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Preface 

 

 

Computer architecture is an exciting subject.  The rapid development of 

technology increases the speed of a processor by 60 % every year continuously 

for 20 years.  This translates into a factor of more than 1,000 times speed 

improvement of computer systems from 1980-2000.  This is almost beyond any 

imagination of the creators of the technology.  In my life time, I have witnessed 

the key development of this technology and the important discoveries in this field 

so often that it almost becomes a part of every life!  It is difficult to find the 

advancement of this scale in other fields.  The understanding of this development 

is important to foresee the future and understand the limitation of the technology. 

 

Teaching computer architecture is extremely rewarding and at the same time can 

be exhausting as the subject itself evolved at such a rapid rate.  I have been 

teaching students at many levels including bachelor degree, master degree and 

doctoral degree for a number of years. My experience in teaching the subject is 

that students learn best by "doing", playing with the design.  In the past, 

performing the experiments with computer design is difficult.  However, as our 

knowledge in computer design grows, we are able to understand and model its 

behaviour more accurately and more easily.  We are able to develop simple tools 

that can simulate approximate behaviour of various parts of computer systems 

without too much difficulty.  The tools can change the way we learn about 

computer architecture.  These tools are simulators at different levels.  At the 

program-level, a program profiler enable us to see how different parts of the 

program spend their times.  At the instruction-level, the simulator exposes the 

execution of machine instructions and the frequency of their use.  The lower-

level down to the level of machine organisation can illustrate the inner working 

of a processor and let us understand how each component cooperates to achieve 

performance under different constraints.  All these tools enable us to learn with 

great clarity. 

 

This book explains various parts of modern computer systems.  Beginning with 

the basic organisation and extend it to incorporate performance enhancement 

features such as pipeline, multiple functional units and vector units. This book 

compiles many ideas of performance enhancement of modern processors, for 

example, speculative execution and the revival of the very long instruction word 

(VLIW) processors.  The explanation at each step is accompanied with design 



examples and the executable model for students to experiment with.  Students 

can try alternative designs and vary constraints to learn about the effect of 

different architectural features.  The details of these tools are discussed at the end 

of this preface. 

 

Already there are many excellent books on computer architecture.  I will mention 

three books.  The first one is the "Computer structure: reading and example" by 

Bell and Newell.  The second one is "Computer architecture: a quantitative 

approach" by Hennessy and Patterson.  The third one is "Computer architecture" 

by Blaauw and Brooks.  I learn a lot from these books and always enjoy reading 

them.  I strongly recommend students of computer architecture to read them too.  

I believe that there are many aspects of the subject of computer architecture. One 

aspect is the lesson learned from the past, which can be read from the history of 

computers and the development of computer technology.  Another aspect is the 

present day development, the knowledge that can be learned from the current 

processor design.  It is very difficult to write a book that can tracked the ever 

changing technology (such book will have to be rewritten every 2 years).  

However, some knowledge that has been distilled from all these materials is 

valuable and long lasting. It is impossible to include all aspects of the subject in 

one book.  It is the duty of a teacher to select only some topics to be included in 

his teaching materials.  I have chosen to present the view of computer 

architecture as an evolutionary path towards the ever changing needs of society.  

I hope students will gain some knowledge reading and experimenting with the 

design in this book and enjoy it to the extend that they want to learn more by 

themselves. 

 

The content of this book is divided into three parts.  Part 1 is the basic processor 

design.  Part 2 is the performance enhancement architectural features.  Part 3 

contains the rest of computer systems: memory and magnetic disks, and includes 

the discussion of future architecture.  Totally there are 12 chapters.  The chapters 

of Part 1 are as follows.   

 

Chapter 1 describes the basic concepts of computer architecture and the view 

that computation is caused by the control of data flow into various functional 

units.  In this chapter, we define performance and its measurement.  An 

interesting history about the origin of computers is briefed at the end of chapter.   

Chapter 2 discusses the instruction set design which has an important impact on 

the performance.  The assembly language programming is explained.  The end of 

the chapter includes the discussion of the reduced instruction set computer 

(RISC) which is a revolutionary idea of instruction set design in 1980.   



Chapter 3 explains computer arithmetic.  Both integer and floating-point 

arithmetic are described in details.   

Chapter 4 explores the control unit.  The elegance of microprogramming is 

illustrated.  The microprogrammed control unit is viewed as a controller made of 

another small computer.  This small computer contains its own program which is 

an executable code.  This program represents the control information and is 

called "microprogram".  The concept of microprogram is very powerful and it is 

the driving force of the evolution of computer design in 1970.   

Chapter 5 integrates all fundamentals in Chapter1-4 to design a hypothetical 

processor, S1.  The detailed design is discussed.  Its control unit is implemented 

in both hardwired and microprogrammed.  The instruction-level simulation of S1 

and its microprogramming is explained.   

 

Part 2 consists of 4 chapters.   

Chapter 6 studies the most fundamental technique for performance 

enhancement, pipelining.  For a concrete design, a case study of instruction 

pipelining in S1 is discussed.   

Chapter 7 discusses many techniques for performance enhancement, for 

example, superscalar, VLIW, and speculative execution.   

Chapter 8 describes supercomputer class of architecture, vector machines.  The 

programming of vector machines and the measurement of their performance are 

explained.   

Chapter 9 describes stack architecture.  It was very popular in the past because 

of its simplicity and suitability for block-structured languages.  A case study of 

one stack processor, R1, is illustrated.  Its simulation is studied and the result 

compared with a register-based architecture.   

 

The rest of the content contains in Part 3.   

Chapter 10 studies memory system which is very important and is the most 

expensive part in modern computer systems.  The recent advances in memory 

technology is included in the end of the chapter.   

Chapter 11 explores magnetic disks and its performance.  The disk array (RAID) 

system is discussed.  The final chapter,  

Chapter 12, looks into the future of computer architecture which one-billion 

transister device will be possible.  Seven proposals for future architecture are 

examined.  These proposals range from evolutionary design to revolutionary 

design.   

 

An integrated part of this book is the set of tools to explore computer design.  

These tools enable students to see the detailed working of the design and to try to 

vary constraints and understand their effect.  The source code of simulation is 



made available so that students can modify it to try out variation of the design 

easily.  In using this book in a semester-based teaching, I gave out the design 

assignment around the middle of the course.  The problems generally ask 

students to design a processor that includes a particular architectural feature.   

Students must work on the simulation of the design and accompany their design 

with the detailed measurement of the performance.  A number of good work are 

selected to be presented to the class.  Near the end of the course, students are 

assigned to research the additional topics in computer architecture which are not 

discussed in the class.  A list of research papers from the current literature is 

posted.  Students choose their topics from this list and summarise their finding in 

the written reports.  Selected works will be presented to the class by the authors.  

The detailed example of these assignments can be found in the appendix. 

 

The tools consist of five programs. 

1. Learning the assembly language  -- Motorola 6800 instruction set is used as a 

learning tool.  The tool includes an assembler, A68, which translates a source 

program into an executable machine code, and a simulator, SIM68, which 

enables the 6800 machine code program to be executed.  The SIM68 allows 

students to examine instruction by instruction execution and its effect on 

registers and flags. 

