> 'string | rule | 'eof
rule -> 'id rule2
rule2 ->  '= es | '[ var
var -> 'id var | '] '= es
es -> e1 es | '| es | '%
e1 -> 'id | 'string

Two lists are built from the input grammar. One list is for the "header" and the other 
list is all rules from the grammar. The parser that parses the input grammar is a 
recursive descent parser.  The output of the parser are all rules that have this form: 

  ((lhs1 (var)(alt1)(alt2)...) 
   (lhs2 (var)(alt1)(alt2)...)...)

Each symbol is tagged (type.value) where

  type = TERM NONTERM STRING NIL
  value = pointer to its print-string 

Each token is tagged. A rule in the input grammar is transformed to a list of 
alternatives and rules. After the input grammar is parsed, the generation of an output 
parser from the list of rules is done for each rule.  The generator extracts the "lhs" 
(head) of the rule and generates alternatives. Each alternative is checked for recursion. 
Each match in the grammar is transformed into the appropriate output. The first match 
is different from the rest. The last match is ignored if the rule is recursive. Finally, the 
end rule is generated.

The main goal of this parser generator is to generate "multiway branch" (switch, 
case).  It will be compiled into a much faster code.  Previously, the parser has been 



hand-coded in this part.  To decide if a rule needs a multiway branch, there are 3 
factors:
  1)  it must not contain recursion
  2)  it has more than two choices (otherwise if..then else is sufficient).
  3)  all choices except the last one must has tkXX (non terminal symbol) as the first 
set. 

Example
  ex1 =
    ...
    tkENUM tkBB elist tkBE "ypush NIL" |
    tkBREAK "ypush newatom OPER tkBREAK" |
    exas %

becomes

  to ex1 =
    case tok
      ...
      tkENUM: ...
      tkBREAK: ...
      else:
        if exas
           1 break
     0

It should be fine to do "commit exas" but it causes parsing error. This dues to the way 
"exas" works (and this is the most difficult bug to track down).  In the end, this is a 
good parser generator in ~700 lines of code.

Som parse tree

Here is the data structure of Som parse tree.

list   

A list is linked dot-pairs.  A dot-pair has two fields: head.tail.  The head can be either 
a dot-pair or an atom.  The tail is a pointer points to list or nil (end of list).  An atom 
has two fields: type.value.   An atom is distinguishable from a dot-pair because its 
type field has a small value (0..9), this value is less than any pointer to dot-pair.  

Example of a list of A, B, C  is (A B C)

atom 

oper.op    gname.idx   lname.idx   string.str   num.value

op

  add sub mul div eq ne lt le gt ge not band bor bxor 



  mod shl shr set vec mac fun call mx if ifelse while for
  break array case sys

program

fun/mac definition   (oper.fun/mac gname.idx e...)
for                  (oper.for lv ex0 ex0 ex)
while                (oper.while ex0 ex)
if                   (oper.if ex0 ex)
ifelse               (oper.ifelse ex0 ex ex)
case                 (oper.case ex0 block)
assign               (oper.set var ex)
call/mx              (oper.call/mx gname.idx e...)
block                (oper.block e...)
syscall              (oper.sys num.value e...)

var 

        gname.idx  lname.idx (oper.vec var ex)

Example

to sort | i j =
  for i 0 maxdata-1
    for j 0 maxdata-2
      if data[j+1] < data[j]
        swap j j+1

(fun sort 
  (for #1 0 (- 20 1 )
    (for #2 0 (- 20 2 )
      (if (< (vec data (+ #2 1 ))(vec data #2 ))
        (call swap #2 (+ #2 1 )))))))

: print x = syscall {1 x}

(mac print (sys 1 #1 ))

encoding

encoding of type (0..9)

   sp 0  oper 1  num 2  gname 3  lname 4  * 5  string 6 

encoding of op

 mul 50    div 51    sub 52     add 53    set 54
 eq 55     band 56   bor 57     bxor 58   mod 59
 not 60    ne 61     lt 62      le 63     shl 64
 gt 65     ge 66     shr 67     mac 68    * 69 
 * 70      vec 71    mx 72      block 73  call 74



 fun 75    if 76     ifelse 77  while 78  for 79
 break 80  array 81  case 82    * 83      sys 84

S-code optimisation

S-code is intentionally kept simple and minimal to make it easy to be changed. Most 
of the optimisation described here has been done for a variety of reason.  However, 
the basic Som system employs just a few of these optimisation.  Specifically the 
following:  inc v, dec v, short cut jmp to ret, jmp to jmp. In performing the code 
optimisation, the goal is to reduce the number of instruction executed. This is related 
to the speed of virtual machine execution.  For example, by combining two 
instructions to make a new instruction, this new instruction is more complex hence 
taking more time to execute them.  However, as the semantic of instruction does not 
change, the new instruction performs the same amount of work as several old 
instructions. The execution speed of the virtual machine stems from the reduction in 
its overhead.   The virtual machine is implemented as a big while switch loop:

fetch op code at ip
while no exception
  decode and execute by
  switch op
     case add : do ...
     ....
  ip = ip + 1

Each time through the loop takes some overhead.  Reducing the number instruction 
also reduce the number of time through this loop.  Hence the new instruction makes it 
faster.

Inc, dec 

get lv, lit 1, add, put lv  ->  inc lv

and vice versa for dec.  Increment uses quite often and it replaces 5 instructions which 
is significant saving.  It is observed that the sequence:

ld ip, lit 1, add, st ip

occurs frequently and it can not be optimised to inc x because the argument is not a 
local variable.  The sequence "lit n, add" or "lit n, sub" can be substituted by "addi n", 
where n can be positive and negative.  The optimised codes are for performance 
reason, they are not absolute necessity.  The markers are not executable. They are for 
compiler internal use to help generate the correct executable.  This set is more or less 
a typical stack-virtual-machine instruction set.  It is not too much different from JVM. 
JVM set is much larger with more data types.  Translating S-code to JVM should be 
straight forward.

Sequence of transformation



1. change break to jump
scan for the matched innermost loop of break: efor, ewhile, ret, end. Patch jmp to that 
location. case is not a loop, break in case must break loop, or return from function 
call. Strictly speaking this is not an optimization. It is a usual code generation.

2. short cut the jump to jump, jmp to ret

3. ewhile to nop

4. a = a + 1  => inc a  (if a is local) and similarly -1 for dec

5. combine conditional jump
conditional: eq, lt, le, ge, gt
jump: jt, jf
to: jeq, jlt, jle, jge, jgt

Instructions for "for" loop

Two special instructions for implementing for loop are: ifor, efor.  In the ideal case 
ifor and efor should have three arguments, the two local variables to do “i <= end” 
and the jump offset.  However, to conform to one argument format, the trick is the use 
a "pair" of consecutive local variable. Therefore only one argument needed to be 
specified.  To remove the "offset" argument from the instruction, ifor/efor v1 v2 
offset is splited into two instructions. One is to ifor/efor and follows by another 
instruction, "jump".  When ifor/efor is evaluated to be false, it skips the next 
instruction.  This can be paraphrased as "test and jump next instruction if false".  ifor 
does the initialisation of the index variable and calculates the end value and stores it 
in the "end" variable.  This allows the end value to be evaluated only once.  The 
assumption that the end value is never changed in the body of loop must hold.

ifor v1  (start end -- )
follows by jmp end_for 

“ifor” uses a pair of locals, v1 v2, to store index and end values.

v1 = start (index)
v2 = end

efor v1 ( -- )
follows by jmp begin_for

“efor” uses a pair of locals, v1 v2, that store index and end values.

The instruction “ifor” takes two items from stack "start, end" and stored their values 
to v1 and v2. If v1 > v2 then jump out of the loop by executing the next instruction.  
Otherwise it skips the next instruction.  The instruction “efor” is at the end of body.  It 
increments v1, and tests if v1 <= v2 then executes the next instruction which is jmp 
begin_for. Otherwise, the next instruction is skipped, hence exits the for-loop.