2. Instruction-level simulator of S1 -- Students can write the program for S1 and 

see it execution.  The source code of the simulator is available.  Students can 

understand how S1 microarchitecture works.  The simulator can be modified 

to change the behaviour of the processor such as adding new instructions, 

changing instruction format etc. 

3. Microprogramming tool for S1 --  The simulation of microprogrammed S1 

enables students to try out microprogramming.  The tool can be modified to 

run different format of microprogram or change its semantic. 

4. Pipeline simulation of S1 -- This simulator shows the mechanism of pipeline 

and its control (pipeline stall, and interlocking).  The tool can be modified to 

simulate other parallel operations such as scoreboard and Tomasulo.  

5. Cache simulation --  The tool simulates three types of cache: fully 

associative, direct-map and set associative.  An address trace is used to 

compare the performance of different cache configurations and their 

parameters such as cache size.  

These tools are available through the web site of this course at  

http://www.cp.eng.chula.ac.th/faculty/pjw/teaching/ca.htm 

Also include in the course pages are the additional materials such as information 

on current processors, the links to other sites in computer architecture.  These 



pages will be updated from time to time to reflect the current event in my 

teaching. 
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Chapter 1 

Introduction 

 

 

This chapter lays the basic knowledge of the subject.  We give an overview and a 

perspective of computer architecture.   We look at architecture from the point of 

view of a computer designer.  We describe the components and the organisation 

of computer systems in many levels of abstraction.  We study the "description of 

an architecture" which specifies a computer system unambiguously.  We answer 

the question "How can a computation is achieved by an architecture".  The 

relationship between architecture and computer languages is important and 

several issues have been addressed.  We discuss the most important aspect of 

modern computer design, the performance issue.  Finally, a brief history of 

computer, which is a very fascinating subject, is discussed.   

 

Architecture concerns function 

Architecture concerns "function" of the system. Function determines what the 

system is capable of.  The how question is answered by an "implementation" of 

the system which depends on technology.  A computer system consists of many 

parts. A part can be divided into subparts and forms a hierarchy.  Computer 

architecture concerns how to compose these parts to provide a system that has 

desired functions under various constraints.   

 

A computer system has a central processing unit (CPU), memory, input/output, 

interconnections.  A CPU consisted of an arithmetic logic unit (ALU), a datapath, 

and a control unit.  The memory system consists of a hierarchical structure: cache 

memory (high speed memory), main memory, and virtual memory. The 

input/output system consists of various peripherals such as a visual display unit 

(VDU), a keyboard, input devices, an interface to the network, various kind of 

secondary storage, floppy disk, hard disk and so on.  The interconnections link 

every parts together, they are the internal bus, the external bus, I/O channels, and 

ports.  
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A computer designer must explore many possibilities of choosing and integrating 

various "components" of a system to satisfy a set of constraints stated in a 

requirement.  A computer designer must must make decision how to select and 

integrate various components such as processor, memory, input/output into a 

computer system. Computer architecture is driven by the advancement of 

technology.  A designer must evaluate an architecture with its technology. The 

study of computer architecture is the study of method for selection and 

evaluation. Computer architecture is different from its implementation. Various 

parts of a computer can be either hardware of software.  Hardware and software 

are interchangeable depending on technology. 

 

One important aspect of computer design is the instruction set design (or 

instruction set architecture, ISA).  A classical view of computer architecture is 

that the architecture is what the assembly language programmer see, i.e. 

computer architecture is the instruction set.   

 

A broader view of computer architecture includes the organization of a computer 

system. An implementation can be regarded as two aspects, one is the 

organization, and the other is the technology.  The organization describes the 

functional units inside a processor and their relationship.  The technology aspect 

determines how it is possible to build a processor.   

 

Computer system structure 

A computer system can be seen at many levels of description, from the 

applications to the lowest level of electronic circuits.  A computer system can be 

regarded as "layers".  These layers are described at different "level of 

abstraction".  There are many ways to define the level of abstractions.  For 

example, a computer system at the lowest level is consisted of the actual 

hardware devices: a central processing unit, a memory, input/output devices and 

interconnections.  These hardware devices can be described at many levels:  

functional units, finite state machines, logic gates down to the electronic circuits.  

On top of hardware of the system, an operating system gives services to 

application programs. The interface between programs and hardware is the 

instruction set description.  A computer system can also be viewed as having two 

aspects: physical and logical. The "physical" system is composed of the actual 

physical components.  The "logical" system describes the design and the 

organization. 
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Applications 

Operating system 
Instruction set 

Functional units 
Finite state machine 

Logic gates 
Electronics 

 

Figure 1.1  the level of description of computer systems 

 

Application level is what a user typically sees a computer system, running his/her 

application programs. An application is usually written in a computer language 

which used many system functions provided by the operating system.  An 

operating system is an abstraction layer that separates a user program from the 

underlying system dependent hardware and peripherals.  

 

The level of traditional computer architecture begins at instruction set.  An 

instruction set is what a programmer at the lowest level sees of a processor 

(programming in an assembly language).  In the past, instruction set design is at 

the very heart of a computer design. The concept of the family of computers was 

promoted by IBM around 1970.  They proposed the concept of one instruction set 

with different level of performance (with the price differentiation) for many 

models.  This concept is possible because of the research effort of IBM in using 

"microprogram" as the method to implement a control unit.  However as the 

present day processor designs converge, their instruction sets become more 

similar than different.  The effort of the designer had turned to other important 

issues in computer design.   

 

Finite state machine description is a mathematical description of the "behaviour" 

of the system.  It is becoming an important tool for verification of the correct 

behaviour of the hardware during designing of a processor.  As a processor 

becomes more and more complex, a mathematical tool is required in order to 

guarantee the correct working behaviour since an exhaustive testing is impossible 

and partial testing is expensive (but still indispensable).  Presently (year 2000) it 

is estimated that more than half of the cost in developing a processor is spent on 

verifying that the design works according to its specification.  

 

The lower level of logic gates and electronics describe the logical and actual 

circuit of a computer system and belongs to the realm of an electrical engineer.  
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This level of abstraction enables separate layers to be designed and implemented 

independently.  It also provides a high degree of tolerant to changes.  A change in 

one layer has limited effect on other layers.  This degree of "decoupling" is 

important as a computer system is highly changeable and technology dependent.  

The changes are very frequent; a new microelectronic fabrication process leads to 

a higher speed device, a new version of operating system provides more 

functionality, new applications are created.  Without separation into layers all 

these changes will interact in a complex and uncontrollable way.  The level of 

abstraction is a key concept in designing and implementing a complex system. 

 

Computer hardware  

The technology of computer is based on the advances of microelectronics.  To 

understand technology one needs to know the fundamental concept of what a 

computer is made of.  The physical components of a computer in the present are 

based on electronic circuits.  The circuits can be regarded as logic gates.  The 

basic elements are logic gates.  The complete set of gates is composed of: AND, 

OR, NOT gates.  This is not the only basis, there are several others, for example 

NAND gate (NOR gate) alone constitutes a complete set because it can perform 

the same function as AND, OR, NOT gates.  Logic gates are used to build larger 

"functional units" which are the building blocks of a computer.  There are two 

types of logic gates, one with memory and one without. 

 

A combinational logic circuit has no memory, output is the function of input 

only.  To create memory, the output is fed back to input. The resulting circuit is 

called sequential logic.  

 

A sequential logic circuit is the logic gate with memory.  The basic element is 

called flip-flop.  There are many types of flip-flop such as RS, JK, T and D-type 

flip-flop.  Sequential circuit has "states".  The output depends on both inputs and 

states.  Sequential logic requires clocking.  There are two types, synchronous and 

asynchronous.  A synchronous logic circuit has a common clock.  It is a rule of 

thumb for design engineers to use synchronous logic because it is much simpler 

to design and to debug.  One drawback of synchronous circuits is that the 

maximum speed of the clock is determined by the slowest part of the circuit.  

Therefore it is a worst-case design.  An asynchronous logic circuit has no central 

clock, hence it can be much faster than synchronous circuits.  It is also 

advantageous when the clock rate is very high and clock skew becomes a 

problem.  However, asynchronous design is difficult. The output of one stage is 

used to drive the next stage.  It is difficult to arrange the timing for the circuit to 
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operate properly as the delay of each element affects the timing of the whole 

circuit.  There are large variation of delay when fabricating each logic element 

and this fact often makes asynchronous design impractical or very expensive.   

 

An example of asynchronous design illustrates the point above.  The super 

computer ILLIAC from the university of Illinois at Urbana-Champaign has 

asynchronous design to achieve high clock rate.  Each connecting wire has to be 

trimmed manually to properly adjusted the delay time of each module.  In the era 

of VLSI, most design is synchronous because it is much easier to get the design 

to work properly.  Presently due to the advancement of asynchronous design 

methodology and the promise of very high speed (and low power consumption) 

the asynchronous design is coming back.  It is an active area of research. There 

are many standard textbooks on digital logic design which students can explore 

the subject in much more details such as the one by Katz [KAT93]. 

 

In order for a computer to execute a program, many functional units are 

necessary. Functional units are the building blocks of computers.  These building 

blocks plus the control unit constitute the basic structure of computer.  Basic 

units to perform arithmetic functions are: adder, multiplier, shifter etc.  They 

reside in an ALU.  A functional unit may be built on smaller units, for example, 

in an adder, a half-adder is built out of basic gates and two half-adders combined 

into a full-adder.  The length of operand affects the speed of adder circuit.  The 

delay comes from the need to propagate the carry bits.  Carry-look-ahead logic, 

invented by Charles Babbage [LEE95] who was considered the father of modern 

computer, is used to speed up the propagation of the carry bits.   

 

Description of an architecture 

Charts and block diagrams can be used to illustrate a "structure" of a computer 

system with blocks denote functional units (or components) and lines as 

connections or relations between those units.  There are many notational systems 

such as PMS-ISP [BEL71] instruction set processor, RTL (Register Transfer 

Language), even APL like notation for behavioural description by Blaauw and 

Brooks [BLA97].  We shall discuss the PMS-ISP notation because it is well-

known and is used in many historical work in computer architecture.  We will 

give our version of the descriptive system that is composed of structural chart, 

instruction set and behavioural  description. 
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PMS and ISP descriptive systems 

This descriptive system consists of two levels of description.  The PMS describes 

the total system.  The ISP provides the description at the level of the instruction 

set. 

 

PMS level of description  

Digital computer can be viewed as discrete state systems that have three 

characteristics: 

 The state is realised by information, stored in memories. 

 A computer system consists of a number of subsystems linked together 

by flows of information.  These components are called memory, 

processor etc. 

 Each component is associated with operations for changing its own state 

or the state of neighbouring components. 

 

There are seven basic component types in PMS: Memory (M), Link (L), Control 

(K), Switch (S), Transducer (T), Data-operation (D), and Processor (P).  An 

operation is a transformation of bits from one specific memory to another, M to 

M'.  

 

Computer model in PMS 

We will give an example how to use PMS notation to describe a computer 

system.  A configuration of a computer (C) is    

 

C := Mp  Pc  T  X 

 

where Pc indicates a central processor and Mp a primary memory.  T is a 

transducer connected to the external environment, represented by X (input/output 

devices such as disks, a console and so on). 

 

The description can be refined to reflect the fact that  Pc can be decomposed into 

a control K and an arithmetic unit or data-operation D and alternatively the 

control can be connected to a secondary memory. 

 

Mp  K  T | Ms  X 
          |  
         D 

where "|" expresses alternatives (T "or" Ms, the secondary memory) 
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ISP level of description 

The behaviour of a processor is determined by sequence of its operations.  This 

sequence of operations is determined by a set of bits in Mp, called the program, 

and a set of interpretation rules that specify how particular bit configurations 

evoke the operations.  ISP (Instruction set processor) provides a scheme to 

specify any set of operations (instructions) and any rules of interpretation. 

 

An instruction expression has the form: 

 

condition --> action-sequence 

 

The --> is the control action K of evoking an operation.  Each action has the 

form: 

 

memory-expression <-- data-expression 

 

The <-- is the transmit operation of a link (correspond to the assign operation).  

The left-hand side describes the memory location, the right hand side describes 

the information pattern. 

 

An ISP example of the DEC PDP8 

We give an example how to use ISP notation to describe a part of a classic 

computer DEC PDP8.  The PDP8 is a very simple machine with a small number 

of instructions.  It is the machine that started the market of "minicomputer".  This 

example illustrates the description of a processor state, the primary memory state, 

the instruction format, the meaning of one instruction and how the machine 

execute an instruction. Comments are in italics. 

 

Processor state Pc 

AC<0:11>   the accumulator 

AC is a 12-bit register.  AC is a register in the processor. 

 

Primary memory state Mp 

Mp[0:77778]<0:11> 
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A primary memory consists of 2048 words (the size of memory is expressed in 

base 8, the convention of this machine). Each word is 12 bits. 

 

PDP8 instruction format can be shown in the diagram: 

 

op  ib p  page_address 
      0..2  3  4  5...        11 

 

The width of an instruction is 12 bits.  It is defined in ISP as follows: 

 

Instruction format 

op<0:2> := instruction<0:2> 
indirect_bit / ib := instruction<3> 
page_0_bit / p := instruction<4> 
page_address<0:6> := instruction<5:11> 

 

The instruction set 

and (:= op = 0) --> (AC <-- AC ^ M[z] ) 

This describes that the opcode of the instruction "and" is 0 and its action is to 

AND AC and a memory location z, where z is an effective address. 

 

An instruction is fetched from the memory and then executed.  Next, the next 

instruction is fetched and so on (ignoring the interrupts): 

 

Instruction interpreter 

Run --> (instruction <-- M[PC]; PC <-- PC + 1; next fetch 
              Instruction_execution)  execute 

 

A state diagram represents the behaviour of the instruction-interpretation process.  

The K controls the state transitions according to the information in the 

instruction.   

 

Microarchitecture and behavioural description  

We are interested mostly in the microarchitecture, which concerns the processor. 