    ...
  get i
  get end
  le
  jf exit
  /loop  
  body
  get end
  inc-skip-lt i  // i++, if tos < i skip next 
  jmp loop
  /exit

“efor” reduces five instructions to three instructions.  If we can make "end" to be 
adjacent to “i” (allocating "end" will be more complex) then it will reduce to two 
instructions:
    ...
  /loop
  body
  efor i        // i++, if end < i skip next
  jmp loop
  /exit

These new primitives reduce the static size by another 2%, and dynamic size 8%.  In 
terms of speed, it is also faster because the "end" is evaluated and stored in a local 
variable just once in the initialization by ifor, so testing "if i <= end" is faster 
than evaluate the expression every time around the loop.

Optimisation macro and/or in (Som v4.0)

Beside simple peep-hole optimisations such as:

not jf => jt
not jt => jf
lit.0 eqv.x jf => get.x jt   and its family
jmp.x to jmp.y => jmp.y ...
jmp.x to ret   => ret
lit.1 jt => jmp  (while 1)

There are a complex cascade jumps created by macro expansion of and/or.  Doing a 
good code optimisation here improve performance significantly, for example, the 8-
queen benchmark. We start the explanation with a simple case first.

: and a b = if a b else 0
: or a b = if a 1 else b

- and a b

a jf.1 b jmp.2 <1> lit.0 <2>

- and (and a b) c



<--- and a b ------------->
a jf.1 b jmp.2 <1> lit.0 <2> jf.3 c jmp.4 <3> lit.0 <4>

We recognise the pattern:  jf.1 to lit.0 jf.3 => jf.3 ... because 
lit.0 jf always jump.  We cannot do anything to jmp.2 to jf.3.  If we move 
jf.3 left then it will be incorrect when it does not jump.  The ideal code is

a jf.1 b jf.1 c jmp.2 <1> lit.0 <2>

But that require the code generator to be clever. Now the more difficult case of or/or.

- or a b

a jf.1 lit.1 jmp.2 <1> b <2>

- or (or a b) c

<----- or a b ------------>
a jf.1 lit.1 jmp.2 <1> b <2> jf.3 lit.1 jmp.4 <3> c <4>

Recognising that:

lit.1 jmp.2 to jf.3 lit.1 jmp.4 => lit.1 jmp.4

This requires one look back and three look forwards.  Even with different association 
the code sequence remains the same.

- or a (or b c)

                       <-----  or b c --------------->
a jf.1 lit.1 jmp.2 <1> b <2> jf.3 lit.1 jmp.4 <3> c <4>

If the cascade is mixed of and/or.

- and (or a b) c

<------ or a b ----------->
a jf.1 lit.1 jmp.2 <1> b <2> jf.3 c jmp.4 <3> lit.0 <4>

The optimisable sequence is a difficult one.

lit.1 jmp.2 to jf.3 =>  jmp.3

Other situation of mixing does not have any new pattern.  In summary, there are 3 
cases:

1. cascade and:   jx to lit.0 jf.y => jx.y
2. cascade or:    lit.1 jmp to jf lit.1 jmp.y  => lit.1 jmp.y
3. or with other: lit.1 jmp to jf <z>  => jmp.z



Indentation

Som uses indentation for grouping block statements. Grouping is done in the scanner 
because the scanner must know about when to start and end the group.  Assume the 
source contains no tab (converts tab to space) to simplify the implementation.  The 
rule to recognise block-begin block-end is:

check the column of the first token on the new line
if col == previous  proceed as normal
   col > previous   it is block-begin, push col
   col < previous   it is block-end, pop col
                      and repeat the check to match
                      block-begin

The complication is in the state of lex.  That lex must sometimes return with block-
begin, block-end, especially when there are many block-ends.  Care must be taken to 
synchronise the state of lex. Doing lookahead in parsing an assignment expression 
proves to be the source of difficulty as it backtracks lex and causes confusion on 
lexstate.  An easy fix is do not use lex in lookahead.  

lexstate

To implement using indentation as block, the lexical analyser (lex) has a Finite State 
Machine to control its state.  A transition occurs at a call to lex. The starting state is 
Neutral and lex returns a token.  At event newline the column position is compared to 
the previous start column. There are three possibilities: 
1) equal, returns token, 
2) more than, returns block-begin and marked this (pushing it to colstack) next state is 
Forward, 
3) less than, returns block-end and pop the previous mark; next state is Back. block-
begin and block-end are inserted by lex. The token that is scanned from the source is 
kept and will outputs it at the Neutral state. 

In Forward, the only thing to do is to output the saved token and go to Neutral.  In 
Back, the block-end is outputted until the matched position for block-begin is found 
by poping the colstack each time lex is called, then go to Neutal. At the end of file, 
care must be taken to output block-end to match the rest of block-begin by poping out 
the colstack until col == 1 each time lex is called.

When parsing an assignment statement, a lookahead for '=' is done inside the action 
routine instead of using lex to avoid the complex interaction with the new lex FSM 
when doing backtracking (saving and restoring the lex state).  

Chapter 3  Virtual Machines
There are several virtual machine implementations for Som. The evolution of the 
design started from simplicity to performance oriented. S-code is the simplest one. 
Several extensions have been made to improve the performance by adding a one-
address format.  U-code is the design that departs from stack-based.  It uses an 
accumulator. This allows the execution cycle of the virtual machine to be faster 



because of not accessing an evaluation stack. U-code also has one extension to 
include two-address format.  The current virtual machine is a three-address format.  It 
is a register-based instruction set, similar to modern processors. 

S-code

S-code is a linear sequence of instructions that resemble machine codes.  Hence it is 
easy to translate the S-code to an assembly language of any processor.  The S-code 
can be executed on a stack-based virtual machine.  The goal of the design of S-code is 
to emphasis a small number of instructions, and ease of modification.  It should be 
reasonably fast when interpreting.  A "clean" implementation is the goal, so that it is 
easy to modify or to make a new code generator. Essentially, S-code has only around 
40 instructions. Many extensions can be experimented with easily.  A fixed 32-bit 
instruction format is suitable.  It is not the most compact form but it is easy to 
generate code and reasonably fast when interpreting.  This format simplifies code 
address calculation and allows code and data segment to be the same type (32-bit 
integer).

Two types of instructions are: zero-argument and one-argument.  The zero-argument 
instructions do not have any argument embedded in the instructions.  They take 
arguments from the evaluation stack, operate and push the result back to the stack.  
The most frequently used zero-argument instructions are the binary operators such as 
add, sub.  The one-argument instruction has one argument embedded in the 
instruction. Mostly this argument is a reference to a local variable.  All control 
instructions (jmp, call etc) need a displacement as their arguments.  The evaluation 
stack is implicit and automatic, that means, it can not be explicitly accessed by 
programmers (the stack pointer is not settable). The top-of-stack is usually cached 
into a register in the virtual machine to speed up the operation.

notation: 
n is a 24-bit constant (2-complement)
x is a 32-bit value
v variable reference, for a global variable, it is an index to Data segement, for a local 
variable, it is an offset to a current activation record in Stack segment.
f is a reference to Code segment.
DS[ ] data segment, SS[ ] stack segment, CS[ ] code segment.
pc is program counter, pointed to the current instruction.
stack notation:   (arg tos -- result)

zero argument instructions (arg field is 0)

s-code description stack effect
add,sub,mul,
div, mod

integer arithmetic, take two operands from the stack and push 
the result.

 (a b -- a op b)   

shl, shr take two operands: number, no-of-bit and shift the number and 
push 
the result back.  shr is an arithmetic shift, preserved sign.

 (a n -- a shift n) 

band, bor, 
bxor

bit-wise, take two operands from the stack and push the result.  (a b -- a bitop b)



not logical, take one operand and push the result.  (a -- 0/1)
eq, ne, lt, 
le, ge, gt

logical, take two operands from the stack and push (T/1, F/0).  (a b -- 0/1)

ldx take an address, an index and return DS[ads+idx].  (ads idx --
  DS[ads+idx]) 

stx take an address, an index, a value x, and store x to 
DS[ads+idx].

 (ads idx x -- )

case take a value (key), compare it to the range of label, goto 
the matched label, or goto else/exit if the key is out of range. 

 (key -- )

array allocate x words in Data segment, return ref v to the allocated 
data. 