Throughout this book, we will describe a computer system using the following 

notations:  
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 Structural chart:  a diagram of processor organization is used to give a 

high level view of a processor. 

 Instruction set:  a description similar to ISP. 

 Behavioural description: a RTL is used to describe the operation of each 

instruction step-by-step. It is called "microsteps" in this book. 

 

Structural chart 

A structural chart shows the distinct components of a processor and their 

connections.  For example, the CRAY-1 super computer [RUS78] is composed of 

main memory (up to 4 M 64-bit words), scalar registers S (8  64-bit), backed by 

a 64-element vector register T, address registers A (8  24-bit), backed by a 64-

element 24-bit vector register B, vector registers V (8  64-bit), vector units, 

floating-point units, scalar units, and address units as shown in Fig 1.2.  

 

 

Figure 1.2  Structure chart of CRAY-1 

 

Instruction set 

An instruction set is expressed by the instruction formats and the instruction 

names.  For example, the instruction set of S1 (hypothetical processor used in this 

book) has one format called L-format (for long-format), each field is denoted by 

the fieldname:length.   
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S1 L-format :  op:3 r:3 ads:10  

 
op:3   r:3  ads:10  

   15..13  12..10   9..0    bit position 

 

Two instructions and their opcodes are:  (comments in italics) 
0  ld M, r   M -> r load from memory 

1  st r, M   r -> M  store to memory 

 

Behavioural description 

A register transfer language is used to describe the step-by-step operation of each 

instruction.  The notation of this RTL is as follows:  

 Comments start with "//" to the end of line 

 Data movement from source to destination is denoted by  dest = 
source 

 The parallel operations of two actions is denoted using ";" such as         
e1 ; e2 

 The access to a memory location is denoted by  M[a] 

 The bit field of a register is denoted by register:field such as IR:a 

 <name> denotes the label of sequence of operation of the instruction 

 op( ) denotes the ALU operations: add, cmp etc. 

 

Example:  S1  behavioural description of  the "load" instruction  is: 

<load> 

MAR = IR:ADS  
MDR = M[MAR]     // memory read 

R[IR:R0] = MDR 

 

The address field from the instruction (bit ADS of Instruction Register, IR) is read 

into Memory Address Register (MAR).  A memory addressed by MAR is read into 

Memory Data Register (MDR).  The register indexed by IR:R0 is written with the 

value of MDR.  This sequence of operations takes 3 clocks. 

 

How a processor performs computation 

Suppose we want to calculate value of a polynomial function 
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The functional units required to do this computation are multiplier and adder.  

The desired computation can be performed by directly connect appropriate 

number of functional units together (Fig 1.3). 

 

 

Figure 1.3  a computation graph to evaluate a polynomial 

 

The solution of this computation problem becomes a graph whose nodes are 

functional units and arcs are connections of data through these units.  The 

computation is performed by the flow of data.  In this model every units can be 

active concurrently.  "Programming" in this model becomes specifying the 

computation graph.  

 

Another way to compute f(x) is by sequencing the operations (Fig 1.4)  

 

 

 

Figure 1.4  a sequential model of computation 

 

The required functional units are memory and a general processing unit.  A 

memory stored all the necessary values: input x, constant a and b, the temporary 

places to keep intermediate values t1, t2, and the final result f(x).  The memory 
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can be read and written to.  The memory can be read two values at once and feed 

the data to a general processing unit, so called Arithmetic Logic Unit (ALU).  

The processing unit can perform multiplication and addition.  It has internal 

storage to store two input values and one output value.  In general, ALU can do a 

number of computations.  Assume its inputs are X, Y, output Z. An ALU performs 

Z = f(X,Y) where f = { add, sub, mul, increment, . . .}.  The output of the 

processing unit (Z) is connected to the write port of the memory.  Now the 

desired computation can be performed by executing these steps :  

 
          read(x,a)  
          compute(mul)  
          write(t1)  
          read(x,x)  
          computer(mul)  
          write(t2)  
          read(t2,b)  
          compute(mul)  
          write(t2)  
          read(t1,t2)  
          compute(add)  
          write(result) 

 

Sequential approach to computation enables functional units to be reused as the 

computation is performed step-by-step.  Intermediate values can be saved in the 

memory can be used in the later steps.  The general processing unit can perform a 

number of different functions such as add, subtract, so that only one unit is 

sufficient for most kinds of computation.  The trade-off is the speed as the 

computation becomes sequential there is no opportunity for concurrent operations 

as in the graph model.  Sequential machines are highly flexible and use less 

resource to implement a computation but are slower than the graph machines.  

However both graph model and sequential model are similar in the sense that the 

computation is carried out by directing the flow of data through functional units.  

 

The step-by-step instructions of computation in sequential machines become 

"program".  Burks, Goldstein and Von Neumann [BUR46] are the first to propose 

that programs can reside in the same memory as data.  This gives rise to a class of 

architecture called "Stored program computer" (Fig 1.5).  
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Figure 1.5  Von Neumann architecture 

 

This is the most popular organisation even today.  Storing programs and data in 

the same memory enables a processor to be able to manipulate programs easily.  

The main disadvantage is the limit of memory bandwidth, which affects the 

speed of running an application.  As the need for more complex applications 

which required large amount of computation increases, having only one 

connection between a processor and a memory becomes bottleneck.  This 

phenomenon is called "Von Neumann bottleneck".  

 

Other organisation is possible such as storing programs and data in separate 

memories (Fig. 1.6).  This configuration increases the memory bandwidth 

because the processor has separate connections to program and data. 

 

 

Figure 1.6 Harvard architecture 

 

This organisation is called "Harvard architecture".  It is extensively used in high-

speed processors for signal processing, which is called Digital Signal Processor 

(DSP).  DSP has many applications.  It is used in modems, in sound synthesizer, 

in graphic generators etc.  

 



14 

Computer languages and architecture 

Programming techniques influence the design of computers since the early day of 

assembly language programming [HOP97]. Most computers today are 

implemented as sequential machines.  They are suitable to be programmed in a 

class of high level programming language called procedural languages.  

Examples of procedural languages are C, Pascal, C++ etc. In these languages, the 

computation is viewed as step-by-step manipulation of values of variables stored 

in memory.   

 

There are other paradigms of programming.  Backus, the father of FORTRAN, 

gave a lecture is the occasion of his reception of Turing award, titled "Can 

computers be liberated from Von Neumann bottleneck? " [BAC78].   This lecture 

advocated a different programming paradigm called "Functional Programming".  

In functional paradigm, programming is viewed as the activity of composing 

functions.  The computation of a function has an important property of 

"referencial transparency".   This means the result of computing a function 

depends only on its arguments and is not changed by where the function resides.  

This property is contrasted to procedural programming which compute by "side 

effect", i.e. manipulation of variables depends on states.  Functional 

programming helps to promote the correctness of programs.  As this paradigm of 

programming view computation as composing functions, it maps nicely to the 

graph model of computation.  Many proposals being put forward to build 

machines which are suitable for this class of programming languages, for 

example a graph reduction machine [KOO90].   

 

Different programming paradigms lead to different architectures. LISP, the 

language of artificial intelligence community, requires data tags and dynamic 

memory reclamation [STE88]. Logic programming paradigm (Prolog 

programming language and others) requires architecture capable of inferring facts 

and rules and ability to backtrack efficiently, for example the Edinburgh Prolog 

virtual machine [PRO].  Japanese proposed and built various types of these 

machines in the period of their research on the fifth generation computer [FIF].  

Presently, object-orientated programming paradigm is becoming the dominated 

paradigm.  The object-oriented programming languages (Java, C++, Smalltalk 

etc.) require the dynamic allocation and deallocation of objects.  They will 

benefit from machines whose architecture are suitable to implement them.  
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Performance 

This section discusses performance issue.  How performance of a computer 

system is defined and measured. Standard references are used to interpret 

performance figures. Performance can be used in a relative sense, it is the 

measurement of one system compares to another system.  

 

The first commercial electronic computer appeared around 1950. The first 25 

years the performance improvement came mostly from technology and better 

computer architectures.  Later, the improvement mostly came from the advent of 

microelectronics. The speed increased 18-35% per year. Technology progresses 

from vacuum tubes to transistors to integrated circuits. The birth of 

microprocessor around 1970 [FAG96] has great impact on performance of 

computers.  The growth of performance has been highest for microprocessors.  

Since 1980 the performance double every two years.  For example, around 1980 

the first IBM PC appeared.   Its CPU was an Intel 8088, a 16-bit CPU with 8 

MHz clock.  It had 16Kbytes of memory, one floppy disk and no hard disk.  The 

later model offered 5Mbytes hard disk (so called IBM XT).  Today (year 2000) a 

PC is equipped with Pentium 32-bit CPU with 500 MHz clock, 64Mbytes of 

memory and 10 Gbytes disk. Its performance is around 1000 times of the first 

PC.  

 

Performance is measured by running "mixed jobs".   Therefore it is not an 

absolute figure.  It depends on the kind of jobs that are used to measure the 

performance. One phenomenon that occurs in the computer technology is that the 

performance of a processor has been double every 18 months.  This observation 

is proposed by Moore [MOO65], who is a pioneer (among a number of other 

engineers) of integrated circuit fabrication.  He was with Fairchild, one of the 

earliest IC manufacturer.  That observation is known as Moore's law.  The main 

reason that makes this law possible is the rapid advance of the IC manufacture 

technique: the shrinking of the physical dimension of the electronic circuits. For 

the last 30 years semiconductor technology has been roughly quadrupling every 

three years.  This gives an exponential base of about 1.59 instead of the base 2 

proposed in Moore's original paper.  A more accurate formula for Moore's law is: 

 

N device on chip = 1.59 (year  1959) 

 

We define performance as: 

 

Performance = how fast a processor complete its job. 
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Performance is measured by its execution time of a suite of programs called 

"benchmark programs".   The execution time depends on three factors. 

 

execution time = number of instruction used  cycle per instruction   cycle time 

 

These factors depend on various designs: 

 number of instruction depends on instruction set design  

 cycle per instruction depends on microarchitecture  

 cycle time depends on technology  

 

The performance can also be measured by response time and throughput.  The 

response time is the time between the starting of a user job and the time when the 

computer replies.  Under multiple jobs, a better measurement is the throughput.  

Throughput measures how many jobs can be completed in a unit time.  The 

response time is called the latency of a system.  The throughput is also called the 

bandwidth of a system. 

 

Performance = how fast a computer can run 

performance = response time ( latency) 

performance = throughput  (bandwidth) 

 

The fastest machine of the year 1997 is the ASCI-Red of the department of 

energy, USA.  It is composed of 2048 nodes of Pentium Pro with collective 

memory of 600 G bytes.  Its peak performance is 1.8 Tflops and it has run 630 

Gflops on 3400 nodes  (running simulation of motion of particles) [KAR98]. 

 

Relative performance 

To compare the performance of two machines, it is natural to state "X is n% 

faster than Y".  The ratio of the execution time is used to state how much one 

machine is faster than another machine.  The performance is the inverse of the 

execution time.  The following relationships can be derived: 

  

X is n% faster than Y means 

 

execution time Y / execution time X  = 1 + n/100 

performance = 1/ execution time   (or 1/t) 

execution time Y / execution time X = performance X / performance Y 
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n = (performance X  performance Y) / performance Y 

 

Amdalh's law  

The performance improvement can be measured in term of "speedup".  With the 

advent of speed enhancement design such as pipeline and parallelism, Amdalh's 

law [AMD67] states how much performance improvement can be achieved for a 

given task using the enhancement.  The speedup is defined as follows. 

 

speedup = Pe / P 

speedup = T / Te 

 

where Pe is performance with enhancement use, P is performance without 

enhancement use, Te is execution time with enhancement use, T is execution time 

without enhancement use. 

 

If enhancement is used only partially, the speedup will be severely limited.  Let f 

be the fraction that enhancement is used. 

 

new execution time  = old execution time (  (1  f) + f / speedup ) 

 

speedup overall = 1 / ((1  f) + f / speedup ) 

 

Therefore the limitation depends on how much the enhancement has been used. 

In achieving speedup by parallelization, Amdalh's law predicts that speedup will 

be limited by the sequential part of the program. Let see some numerical 

example.  

 

Example: A computer has an enhancement with 10 times speedup.  That 

enhancement is used only 40% of the time.  What is the overall speedup?  

 

speedup overall = 1/ ((1  0.4) + 0.4/10 ) = 1.56 

 

Please note that Amdalh's law applies only with the problem of fixed size.  When 

problem size can be scaled up to use available resources, Amdalh's law doesn't 

applied.  This is why the massively parallel machine is still possible.  

 

Example: Comparing CPU A and CPU B, A with "compare then branch" 

instruction sequence, B has special combined "compare&branch".  A has 25% 
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faster clock.  For CPU A, 20% of instruction is "branch" and hench another 20% 

is the accompanied "compare".  "Branch" takes 2 clocks and all other instructions 

take 1 clock.  "compare&branch" takes 2 clocks. Both CPUs run the same 

program.  Which is faster?  

 

CPU time A = num. of instruction A   CPI A   cycletime A  

 = n.o.i A   (( .20   2 ) + ( .8   1 ) )   cycletime A  

 = 1.2   n.o.i   cycletime A  

 

"compare" are not executed in CPU B so 20% of 80% = 25% of instructions are 

now branching taking 2 clocks and the rest 75% take 1 clock.  

 

CPI B = .25   2 + .75   1 = 1.25  

CPU time B = .8   n.o.i A   1.25   1.25 cycletime A  

 = 1.25 n.o.i A   cycletime A  

 

Therefore A, with shorter cycle time, is faster than B, which executes fewer 

instructions.  

 

Now if the designer reworks CPU B and reduces the clock cycle time so that now 

A cycle time is only 10% faster.  Which CPU is faster now?  

 

CPU time B = .8   n.o.i A   1.25  1.1 cycletime A  

 = 1.1 n.o.i A   cycletime A  

 

So now CPU B is faster.  

 

Calculation of CPI  

In order to understand the effect of different instruction set, understanding of 

assembly language is required.  An example of assembly language programming 

is illustrated as follows.  