 (x -- v)

one argument instructions

s-code description stack effect
lit n push n  ( -- n )              
inc v increment local variable, SS[fp-v]++.  ( -- )
dec v decrement local variable, SS[fp-v]--.  ( -- )
ld v load a global variable, push DS[v].  ( -- DS[v])
st v store a global variable, take a value x and store to DS[v] = x.  (x -- )
get v get local variable v.  ( -- SS[fp-v])
put v store a value x to local variable v, SS[fp-v] = x.  (x -- )
call f call a function, create new activation record, goto f in CS.  ( args -- )
callt 
f      

tail call, use old activation record.  ( args -- )

ret n return from a function call, n is the size of activation record. 
remove 
the current activation record, return a value if function returns a 
value.

fun n function header, n is the number of local variables.
jmp n goto  pc+n in CS
jt n goto pc+n if top of stack != 0, pop  (0/1 --)
jf n goto pc+n if top of stack = 0, pop  (0/1 --)
sys n call a system function n, interface to external functions, the 

arguments are in the stack, the number of arguments can vary.
 (args -- )

Format

Each instruction is 32-bit.  Right most 8-bit is the operational code.  Left most 24-bit 
is an optional argument. This format allows simple opcode extraction by bitwise-and 
with a mask without shifting, but needs 8-bit right shift to extract an argument.  
Because zero argument instruction is more frequent, this format is fast for decoding 
an instruction.  



Encoding

1  add     2  sub     3  mul     4  div     5  band 
6  bor     7  bxor    8  not     9  eq      10 ne 
11 lt      12 le      13 ge      14 gt      15 shl 
16 shr     17 mod     18 ldx     19 stx     20 ret 
21 -       22 array   23 -       24 get     25 put 
26 ld      27 st      28 jmp     29 jt      30 jf 
31 lit     32 call    33 callt   34 inc     35 dec 
36 sys     37 case    38 fun 

[- ]  reserved 

Activation record (run-time data structure) 

An activation record stored a computation state.  It resides in the stack segment. The 
computation state consists of: pc (return address), fp (frame pointer), all locals (local 
var and parameters).  sp (stack pointer) needs not be stored as it will be recovered 
when return from a function call. The “ret” instruction knows the size of activation 
record.  The following diagram shows the layout of an activation record in the stack 
segment:

hi address

retads'    <- sp
fp'        <- fp
lv         <- lv 1
...
pv         // no. of pv, arity of func
...        <- lv n
           <- sp'', sp after return

lo address

A function call creates a new activation record.  The new fp is sp + lv + 1.  The value 
lv + 1 is the argument of "fun m", m = lv + 1.  A local variable is indexed by an offset 
from the current fp.  When returning, "ret n", n is the size of activation record + 1.  
Restoring sp by (not considering the return value yet)  

sp'' = fp - n  

The arity of the function can be calculated from  

arity = n - m

A function call does the following. Let a be an offset to create a new frame, IP be the 
instruction pointer, ads be the address of the function.

Call:
1  SS[SP+a] = FP
2  FP = SP + a



3  SP = FP + 1
4  SS[SP] = IP + 1
5  IP = ads + 1

Line 1 saves the old FP at the new FP.  Line 2 moves FP to the new place.  Line 3 sets 
the new SP on top of the new frame.  Line 4 saves the return address. The current 
instruction pointer is at the caller, therefore the return address is IP + 1.  Line 5 jumps 
to the body of function. A tail-call (callt) does not create a new activation record.  It 
reuses the old one.  The function parameters are copied to the old activation record.

The return instruction is divided into two cases: return with a value, return without 
any value.  To return with a value, the current top-of-stack value must be pushed to 
the previous evaluation stack. These two cases can be distinguished by checking 
whether at the time of return, SP comes back to its initial position or not (at the 
beginning of a new frame SP = FP + 1).  Let data be the offset in the return 
instruction.

Return-with-value:
1  IP = SS[FP+1]
2  a = TOS
3  SP = FP - data + 1
4  FP = SS[FP]
5  SS[SP] = a

Line 1 jumps to the return address. Line 2 saves the return value.  Line 3 restores SP.  
Line 4 restores FP to the previous value hence delete the current stack frame and 
moves back to the previous one.  Line 5 pushes the return value to the current 
evaluation stack.

Return:
1  IP = SS[FP+1]
2  SP = FP - data
3  FP = SS[FP]

Return without a value is simply restoring the return address, the previous SP and FP.

case instruction

The layout of code in "case" is as follows:

case
lit low
lit hi
jmp else
jump table
...

code of each case

 case does:



1  extract range of label: low, hi
2  if key < low or key > hi
3    pc = pc + 3        // goto else-case
4  else
5    pc = pc+key-low+4  // goto matched label

In this implementation, the jump-table is fully-filled with the labels in the range. 
Finding the matched label is simply an index calculation, a constant time operation.  
This enables “case” to be fast but it consumes the memory in the code segment as 
large as the range of label.  This is wasteful if the label is not densed.  If the label is 
sparse, a binary search can be used.  The jump-table is the sorted label of the pair 
(label, goto code).  This is not used in this virtual machine.

S-code virtual machine

The main loop is simply a decode-execute cycle using a "switch( )".  Let IP be the 
current instruction pointer.

Eval:
  while(runflag )
    opcode = CS[IP] & 255
    data = CS[IP] >> 8
    IP++
    switch(opcode)
      case Add: ... 

The run-time data structure includes: a memory M[.], a stack-segment SS[.], a code 
segment (it is relocatable), a data segment (it is absolute).  The code and data segment 
are in M[.].  The memory map is as follows (from lo mem to hi mem):
system area
data segment
code segment

The system area contains some values used in communicating between system 
functions in the compiler and the virtual machine.  The stack segment is a separate 
data structure from the memory.  The stack segment contains a run-time data structure 
called "stack frame" used in a function call and the evaluation stack.  A pointer, FP, 
points to the current stack frame.  A pointer, SP, points to the evaluation stack. A 
stack grows from lo to hi address. The structure of a stack frame is as follows:

hi

         <-  SP
retads 
FP'      <-  FP
lv_1
...
lv_n  

lo



The evaluation stack is "on-top" (higher address) of the stack frame.  To pass 
parameters from the current context to a function, the new stack frame is "overlapped" 
with the evaluation stack.  The new evaluation stack is then started at an address 
"after" the return address in the new stack frame. The current top-of-stack is at:

SS[SP]

To push a value to the evaluation stack requires:

SP++
SS[SP] = x

To pop a value from the evaluation stack is the reverse of push:

x = SS[SP]
SP--

To access a local variable in the current stack frame, a negative offset (the reference 
of a local variable) is used relative to FP.  For example the first local variable is at 
SS[FP-1], the second SS[FP-2] etc. It is not necessary to save SP as the "ret" 
instruction contains a proper offset to restore SP back to a previous context.  
Similarly, the "fun" instruction contains a proper offset to build a new stack frame.

<to explain how to eval from Som language>

Sx-code

Sx-code is an extension of S-code to have additional one address.  The aim is to 
improve the execution speed of the interpreter.  As one-address will reduce the 
number of instruction by 30-40%, it should be faster than S-code.  The decoding of 
zero+one address is exactly the same as zero-address s-code as the instruction has two 
fields: op, arg. In a sense, we get the one-address for "free".  If the VM is as fast as 
som-v16 then by reducing the number of executed instruction by 30-40%, the new 
VM will be faster (even faster than Som v 1.7 which uses T-code). Chronologically 
Sx-code is designed after T-code.  Sx-code is used in Som series 3. It is one of the 
largest instruction set in terms of the number of instructions.

All binary operators are extended to have one-address to access local frame, therefore 
in many cases the sequence "get.x get.y bop" becomes "get.x bop.y". The immediate 
mode stored a literal in the argument of the instruction. The sequence "get.x lit.y bop" 
becomes "get.x bopi.y". To blend one-address into zero-address, arg = 0 is used to 
indicate the top of stack addressing.

The load/store index, are extended to store the base-address in the argument. The 
sequence "get.base get.index ldx" becomes "get.index ldx.base".  When base is global, 
a new instruction "ldy.base" is used.  The order of argument for store index is 
different from S-code.  The sequence "get.base get.index get.val stx" becomes 
"get.index get.val stx.base". When the base is global, "sty.base" is used.  There is no 
use for the old "ldx/stx" (zero-address) as there is always the base address in either 



local or global. To optimise the for-loop, "efor" instruction is introduced.  "efor.x" 
does the following:

  x++, push(x <= adj(x))

where x is a local, adj(x) stored the terminal value of x.  The sequence at the end of 
for-loop is usually "inc.x get.x get.end le jt.loop" becomes "efor.x jt.loop" where 
adj(x) is end.  The compiler must allocate adj(x) accordingly.