 

Suppose a hypothetical machine has the typical instruction set composed of  

{load, store, compare, increment, jump condition}.  It has an index register (x) 

and a set of general purpose register (r0..r7).  

 

Find max of array[i], i=1..N  

 
     max = array[1]  
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     i = 2  

     while i <= N  

       if max < array[i] then max = array[i]  

       i = i + 1  

     end 

 

let the array[i] be accessed by load r0,array,x  

 
max     equ ...  

array   equ ...  

 

        load x, #1  

        load r0, array, x  

        store r0, max         ; max = array[1]  

        load x, #2            ; x keeps i  

loop    cmp x, #N  

        jump GT exit          ; i <= N  

        load r0, max  

        load r1, array, x  

        cmp r0, r1            ; max < array[i]  

        jump GE skip  

        store r1, max  

skip    inc x  

        jump loop  

exit    END  

 

We count the number of instruction being executed to calculate CPI.  

let N=3, array[ ] = 1,2,3   

 

 frequency clock 

load      3+4 2 

store      1+2 2 

cmp       4 1 

jump      4 2 

inc          3 1 

 

Total 21 instructions, 35 clocks.  CPI = 35/21 = 1.67  

   

Brief history of computer 

The history of computer is full of interesting episodes.  We will to start off with 

asking the question "Who made the first computer?"  To find out the answer we 
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need to clarify some definition.  What kind of machine is considered to be a 

"computer"?   

 

In mechanical era, the computing machine is really a mechanical calculator.  In 

1890, Charles Babbage designed and attempted to build Analytical Engine, which 

contained many ideas that are used in modern computers such as Arithmetic 

Logic Unit.  However, it was never finished as the British government finally 

stopped funding for the construction of Babbage's Analytical Engine. 

 

The MARK 1 (also known as the IBM automatic sequence controlled calculator) 

developed in 1944 at Harvard University by Howard Aiken with the assistance of 

Grace Hopper. It was used, by the US Navy, for gunnery and ballistic 

calculations, and kept in operation until 1959.  The computer was controlled by 

pre-punched paper tape and could carry out addition, subtraction, multiplication, 

division and reference to previous results. Numbers were stored and counted 

mechanically using 3000 decimal storage wheels. It was electro-mechanical 

computer and was slow requiring 3-5 seconds for a multiplication operation. This 

machine is a "configurable calculator", in an essence it is an implementation of 

Babbage's machine with newer technology.   

 

When does a machine become a computer?  We will define a modern computer 

as a general purpose programmable machine.   The "programmability" is 

considered an essential characteristic of a computer.  Alan Turing was the genius 

who proved that the general purpose computer was possible and simple in 1937 

in his seminal paper "On computable numbers" [TUR37].  To have this 

programmability a computer must have the "stored program".   

 

The ABC (Atanasoff Berry Computer) was built in 1937-1942 at Iowa State 

University by John V. Atanasoff  and Clifford Berry [BUR88] [MOL88].  It 

introduced the ideas of binary arithmetic, regenerative memory, and logic 

circuits.  This machine was essentially a powerful configurable calculator.  

Mauchly spent many days with Atanasoff in 1940 studying this machine. This 

was the first computer to use electronic valves (tubes) to perform arithmetic. 

Atanasoff stopped developing this with the advent of war, and never returned to 

it.  This machine doesn't have the "stored program" ability.   
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Figure 1.7  the ABC diagram [IOW99] 

 

 

In 1943 Flowers in Bletchley Park built the first Colossus machine, a 

programmable computer specially designed to crack the German Enigma military 

cypher machines.  It is not a "general purpose" and has no "stored program".  In 

1944 Zuse in Germany started work on a truly general purpose programmable 

computer of modern type, known as the Z4. The end of the war interrupted 

development.  Zuse's earlier machines (Z1-Z3) were elegant and sophisticated in 

design, for example using the much more economical binary representation of 

numbers, but were basically modernised Babbage machines.  

 

A group of scientists and engineers at the University of Pennsylvania's Moore 

School of Electrical Engineering  built ENIAC (Electronic Numerical Integrator 

and Computer) in 1946 [BUR81]. It was programmed by a plug board, which 

wired up the different calculation units in the right configuration, to evaluate a 

particular polynomial. Eckert and Mauchly, the designers, at this time patented a 

digital computing device, and are often claimed to be the inventors of the first 

computer. It was later proven in a 1973 US court battle between Honeywell and 

Sperry Rand that while spending five days at Atanastoff's lab, Mauchly observed 

the ABC and read its 35-page manual. Later it was proven that Mauchly had used 

this information in constructing the ENIAC. Therefore, John Vincent Atanasoff is 

now (by some US historians) heralded as the inventor of the first electronic 

computer.    
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In 1945 John Von Neumann published the EDVAC report, a review of the design 

of the ENIAC, and a proposal for the design of EDVAC. This is widely regarded 

as the origin of the idea of the modern computer, containing the crucial idea of 

the stored program. A processor fetches instructions from memory. It also read 

and write data to and from memory. This is called "Von Neumann" architecture 

where data and instruction co-resides in a memory.  This idea came from the 

proposal of an electronic computer by US Army Ordnance in 1946. Surprisingly, 

Von Neumann himself is not the first author of that proposal [BUR46].  

However, Von Neumann name is honored because of his contribution to the 

development of this type of computer which has now becomes ubiquitous.  The 

implementation of this design was completed in 1952. 

 

In 1946 The National Physical Laboratory appointed Turing, who had been 

developing ideas of implementing his Turing Machine concept of general 

purpose computation in electronic form, to a rival British project intended to 

outclass EDVAC, known as the ACE.  ACE design was at the time the most 

advanced and most detailed computer design in existence.  Its construction was 

completed in 1950 and named the Pilot ACE. 

 

On 21st June 1948 the first stored program ran on the Small-Scale Experimental 

Machine (SSEM), nicknamed "Baby", the precursor of the Manchester Mk 1 

[LAV80].  So Manchester machine was the first to work. 

 

The first program was written by Tom Kilburn. It was a program to find the 

highest proper factor of any number a.  This was done by trying every integer b 

from a  1 downward until one was found that divided exactly into a. The 

necessary divisions were done not by long division but by repeated subtraction of 

b (because the "Baby" only had a hardware subtractor).  

 

Trying the program on 218; here around 130,000 numbers were tested, which took 

about 2.1 million instructions and involved 3.5 million store accesses. The correct 

answer was obtained in a 52 minute run. 

 

By April 1949 the Manchester Mark 1 had been finished and was generally 

available for scientific computation in the University. With the integration of a 

high speed magnetic drum by the autumn, this was the first machine with a fast 

electronic and magnetic two-level store (i.e. the capability for virtual memory). 
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Figure 1.8  the first program [MAN98] 

 

 

In 1951 the UNIVAC 1 commercial computer was produced in US, based on the 

EDVAC design, and made by Eckert and Mauchly, who by this time had sold 

their UNIVAC company to Remington Rand. It employed decimal arithmetic.  

 

We will stop our trip to the history of computer here.  To find out more, there is a 

wonderful journal devoted to all aspects of history of computing, "Annals of the 

History of Computing", IEEE Computer Society. 

 

Time line of the history of computer 

Mechanical era  

1642 Blaise Pascal invented a machine that can add/subtract numbers  

1666 Samuel Morland invented a machine that can multiply by repeated addition.  

1671 Gottfried Leibniz, an adding and multiplying machine  

1820 Charles Babbage, Difference engine  

1830 Charles Babbage, Analytical engine  (Father of modern computer)  
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Electro-mechanical era (relays)  

1880 Herman Hollerith, punch card machine  

1924 Thomas J. Watson founded IBM  

1930 Beginning of computer age  

         Howard H. Aiken, Harvard university (MARK I)  

         John V. Anatasoff, Iowa State univ.  

         George R. Stibitz, Bell telephone lab.  

         Konrad Zuse, Technische Hochschule in Berlin, ZUSE 1  

1943 Flowers, Colossus 

1946 Eckert & Mauchly, ENIAC  

 

Electronics era  

1948 Manchester SSEM 

1949 Manchester Mark I 

1950 John Von Neumann, EDVAC  

1950 Alan Turing, ACE  

1951 Forrester (MIT), Whirlwind  

1952 Goldstine and Neumann, IAS 

 

Computer industry era  

1951 Remington Rand, UNIVAC  

1952 IBM 701  
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Chapter 2 

Instruction Set Architecture 

 

 

The instruction set design is an important part of computer design.  An 

instruction set is the visible part of a processor where programmers see available 

resources of the processor such as functional units, registers, flags and the 

operations that can manipulate those resources.  

 

An instruction set abstracts away the technology dependent part of a processor.  

For example, the frequency of the master clock, the details of implementation 

such as the number of pipeline stage and the size of cache memory.  An 

instruction set also defines the architecture of a processor, that is, an ISA defines 

the function of a processor.  

 

In this chapter we discuss the instruction set design issues.  An introduction to 

assembly language is illustrated using the Motorola 6800.  A study of the IBM 

System360 instruction set is elaborated to illustrate one of the most long-lived 

ISA.  The S/360 ISA defines a family of computers and has a unique position in 

the computer history.  Another approach to the ISA design, the stack-based ISA 

is discussed.  Finally, one of the revolutionalised idea in ISA design of the last 

decade, the reduced instruction set computer (RISC), is explored. 

 

Design issues  

The designer of an instruction set must consider the following issues: 

 types of operations 

 types of data  

 instruction formats 

 the number of registers 

 the number of addressing modes 
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Types of operations 

An instruction set consists of several types of operations.  Most of these types 

must be present for a general-purpose processor. 

 

1. Arithmetic operations such as add, subtract, increment.  

2. Logical operations, such as compare, which return Boolean values or 

affect flags. 

3. Data transfer such as load from memory, store to memory, moving data 

between registers or input/output.  

4. Control transfer such as jump, conditional branch, subroutine call and  

return.  They affect the flow of program execution. 

5. Other operations such as disable/enable interrupts and interface to the 

operating system. 

 

Types of data 

The sequence of bit in the memory represents many types of data: addresses, 

numbers, characters, logical values {True, False}.  These data types are 

interpreted by the instructions.  Each instruction requires the correct type of data 

to produce a meaningful result.  The choice of data type in each ISA is heavily 

influenced by the type of workload, such as binary-packed decimal (BCD) for 

business applications and floating-point for scientific computing.  The difference 

in design reflects the difference in the intended use. 

 

Example 

The Intel Pentium processor has the following data types: byte, word, double 

word, quadword, integer, unsigned integer, BCD, packed BCD, near pointer, bit 

field, byte string, floating-point.  

 

The IBM PowerPC processor has the following data types: byte, halfword, word, 

doubleword, unsigned byte, unsigned halfword, signed halfword, unsigned word, 

signed word, unsigned doubleword, byte string, single float, double float (IEEE 

754).  

 

Endianness  (byte ordering, bit ordering)  

As the memory is arranged in linear order, the order of bit and byte of data must 

be specified to have a consistent interpretation.  There are two schools of thought: 

big-endian and little-endian.  The big-endian school lays the data in memory 
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from the most significant to the least significant "digits" and vice versa for the 

little-endian.  Neither of which has absolute advantage over the other.  In the 

past, the issue of endianness causes the problem of compatibility when data must 

be transferred between two machines with different endianness.  Presently, the 

implementation of processors has both endianness built-in which allows software 

to switch the mode, hence reduces the problem of data translation.  The ordering 

is considered at two levels: bit ordering and byte ordering. 

 

Bit ordering: The ordering refers to whether the least significant bit is the left 

most or right most bit.  This is important when a data is shifted out serially as in 

the serial communication applications.  However, this is not the problem of the 

architecture as most processor has the instruction to shift both left most bit and 

right most bit out. 

 

Byte ordering: Suppose a 32-bit value is 12345678 (hex), for a big-endian 

machine this is represented as 12,34,56,78  (ordering from low address to high 

address in memory).  For a  little-endian machine this is represented as  

78,56,34,12. 

 

The different processors adopted different endianness, the examples are as 

follows. The machines with little-endian are Intel 80x86, Pentium, VAX.  The 

machines with big-endian are IBM 370, Motorola 680x0, and most RISC 

machines.  Some machines are bi-endian, the endianness can be set in the 

processor status bit, they are PowerPC, MIPS. 

 

Example To illustrate the difference between two endianness, consider how the 

following C structure is mapped in memory. 
 

struct { 

  int a;  //0x1112_1314  word 

  int pad;  

  double b;  //0x2122_2324_2526_2728  doubleword 

  char* c;  //0x3132_3334  word 

  char d[7];  //'A','B','C','D','E','F','G' byte array 

  short e; //0x5152 halfword 

  int f;  //0x6162_6364 word 

} s; 
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Big-endian address mapping (byte address) 

 
00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 

11 12 13 14     21 22 23 24 25 26 27 28 

10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 

31 32 33 34 A B C D E F G  51 52   

20 21 22 23             

61 62 63 64             

 

 

Little-endian address mapping (byte address) 

 
00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 

14 13 12 11     28 27 26 25 24 23 22 21 

10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 

34 33 32 31 A B C D E D G  52 51   

20 21 22 23             

64 63 62 61             

 

Figure 2.1 example of C data structure and its endian maps [IBM94] 

 

Instruction formats 

An instruction operates on its "operands".  The number of operands varies for 

each instruction, however many instructions have the same number of operands.  

The number of operands determines the "format" of an instruction.  The 

instruction format can be classified into 3, 2, 1, and 0operand instruction.  

 

A 3operand instruction has the form "op A B C", means  A = B op C  

A 2operand instruction has the form "op A B", means A = A op B  

A 1operand instruction has the form "op A", means it operates on A  

A 0operand instruction has the form "op", means it has no operand or the 

operand is implicit in the stack . 

 

The type of operands can be memory, register or constant values, which will 

affect:  

1. the length of instructions  number of bits required to encode the 

instruction, 

2. the speed of operation  the access time of memory and register are 

different hence the speed is different for reading and writing operands in 

memory or register, and  
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3. the number of instructions required to perform a task  the larger number 

of operands in an instruction results in fewer instructions to perform a 

task.  