Encoding

Arrange the instruction so that grouping is easy.

bop-zero-arg:  add..shr  (1..16) (17..20 reserved)
bop-one-arg-v: add+20   (21..36) (37..40 reserved)
bop-one-arg-i: add+40   (41..56) (57..60 reserved)
other:         get..calli  (61..82)
zero-arg:      not case end (83..85)

bop is   add sub mul div band bor bxor mod
         eq ne lt le ge gt shl shr
other is get put ld st ldx stx ldy sty
         jmp jt jf call ret - efor
         inc dec lit ads sys fun calli
         not case end

The instructions "fun" and "calli" are not executable. They are markers in code 
segment.

U-code

The aim of this design is to make a compact instruction set that is fast and has a clean 
semantic.  Toward these goals, the instruction set has less than 50 instructions.  It is a 
one-address format with a few two-address, based on using an accumulator.  The 
encoding is fully decoded to allow fast virtual machine execution without decoding an 
instruction. The following description is for the version u2-code.

U-code instruction set

bop    :  add sub mul div band bor bxor mod
          eq ne lt le gt ge shl shr
bim    :  addi subi bandi bori eqi lti lei shli shri
data   :  ld st get put lit
vector :  ldx/ stx/ ldy/ sty/ ldxa ldya
control:  jmp jt jf jle/ case call callt ret
extra  :  fun/ sys inc dec not push

Total  50 instructions.  The suffix / indicates the instruction with two arguments.

The ldxa ldya can shorten "putting" the result into a temporary register (called 



cascading). Not all the immediate mode is included.  That will make the instruction 
set too fat. The logical one: nei, gti, gei can be emulate by the inverse. The 
others are rarely used: muli divi xori modi. shl and shr are added to 
make the instruction set complete. 

Format

  one-address  op:32  arg:32
 two-address  op:32  a:24,b:8

Semantic

operators
v is M[fp+v]

bop v      ::  AC = AC op v
bim a      ::  AC = AC op a 

data
lit a      ::  AC = a
ld a       ::  AC = M[a]
st a       ::  M[a] = AC
get v      ::  AC = v
put v      ::  v = AC 

vector
ldy a,v    ::  AC = M[M[a]+v]
sty a,v    ::  M[M[a]+v] = AC
ldx v1,v2  ::  AC = M[v1+v2]
stx v1,v2  ::  M[v1+v2] = AC
ldxa v     ::  AC = M[v+AC]
ldya a     ::  AC = M[M[a]+AC]

control
jt a       ::  if AC != 0 pc = a
jf a       ::  if AC == 0 pc = a
jle a,v    ::  if AC <= v pc = a
call a     ::  if arity(a) > 0 pusha passing the last 
parameter if any
               create a new activation record
ret size   ::  delete current activation record
case lo; lit hi ::  if lo <= AC <= hi skip 4+2*(AC-lo)

extra
inc v      ::  v++, AC = v
dec v      ::  v--, AC = v
push v     ::  sp++, if(v==0) M[sp]=AC else M[sp]=v
fun arity,size    a place holder for arity,size

Usage of for and case



for loop
...
inc i
jle v loop

case
<index in AC>
case lo
lit hi
jmp else
jmp case1
...
jmp casen

Instruction encoding

1   add sub mul div band bor bxor mod eq 
10  ne lt le gt ge shl shr addi subi bandi 
20  bori eqi lti lei shli shri inc dec lit sys 
30  not push get put ld st ldxa ldya call ret 
40  callt jmp jt jf case ldx/ stx/ ldy/ sty/ jle/ 
50  fun/

Two-addressing allows the base address to be specified in vector instructions. Two 
fields are also used in "jle" which is the variation of "efor".  It is simpler but need 
a modified "inc v" to work. It does not required to "decrement" the initial index and 
there is no "hidden" adjacent variable. "case" is a long process of refinement.  I 
think I got a good compromise here. Using AC for "hi" value and keep "jmp" 
instruction in the jump table.  This design trades off the size of the code for simplicity 
in semantic.  The previous form is of "case" (as shown below) is correct in sense of 
being one instruction without any continuation so its semantic is clear. VM does not 
behave differently from executing other instruction. VM does not fetch any argument 
from the next instruction. 

lit hi
case lo,v
jmp else
jmp case1
...
jmp casen

The current instruction is faster but its semantic is not consistent with the rest of the 
instruction set. It fetches the next instruction to be used in deciding the transfer of 
control. So, the question is what do we prefer, clean semantic or performance? 

Activation record

U-code stack frame has "positive" order of local variables (v is M[fp+v] ) unlike S-
code.  The "usual" (s-code style) has (v is M[fp-v])  backward order and required 
renaming of local variables.  The rename process scans the code after the code body is 



completely generated as there may be some additional local variable allocated during 
the code generation. If the order is forward then renaming is not necessary.

   hi

...     <- sp
retads
fp'
vn
...
v1    
        <- fp
   lo

To know where fp' and retads are, the size of the activation record must be known.  It 
is record as the argument of the "ret" instruction.  To create a new activation record, 
two arguments are used: arity, and the number of local variables. They are recorded as 
two arguments of the "fun" instruction.

Parameter passing

Passing parameters to a function requires a special treatment. The space in stack 
segment, SS[.] (where it stores the activation records), is used as a "virtual stack" to 
pass parameters to a new frame.  A new instruction is created for this task: push. It 
pushes parameters to a virtual stack. A tail-call instruction (callt) is revived as it is 
appropriate.  It is far simpler than trying to generate codes to pass parameters back to 
the old frame and do a jump.  Callt is faster too (it is another "big" instruction 
according to our philosophy of trying to create big instruction. A "big" instruction 
does more in one instruction). The last parameter is passed through AC, occasionally 
saving one push instruction. 

T-code

T-code aims for performance.  S-code is a stack-based instruction set, aimed for 
simplicity and tends toward minimalist.  In contrast, T-code is a register-based 
instruction set and has a richer set of operations. From the experience of designing 
various instruction set for real chips using mostly stack-based instruction set, many 
designs have fewer number of instruction executed than S-code.  For example, the 
one-address, or the stack mixed with register (aka register window), reduces the 
number of instruction executed by almost half compared to pure stack-based.  This 
observation supports the argument that using register-based instruction set improves 
performance.  In implementing a virtual machine, the main instruction dispatch has a 
high cost.  Therefore reducing the number of instruction executed helps reducing this 
cost.  Another benefit is that executing each instruction for a register-based instruction 
may be faster due to the ability to access many arguments in one instruction.  
However, the cost of decoding multiple fields in an instruction may be higher than 
stack-based.

Format



Almost all instructions have three-address. An exception is "mov" instruction that has 
two-address.  64-bit is quite a natural size for modern processors.  There is no 
distinction between global/local/immediate in the instruction format.  The format is 
very uniform. (This report is for t2-64-code used in Som v 5.1. Another version of T2-
code uses 96-bit format in Som v 5.0.)

3-arg   a:16 c:10 op:6, b:32
2-arg   d:26 op:6, b:32

Instruction Set

bop:      add sub mul div mod and or xor shl shr eq ne lt 
le gt ge
control:  jmp jt jf jeq jne jlt jle jgt jge fun call 
callt ret efor case
data:     ldx stx mov push
etc:      not sys

There are 38 instructions, so op code field is 6 bits. That leaves 26 bits to be divided 
between two arguments.  One argument should be a bit large because it is used as 
displacement in conditional jump instructions, so it is divided into 16-bit and 10-
bit. The third argument, “b”, is 32 bits so it does not need decoding.

bop  dest (c), src1(a), src2 (b)     ;;  c = a op b
ldx  dest (c), idx (a), base (b)
stx  src  (c), idx (a), base (b)
not  dest (c), src (a)

jmp  disp (a)
jt   disp (a), src (c)
jop  disp (a), src1 (c), src2 (b)
efor disp (a), src+ (c), src2 (b)

disp of jump is 16 bits so use (a).

fun  arty (a), fs (c)
ret  src  (a), fs (c)
push src  (a)

To reduce the chance of argument not fit into the field, we use the larger field first (as 
a priority). Therefore the instruction "call" uses the field "a" then "c". The instruction 
"sys" uses the field "b" then "a".

call arg2 (c), arg1 (a), ads  (b)
sys  num  (c), src2 (a), src1 (b)
case src  (c), lo   (a), hi   (b)

The instruction “mov” is an exception. It is two-address and hence has the largest 
dest/src field.  This allows it to access a large address space to move values around.

2-arg   d:26 op:6, b:32



mov  dest (d), src (b)

Semantic 

bop d a b     ==   M[d] = M[a] bop M[b]
jmp d         ==   goto d
jt d a        ==   if a != FALSE goto d
jf d a        ==   if a == FALSE goto d
jxx d a b     ==   if (a op b) != FALSE goto d
ldx d a b     ==   M[d] = M[ M[a] + M[b] ]
stx d a b     ==   M[ M[a] + M[b] ] = M[d]
call d a ads  ==
                  get arity and numlocal (framesize)
                  1. move parameters to temp (param: d,a 
and from stack)
                  2. save locals (numlocal), pc,fp  (at 
stack)
                  3. update fp, sp
                  4. move temp to locals (arity)
ret d fs      ==
                  1. move return value d to M[retval]
                  2. restore locals , pc,sp,fp
callt d a ads ==
                  1. move parameters to temp
                  2. move temp to locals
efor d a b    ==  M[a]++; if M[a] <= M[b] goto d
case d lo hi  ==  
                  jump table is set of displacements
                  size of table is hi-lo+1
                  if lo <= d <= hi goto entry[lo-d+1]
                     else          goto end of table
                  where current pc is at the "case"
not d a       ==  M[d] = not M[a]
sys d a b     ==  syscall d, optional param: a,b
push d        ==  sp++; M[sp] = M[d]
mov d a       ==  M[d] = M[a]  equiv. to  add d a #0
fun d a       ==  it stores arity (d), and numlocal (a)
                  can be encoded into 24 bits 

case instruction

case src lo hi
<jmp table>
$end

The jump table is a table of displacement relative to the address of "case" instruction. 
Each entry is a 32-bit value. The size of the table will be padded at the end so that the 
address $end aligns at an even address.  Its organisation is as follows:

disp. to the end of table, the "else" case
disp. to case lo   (case_1)



disp. to case lo+1 (case_2)
....
disp. to case hi   (case_n)
<pad>
$end:  

jmp else_case
case_1:  ... , jmp exit
case_2:  ... , jmp exit
...
case_n:  ... , jmp exit
else_case: ...
$exit

The first entry in the table is the displacement to $end.  It is used to jump to 
else_case.  This arrangement makes it easy to locate the end of the table. The jump 
table is fully mapped to values in the range lo..hi.  It is a direct map.  Any missing 
label will be filled with a displacement to $end (so it goes to else_case). The size of 
table is even(hi-lo+2).  The code for body of each case is located after the end of 
table. The first instruction at the end of table is "jmp else_case". Each case is ended 
with "jmp exit".  The jump table makes "case" instruction a strange object of variable 
length in the code segment.  If instead of a displacement, an instruction "jmp" is used 
in each entry in the table, the size of the table will be quite large (2 words per entry). 

Encoding

0..9   nop add sub mul div mod and or xor eq
10..19 ne lt le gt ge shl shr not mov ldx 
20..29 stx ud push call callt fun ret efor case jmp
30..38 jt jf jeq jne jlt jle jgt jge sys

Activation record

hi

         <- sp
 .. param
--------
 fp'     <- fp
 retads
  lv     v_n
  ..
  pv     v_1
--------
         <- sp'
lo

The current frame stores: fp', retads. There is no need to store sp as it tracks fp when 
return.  The number of slots, pv+lv, are the saved registers. Now that a local is in an 



absolute place (M[0]...M[256]), no renaming of registers during compilation is 
necessary.

Parameter passing

Two parameters can be passed via "call" instruction. If there are more than two 
parameters, the rest are pushed to stack (via SS[sp]). Inside v5-vm, an array param[.] 
is used to collect actual parameters to be instantiated to registers.

Constants as globals

To reduce the number of distinct instruction, the "immediate" mode can be eliminated 
by using constants as globals.  It means all constants will be stored as global 
variables.  For small constants, -10..300, they can be stored  permanently (immutable) 
in M[a]..M[b]. There is a direct relation between the value and its address. For larger 
constants, they will be allocated and stored as globals using the symbol table. This 
way, the access to symbol table will not be overwhelm as I expect 90% of constants 
will be small and not require symbol table to retrieve them during the compilation.

What should be m and n?  -1 is used often, 256 seems to be the largest small number 
(as least in our benchmark).  So the range -10..300 should cover most small numbers 
without being too many.  The address 300 is used to signify a constant so a > 300.  
Let a = 390, b will be 700.   -10..300  is  M[390]..M[700]  or c is represented by 
M[400+c].    For large constants, they are stored in the data segment starts at the 
address 1000 (the same as all other globals allocated by the compiler).

System Calls

To decouple the language from specific system functions (I/O and files), these system 
functions are made into one instruction "sys" with numeric parameter to specify a 
number of functions.  Not all versions of Som support all of these calls.  This is the 
most current version.

1 print x
2 printc c
3 getchar
4 gets
5 fopen name mode
6 fclose fp
7 fprint fp x
8 fprintc fp c
9 fgetc fp
10 fgets fp buf
11 --
12 eval x
13 stop
14 alloc x
15 load name ; exec from user
16 lex fc    ; return tok from the current file



More macros are defined in lib2.som:

: print x = syscall {1 x}
: printc x = syscall {2 x}
: getc = syscall {3}
: gets buf = syscall {4 buf}

// mode 0-read, 1-write, 2-readwrite
: fopen fn mode = syscall {5 fn mode}
: fclose f = syscall {6 f}
: fprint f x = syscall {7 f x}
: fprintc f  x = syscall {8 f x}
: fgetc f = syscall {9 f}
: fgets f buf = syscall {10 f buf}

// for som-compiler
: eval a = syscall {12 a}
: exit = syscall {13}
: load fn = syscall {15 fn}
: syslex f = syscall {16 f}   // in som 4.2

Object File Format

Som v 1.7 Format

start end
code* (in hex)
start end
data* (in decimal)
num  (number of entries of symbol table)
symbol table*

Each symbol table entry is : name type ref arg arg2

What is stored in the object file?

The object file stored code, data and exported symbol table.  The code (v 1.7 uses T-
code instructions) is in hex (for fast load as it is 32-bit). The data is in decimal.  The 
data is the snapshot of memory when finished compiling and executing the immediate 
lines. The amount of data is dictated by the amount that has been dynamically 
allocated when compile the program. The symbol table is important for initialising the 
global variables. This is a change from previous versions which relied on the code 
generator to generate a "replay" of the immediate line so it is not necessary to store 
the data in the object file as it can be recreated.  However, having snapshot is useful in 
many situations, such as the static array which is introduced in this release.

Consider the symbol table.  What information must be recorded to allow CS, DS to be 
relocatable?  For CS, start address, there is only one kind of object, code.  For DS, 
there are several kind of objects: global variables, constant static array etc.  As the 



snapshot is a contiguous block, it can be relocated as a whole.  However, if a variable 
contains a pointer to DS, it must be noted so that its value can be relocated.  These 
pointers are:

1) base-address of static array.  A static array is an array that is allocated at compile-
time, hence its base-address is known at compile-time.  This happens when define an 
array by an immediate line (outside function definition), such as

  a = array 10
  b = array {11 22 33}

2) a pointer to static string.  A static string is a string created at compile-time such as a 
string embedded in the source code or a string created by an immediate line that its 
value is assigned to a global variable, such as

  to warn = { prints "warning message" }
  s = "this is a string"

Aliasing of variables will not be analysed hence they will not be relocated.  Care must 
be taken in using such variables because interactive-mode and run-only-mode may 
behave differently when DS is relocated. To denote the kind of global variable: scalar, 
static array, string pointer; the field "Arg" in the symbol table is used:
0  scalar
1  static array
2  string pointer

This information will be used in the loader to relocate DS.

Som v 2.4

The object file is the same format as som-v2 except:
1)  magic cookie is 5678916  (som16 object)
2)  it includes symbol table with the form: (name type ref arity lv)

Format 
magic      (5678916  for som v24)
start end  (code segment)
code* 
start end   (data segment)
data* 
num  (number of entries of symbol table)
symbol table*

Each symbol table entry is: name type ref arg arg2

Som v 3.1

magic                            5678931
start end (op arg)*              code segment



start end data*                  data segment
size  (name type ref arity lv)*  symbol table

Som v 4.0, 4.1, 4.2

Similar to v3.1 except magic are 5678940, 5678941, 5678941 (yes 4.2 uses 5678941)

Som v 5.0, 5.1

A little change has been made in the instruction format in the code segment (to make 
it easy to locate individual instruction).  One additional object in the file is Link 
vectors.  They make loading object file faster because of not scanning the symbol 
table.  Link vectors are special locations, in v5.0 there are:  addresses "loadfile" and 
"CS". If there is no link vectors (size = 0) the loader will scan the symbol table for the 
required information.  This link vectors are not produced by the compiler. They are 
manually edited into the object file because the compiler is not specific to any source, 
hence it does not know about link vectors of a particular program. Som v 5.1 has 
magic cookie 5678951.

magic                                5678950
start end (ads op arg1 arg2 arg3)*   code segment
start end data*                      data segment
size (vector)*                       link vectors
size (name type ref arity lv)*       symbol table

Chapter 4  Happy Birthday Som
August 8th is marked as Som's birthday.  It has been good many years (almost five 
years) that Som language and system was continuingly developed.  It is a good time to 
look back and contemplate what has been accomplished. This chapter describes a 
brief history of the development of the language and presents performance 
measurement of all versions (up to v 4.1) of the implementations.

History

4 Dec 2004 som-v1 first public release
31 Dec 2004 som-v2 second public release, with som-in-som
26 June 2005 som-v1.5 with macro and tail-call
5 Jan 2006 som-v1.7 with new VM, T-code
23 Dec 2006 som-v1.8 bug fixed v 1.7, T-code
12 Jan 2007 som-v2.4  (som-in-som for 2007)  Children-day release
9 Mar 2007 som-v3 som-in-som with sx-code vm
19 Aug 2007 som-v3.1 fast sx-code vm
2 July 2008 som-v4.0 fast u-code vm
9 Aug 2008 som-v4.1 (improve u-code and compiler) Birthday release

Som project started her life in late 2003.  She is based on my earlier work on many 
language interpreters.  The basis is the stack-oriented instruction set, the very simple 
S-code. The whole 2004 is the developmental year to get the code base to crystallise.  



The first public release is on 4 December 2004. Som v.1.0 is all written in C.  It took 
Som v2.0 so that everything is written in Som herself.  The next year, 2005, we saw 
the development of macro (v.1.5), code optimisation, constant array and file i/o.  
These improvements are included in the next release (v.1.7) with the new instruction 
set, T-code on the New Year day of 2006. With the complex t-code, Som v.2.3 which 
attempts to use T-code as her instruction set, is never complete. The bug fixed for 
v.1.7 is released by the end of the year (v.1.8). The year 2007 is the update of Som 
v.2.4 that brings all the updates into Som written in Som. This year also is the year of 
improving the execution speed of the virtual machine.  Many instruction set formats 
have been experimented with.  Som v.3.0 with the extended S-code (Sx-code) is 
released in March.  The fully decoded instruction format is released as v.3.1 in 
August.  This version employs a lot of improvement to make the virtual machine as 
fast as possible.  

Due to my health reason, the development was stopped for six months.  In mid 
2008, a new refinement is released, Som v.4.0.  It uses a stack-less instruction set, U-
code.  It is a simplification of Sx-code.  In 2008, Som v.4.1 is released.  It is a gentle 
refinement of U-code and a lot of improvement in the compiler.  To celebrate the 
birthday, I did benchmarking all versions to record the development is a quantitative 
term.

Benchmark

The benchmark programs are chosen so that all versions can compile and run them.  
They are:

1. bubble sorts 20 items from  20..1 to 1..20.  
2. matmul performs 8x8 matrix multiply. 
3. queen solves all solutions of 8-queen problem. 
4. queen2 incorporate macro (Som v.1 and Som v.2 do not have macro).  
5. quick sorts 100 items 100..1 to 1..100.  

These benchmarks indicate the performance of the instruction set (measuring the 
number of instruction executed) of various format (S-code, T-code, Sx-code and  U-
code) plus the quality of the code generators.  The running time measured the 
performance of the virtual machines. Another measurement is performed on the 
compiler.  The source of the compiler of Som v.2.0 is used (around 2000 lines of 
code).  All modules are concatenated into one file to be the input of the compiler.  
This benchmark indicates the performance of the compilers.  How fast it is to compile 
one program. For the compiler benchmark, the performance is relative to Som v.2.0.

The number of instruction executed (noi) is a reliable metric because it is not 
dependent on the machine that runs the benchmark.  But noi alone can not compare 
the quality of the implementation of the virtual machines.  The running time is tricky 
to collect and highly variable.  The results are presented as a relative measure, or the 
speedup, calculated by  (1 - t2/t1) * 100 where t1 is the running time of Som v.1.0 and 
t2 is the version to compare with it (v1.0 is supposed to be the slowest one). The 
running times are measured using the time function in C , time.h and clock( ), 
instrumented into the virtual machine. The program is run 3 times and the data are 



averaged. The machine used to run all benchmarks is Dell D500, a laptop with 
Pentium M 1.3GHz and 1Gbytes of memory running Windows XP (SP2).

Results

General benchmarks

Figure 1  General benchmark: the relative number of instruction executed compared 
to som v.1.0 (vx/v1)

The number of instruction executed (noi) of v.1.0, v.1.5, v.2.0 and v.2.4 are the same. 
They are S-code. The T-code of v.1.8 is less than half, so T-code is very effective.  
The Sx-code is also fast, its noi from v.3.0 is only 62% and v.3.1 is even better at 
59%.  The serie 4, U-code, is similarly effective compared to Sx-code.  

Figure 2  General benchmark: the speeup of running time relative to Som v.1.0 (1-
vx/v1)(0.73 is around 4x)

When look at the running time, T-code is 64% faster than v.1.0 (around 2.7x).  The 
virtual machine of series 2, v.2.0 and v.2.4 (two vm are the same), are fast.  They are 
around 40% faster than v.1.0, or 1.6x.  The series 3 Sx-code have impressive results.  
The virtual machine of v.3.0 is 49% faster, or almost 2x. The new virtual machine for 



v.3.1 (with separate op and arg and top-of-stack register) is the fastest.  It is 74% 
faster, or 3.8x. The series 4, the virtual machine of U-code v.4.0, is 69% faster and the 
refined U-code of v.4.1 is as fast as the best v.3.1 at 73%, or 3.8x.

Compiler benchmark

First, the size (measuring in line of codes) of the compilers and the virtual machines 
are compared.  These figures indicate the complexity of the programs.  The v.1.8 
compiler is the largest at 3700 lines whereas the recent ones (v.4 and v4.1) are at 
around 2500 lines.  Perhaps this reflects the complexity of T-code versus Sx-code. 
The sizes of virtual machines also have this trend but they are less different.

Figure 3  The size (lines of code) of the compilers

Figure 4  The size (line of code) of the virtual machines



Figure 5  Compiler benchmark:  the compiler performance relative to Som v.2.0, the 
number of instruction executed and the speedup. noi is vx/v2.  speedup is 1-vx/v2 
(0.66  is around 3x)

In terms of noi (the number of instruction executed to compile the program), the 
newer compilers are better with v.4.1 is only 18% of v.2.0 (it is very impressive, just 
1/5). A lot of code improvement has been done on these compilers.  The runtime 
speedup is also reflected these improvements, with v.4.1 at 66% faster, or almost 3x. 
The compiler does a lot of i/o so in term of the performance of a virtual machine, it 
may be better than this figure.

To give some absolute number on the performance of the virtual machine, the runtime 
for general benchmark is reported as Million instructions per second 
(noi/running_time). The machine that runs the benchmark is Dell D500 laptop with 
1.3GHz Pentium M (single cpu) with 1Gbyte memory running Windows XP (SP2). 
The compiler is lcc-win32 (version Oct 2007) with no code optimisation. These 
figures reflected the effect of the instruction set and the implementation of its virtual 
machine.

Figure 6  The performance of virtual machines (Million instruction per second)



The jump from v.3 to v.3.1 (35.7 Mips to 57.5) is the result of the engineering of the 
virtual machine.  It is interesting to note that the series 4 (v4 and v4.1), which 
employs U-code, the figure is not as good as v.3.1 (Sx-code).  However, in terms of 
running time, they are similar. It may be just the variance in the time measurement.

Chapter 5  History
This chapter is a record of the development history of all versions of Som. The 
description is ordered chronologically.  

Release history

4 Dec 2004 som-v1 first public release
31 Dec 2004 som-v2 second public release (with som-in-som)
26 June 2005 som-v1.5 with macro and tail-call
5 Jan 2006 som-v1.7 with new VM, T-code
23 Dec 2006 som-v1.8 bug fixed v 1.7, T-code
12 Jan 2007 som-v2.4 Children-day release (som-in-som for 2007) 
9 Mar 2007 som-v3 som-in-som with sx-code vm
19 Aug 2007 som-v3.1 fast sx-code vm
2 July 2008 som-v4.0 fast u-code vm
9 Aug 2008 som-v4.1 Birthday release (improve u-code and compiler) 
9 Sept 2009   som-v4.2 Triple 9 release (lex in vm)
22 Sept 2009  som-v4.2a  bug fix interactive mode (new parser)
5 Dec 2009 som-v5 T2-code vm  (Long Live the King)
25 Dec 2010 som-v5.1 T2-code 64-bit format (Christmas release)

som0  (first integration of som)

13 September 2003    
This implementation aims to separate compiling into an executable sequential code 
for a virtual machine and generating machine code for a machine specific processor. 
For an executable sequential code, the emphasis is on a small number of instructions 
and ease of modifying this set.  The code for Som which will be called s-code, should 
be reasonably fast when interpreting, and easy to generate machine dependent code. 
Therefore, the optimisation should not be emphasised.  Instead, a "clean" 
implementation is the goal, so that, it is easy to modify or to make a new code 
generator. A fixed 32-bit instruction is suitable (not compact but easy to generate code 
and reasonably fast when interpreting).  The instruction set is of A1a (an earlier 
language) but eliminates some extended code.  

som-som  (start of som-in-som) 

26 Decenber 2003    
The goal is to start a boostrapable system that eventually will be written in Som 
itself.  The starting system is written in C and gradually it is replaced by Som.  The 
system is divided into three parts: a parser, a code generator, a virtual machine.  The 



parser transforms a source (Som program) into an abstract program (parse tree).  The 
code generator generates S-code from this parse tree.  The virtual machine executes S-
code.  This division makes the system easy to understand.  The parser separates the 
handle of two domains, one is the character domain represented the source program, 
and the other is the token (integer) domain represented the abstract program.  The 
token is suitable for Som-language. It makes the code generator and virtual machine 
easy to be written in Som.  The virtual machine has been written in A1a (the precursor 
of Som).  The parser and code generator are integrated in the current system (Som, 
Som1).  Separating them into two parts enables the code generator to be written in 
Som easily.  It may not be interesting to write the parser in Som, as there are tools for 
parser generators, which accept the input as a grammar and output a parser in some 
high level language program.  It is possible to translate the output from these tools 
into Som language.

29 Jan 2004  Implement parser generator to generate parse.som 
12 Feb 2004  Add tuple to som-language to handle variable arguments to a function.  
Use it for syscall.  (this design eliminate the open stack coding)

som-v1

4 Dec 2004
This is a reference system for Som-language.  It is som3 (the development version) 
released to public.  The major change in som3 is that it can do recursive load and has 
a good interactive mode. Effort will be made to document this release so it is 
understandable for the public (mainly students and my research assistances).

som-v2

31 Dec 2004  
This version is an evolution of Som system to be self-replicating.  That is the system 
can generate itself with minimum support from a host language.  This is achieved by 
writing most of Som system (lexical analyser, compiler, code generator) in Som.  
Only the eval function must be written in the host language (C). This approach has 
been used to port a compiler to a new platform since the early days of computer 
science, for example, Pascal compiler.  However, the interesting point is not "porting" 
a system to another platform.  It is the ability to "self-replicate" that I try to achieve.

This Som system comprises of the whole Som in object format (som-code, "som.obj") 
that is loaded into the memory and is executed by eval() (written in C). This image 
plus eval-in-C works as Som compiler.  The first image "som.obj" is generated by 
Som itself.  However, this is not done in this release.  The present "som.obj" is 
generated from a modified Som v1.  There are minor differences that are needed to be 
resolved before it is truely self-replicate.

som-v1.5

26 June 2005
The aim is to improve performance when it goes to a real chip. This version contains 
macro and proper tail-call. Modify Som v1 to include macro, a bit of jump 



improvement (jle for "for") and perhaps hash from symtab5 (from som-in-som, som-
v2).  (23 Feb 2005)
1  macro
2  jle
3  eliminate callt
4  retv
5  hash symtab

som v 1.7  T-code

23 December 2005 
It is going to be new year soon!   I have a great new idea on er... a new VM for som, 
called T-code.  T-code will be a register based VM as opposed to S-code.  As T-code 
is 3-address format, it will have less number of instruction executed (dynamic 
instruction count) than s-code.  The data from various chip designs pointed to 40% 
noi. of s-code [aisd eecon 2003, sr, compact code jcsse 2005, xs].  This means if all 
else is equal, T-code vm will be 2.5 times faster than s-code. Therefore, I will try to 
have a new year release of Som-v17 with T-code (a major release every year, eh?).  
Som-v17 will be a som-v16 (which never made public): macro, static array, new 
object, no immediate line, hex, file.

som v 1.8

23 December 2006
This is a bug-fixed version of som-v17.  Most bugs are in the code generator.  
"gencode.c" has been heavily rewritten.  There is still some code sequence that is not 
optimised but it is correct.  It has been tested and passed all benchmarks in "test" 
directory.   The macro has been fully debugged as well, especially the "full" macro. 
This version is used to develop som-v23 (som-in-som in progress). som-v23 can 
compile and generate code correctly including all macros.  The "eval" is being 
developed.  So, som-v18 has been subject to extensive test to run som-v23 (around 
2500 lines of som-code) except the "eval" part.  som18 can do "load".

som v 2.4   Children-day release

12 January 2007   
It is a som-in-som interpreter/compiler system. It used som v 1.6 as a development 
platform.  som16 is an updated of som v 1.5 toward som17 to have "loadfile".  The 
idea here is to release som v 2.4 as an up-to-date, stable version of Som for year 
2007.  The goals for this version are:
1)  use simple s-code.
2)  improve interp.c for faster speed.
3)  has the following (of som16) : macro, static array, object with no immediate line, 
hex, file, and from som17, loadfile.
4)  make som-in-som as clean as possible. 

Why not t-code?  From som17, I found that a lot of development time is spending on 
subtle bugs in code generator.  However, the speed improvement (in term of 
execution time) comes mostly from engineering the interpreter not the t-code itself. T-
code which has 40% number of instruction does not translate into 2.5 times faster in 



term of execution time (it is only 25% faster). So, the complexity of t-code does not 
worth it.  som v 1.8 is sort of closing down the experiment on t-code.

"som.obj" is self-compiled, that is the som.txt is compiled into its own object.  
Finally, the self-replicate property has been achieved in this release. In terms of speed, 
som-v24 virtual machine has been engineered to be as fast as som-v17.

som v 3.0  Sx-code

9 March 2007  
This is a new release based on sx-code.  Sx-code is zero+one-address instruction set.  
It is 30% faster in terms of number of instruction and running time than s-code.  It is 
not complex, only larger than s-code (85 instruction vs 40).  The added instructions 
are local-var mode and immediate mode of bop s-code pluses some "for performance" 
code such as efor. The virtual machine of som-v16u is used as VM for som-v3. This 
VM has been carefully engineered.  It is the fastest VM for s-code family to date.

som v 3.1

19 August 2007
It is a continuing development of Som v3 with an improved vm.  The new vm had 
fully-decode opcode and argument.  It also employs a few techniques to speed up the 
execution of sx-code.  The new vm is 40% faster than the old one (or 1.7x).  The new 
vm has the following characters:
1.  op and arg are fully decoded (no decoder)
2.  use tos register (need a few special codes)
3.  all jumps are absolute
4.  faster access to local variables

The disadvantage is that the size of code segment is double (as xop[.] and xarg[.] are 
two arrays replacing cs[.] ).  The object file format is changed.  The compiler itself 
has also been improved.  The symbol table is changed to be more space efficient.  It is 
also better tuned (now with only 1/3 probing of the previous version).  The listing 
generation is much faster as it employs "index" to the symbol table instead of 
searching for a symbol by a reference.  I found out that the meaning of a full macro 
and a normal macro are different.  Therefore I decide to adopt only one meaning.  A 
normal macro is much more useful, hence the full macro is discarded.

som v 4.0

2 July 2008
The 2007 series of Som are very exciting (Som v3.0 and Som v3.1).  They are fast 
with new instruction sets and improved compilers. With their performance comes the 
complexity.  The sx-code of som v3.1 has 93 instructions and it needs a complicate 
code conversion to make use of top-of-stack register.  I want to retain performance of 
2007 series but I really want to make the instruction as simple as the original s-code 
(at least in terms of the number of instruction). To this goal I design an accumulator-
based instruction set with one-address format. Som v4.0 uses the new vm based on u-
code. It achieves two objectives:



1)  u-code instruction set is as simple as the original s-code.  It has only 43 
instructions with consistent format.
2)  The compiler is much simpler than Som v3.1 and it produces a fast code.  It is 
32% faster than som v.3.0. It is comparable to som v.3.1.  However v3.1 is 10% 
faster.

som v 4.1

9 Aug 2008
Som v.4.1 uses the improved instruction set.  The new instruction set includes the 
immediate mode and a few AC-arg instructions (to use AC as the argument for the 
next instruction, mostly load index).  The expectation is to reduce the noi by 10-20% 
and also the running time comparing to som v.4.0. The compiler has gone through 
several improvements and it is better than the previous version (it is faster and 
produces better code).

Upon analysing v4 vs. v31 compiler many possible improvements to u-code come to 
mind.  The first is the immediate mode.  The second is to use "cascade" AC to reduce 
"put" (using AC as argument in some instruction). However, adding everything will 
make u-code unattractively large.  The aim to include more instruction into u-code is 
to improve the performance without undue increase in complexity to the instruction 
set.

In general benchmark, u2 does not improve much over u-code of som v.4.0. It is only 
6% less noi.  The running time speedup is only 8.7%.  However, most improvement is 
done by analysing the compiler. To this end, the compiler benchmark is much 
improved.  The noi of v4.1 compiler is 20% less than v4.  The running time speedup 
is insignificant (may be due to heavily i/o bound?). 

som v 4.2  Triple 9 release

( 9/9/2009)
This is a small experiment on lex.  Lex is implemented as a built-in function (via 
syscall 16).  The hope is that this will accelerate the compiler. lex2.c is written based 
on token-s.txt (lex in Som).  An experimental version is lex0.c.  It has a better 
buffering.  However, it is more complex.  lex0.c uses buffering to reduce the number 
of fread( ) call.  lex2.c reads one line at a time. It is quite interesting to see how the 
new lex is interfaced to the old token-s.txt in a simple way. In terms of performance, 
v42 noi is 78% of v41 (or 22% faster) but the runtime in similar.

som v 4.2a

22 Sept 2009
Fix interactive mode. Som 4.2a is som 4.2 (triple 9 release) with correction to lex that 
enables it to run in interactive mode.  After two or three years of contemplation, I 
decide to write a new parser generator.  A lot of code is borrowed from Som compiler 
herself.  The parser generator is about 700 lines of Som. The new parser is faster than 
the original one.  In terms of performance, it is 30% faster than v4.1 (noi) and 11% 
faster than v4.2 (noi).



som v 5.0  T2-code

5 Dec 2009  Long Live the King
This release has the goal to do "the fastest vm".  To reach this goal, the vm uses three-
address instruction format (t-code, som v 1.8) because it offers the lowest number of 
instruction executed (noi). Therefore in terms of performance, the noi will be smallest 
amongst all previous Som releases.  Because running time is directly varied with noi, 
it will also be "the fastest som". This work is based on Som v19 series of 
experiments.  T2-code is introduced. In terms of performance, it is 40% less noi than 
v4.2.  The runtime is 10% faster than v4.2.  

som v 5.1  Christmas release

25 Dec 2010  Christmas release
The previous release (Som v 5.0) introduced t2-code.  It is the fastest Som vm to 
date.  t2-code has quite a wide instruction, 96 bits.  The aim of this version is simple:  
to design the instructions to fit into 64 bits and to achieve that without sacrificing the 
performance. 64-bit is a more natural size for today's machine (year 2010).

The design for t2-64 code is straightforward.  It is similar to t2 code, only the format 
is changed. The new format has two arguments fit into the first 32-bit word and one 
argument in the second 32-bit word. To allow as many bits as possible to the two 
argument fields, it is divided into 16-bit, 10-bit and 6-bit (opcode). The argument that 
is too large to fit into 16-bit or 10-bit needed to be "mov"ed to a smaller size by an 
extra "mov" instruction that has large argument size: 26-bit and 32-bit.

The result:  the executable size for all benchmarks are smaller by 30% than t2-code 
(not surprising!). In terms of execution speed, for small size benchmarks, t2-64 is 
slower (noi) by 1% and for medium size benchmarks, by 10%. In terms of wall clock 
time, t2-64 is 12% slower averaged over all benchmarks. 

Chapter 6  How to build Som

Source files

Source code of Som system comprises of Som source files and the virtual machine (in 
C) source.  The sequence of loading files (automatically from the project file 
som51.txt) is:

 lib2.som
 string-s.txt
 compile-h-s.txt    define constants
 list-s.txt               list construction functions: car, cdr, cons, list.
 symtab-s.txt        symbol table functions
 token-s.txt          tokeniser
 parse-h-s.txt       parser function prototypes
 stmt-s.txt            functions that support parsing
 parse2.som         parser, generated from pgen
 icode-s.txt          functions that support outputing code



 gencode-s.txt     code generator
 macro-s.txt         macro expansion
 main-s.txt            main

The virtual machine consists of C source files:

som.c                 main
lex.c                   lexical analyser
interp.c               virtual machine functions

How to compile Som system

The whole system is compiled by "load" function.  The "project" file contains the 
lines that load the whole sequence of files. 

> som som51.txt 

This will generate som51.obj, the compiler object.  It also generates listing file for 
debugging purpose.  The parser "parse2.som" is generated from the parser 
generator "pgen".  pgen takes a text file that specifies grammar of Som-language, 
such as,

    top -> tkTO fundef | ex #
    ex1 ->  tkIF ex0 ex exelse $doif(); | ...

and produces a parser.  The action routines in the grammar such as ""doif" are the 
functions reside in the "stmt-s.txt" file.  pgen takes grammar and produces a 
parser in Som language,

    pgen < grammar.txt > parse2.som

It is not necessary to regenerate the parser  except when you want to change the 
lexicon and the grammar to modify Som-language for your application.

Sample session 

Som can be used in two modes:  interactive, batch (produce listing and object files), 
and excute mode.  When start the system loads "lib2.som" which contains small 
set of useful macro functions.

interactive

This mode is suitable to try out a program. A source can be loaded by the function 
"load filename". A user can interrogate global variables and executes all 
functions in the program.  This is useful for debugging purpose.

C:>som
>print 2 + 3 nl
5
>to sq x = x * x



>print sq 5 nl
25
>

To define a function, the whole function must be completed in one line.

batch mode

This mode is used to run a program.  It will produce a listing file and an object file.

C:>som bubble.txt
20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

It will produce "bubble.lst" and "bubble.obj".

execute mode  

This mode is used to execute a Som object (already compiled).  It will execute the 
program immediately (not producing any output file).

C:>som -x bubble.obj
20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Show a help message

C:>som -?
som          for interactive mode
som file     for batch mode, output .lst and .obj
som -x file  for load file and then interact
som -?       for this help
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