 

The size of encoding is different between memory and register operand.   The 

number of register in a machine is much smaller than the addressable memory 

space hence the encoding of register operand is smaller than that of memory 

locations.  The combination of the type of operand gives rise to the difference in 

category of architecture.   

 

Comparing the register-register format and the memory-memory format.  Assume 

operational code has 8 bits, operand address has 16 bits and each operand size 32 

bits.  Let I be the size of executed instructions, D be the size of executed data, M 

be the total memory traffic (in bits).  The table below shows the size of 

instruction for each type of sequence of operations as (I, D, M). 

 

Table  2.1  Comparing register-register and memory-memory instruction formats 

(I,D,M)  I the size of instruction, D the size of data, M total memory traffic in bits 

 

operations register-register memory-memory 

A = B + C ld  rB B  
ld  rC C  
add rA rB rC  
st  rA A   

(104  96  200) 

add B C A  

 

(56  96  152) 

A=B+C; 
B=A+C; 
D=D-B 

add rA rB rC  
add rB rA rC  
sub rD rD rB 

(60  0  60) 

add B C A  
add A C B  
sub B D D 

(168  288  456) 

 

 

The processor design is strongly tied to the instruction set design.  There were 

many diverse computer designs and hence many different instruction set designs 

in the past.  However, as the technology progress, the analysis of the workload  

the actual running programs  which affect the instruction set selection leads to 

the convergence of instruction set architecture.  The most common type of 

instruction set architecture today belong to three classes:  
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 Load-Store architecture  

 Register-Memory architecture  

 Register-plus-Memory architecture  

 

Load-Store architecture has 3-address format and mostly 32-bit instruction size. 

This is the most popular among the current microprocessor design including: HP 

PA-RISC, IBM RS/6000, SUN Sparc, MIPS R4000, DEC Alpha etc.  All data 

to/from memory must load/store through a register first.  The execution 

(operation) takes operands from registers and the result stored back to a register. 

This instruction format simplifies the decoding and implementation. Because 

most operations are performed on registers, they are fast.  However, as registers 

are used extensively the allocation of registers becomes important.  Determining 

which variables to be resided in registers affects the performance of this class of 

machines and register allocation is done by compilers.  

 

Register-Memory architecture has 2-address format and has 16/32/64 bit 

instruction size.  An instruction can operate both on registers and with one of the 

operand in the memory. This is the "classical" ISA and is used by one of the 

longest-lived ISA of today IBM S/360 and Intel x86 family of processors.  

 

Register-plus-Memory architecture is the most flexible in the use of operands. 

Operands can be registers or memory. This architecture has byte-variable 

instruction size. This flexibility comes with a price, the complexity in 

implementation.  This type of architecture is typified by VAX family of computer 

in the era that there was the drive to provide the high level language semantic for 

the instruction set, so called "close the gap" between high level language and 

machine language. This architecture combines both operands in memory and 

registers. It allows flexibility in the use of memory to keep variables and does not 

need to have a large number of registers to achieve high level of performance.  

 

Addressing modes 

The addressing mode refers to the way an instruction calculates addresses of 

operands.  The "effective" address can be computed using the value from the 

register(s) or the value of some field in the instruction itself.  To access an array, 

the index is necessary.  The index is usually stored in a register.  The indirect 

address is used to represent "pointer" type and to access a value via a pointer. 

Many complicated addressing modes have their use when translating a high level 

language construct into machine instructions.  Table 2.2 shows some of the most 

frequently used addressing found in most processors. 
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Table 2.2  various addressing modes 

 
addressing modes instruction format instruction meaning 

register   add r4,r3 r4 = r4 + r3 

immediate   add r4,#3 r4 = r4 + 3 

based         add r4,100(r1) r4 = r4 + M[100+r1] 

register indirect    add r4,(r1) r4 = r4 + M[r1] 

indexed      add r3,(r1+r2) r3 = r3 + M[r1+r2] 

direct       add r1,(1001) r1 = r1 + M[1001] 

memory indirect  add r1,@(r3) r1 = r1 + M[ M[r3]] 

auto-increment      add r1,(r2)+ r1 = r1 + M[r2] ; r2 = r2 + d 

auto-decrement    add r1,(r2) r2 = r2  d; r1 = r1 +M[r2] 

scaled        add r1,100(r2)[r3] r1 = r1 + M[100+r2+r3*d] 

 

Assembly language 

In this section we will learn an assembly language.  The assembly language is 

"lingua franca" to talk to the underlying hardware.  An example of a real 

microprocessor assembly language is illustrated in relations with the high level 

language.   

 

Why assembly language is needed 

It is becoming less and less necessary for a programmer to program in an 

assembly language.  High-level languages made programs portable and 

programming more productive.  There are however some situation where an 

assembly language is necessary such as when programming at very near 

hardware level.  A programmer who creates these types of programs: a compiler, 

a device driver in an OS, an embedded control program etc. needs to use 

assembly language.  An assembly language is the language that allows a 

programmer to talk about operations on a bare bone hardware.  For a computer 

architect, an assembly language is the "interface" to the hardware functions. 

During this course, we will talk about the innards of computers, their 

organization, how each unit works. All these follow from what kind of assembly 

language a computer has.  It is necessary for a computer architect to be able to 

write and read assembly language well.  All working units inside a computer 

perform according to some sequence of its instruction.  
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To study computer architecture, we need to understand assembly language.  This 

introduction will concentrate on principles of assembly language 

programming.  The aim is to enable students to read some subset of assembly 

language and understand their operational semantics.  We will use a real CPU, 

Motorola 6800, as our example.  It was designed more than 20 years ago.  It has a 

simple instruction set and is easy to understand.  We use real CPU because it 

shows the complexity of the real device.  We choose only a subset of instruction 

set that is enough to let us program some small programs.  

 

Instruction set of MC6800 

The machine model of Motorola 6800 shows the resource in the view of an 

assembly language programmer.  This microprocessor is composed of two 8-bit 

accumulators ACCA and ACCB.  It has two 16-bit registers, which can perform 

indexing: X and SP.   The conditional flags reside in the 8-bit condition code 

register.  The address space is 64K bytes (address 16-bit). 

 

In general, instructions can be grouped into 5 categories:  

1. Arithmetic: ADD, SUB, INC, DEC  

2. Logical operation: CMP  

3. Data transfer: LDA, STA  (load, store)  

4. Flow of control: BR, JMP  (branch on condition, jump)  

5. Others (such as I/O)  

 

These are instructions that manipulate the index register:  

LDX  load index register 

INX  increment index register 

CPX  compare index registers  

 

Addressing modes are:  

 Direct mode, sometimes called "Absolute".  The operand is the effective 

address.   LDA A $100  ($ signify hex)  

 Immediate mode, the operand is some constant value to be used.  LDA A 
#3  

 Indexed mode, the operand is added to the index register to get an 

effective address. LDA A $200, X    effective ads = $200 + x  

 Relative mode, it is used in jump instructions to get effective address 

relative to the current PC.  

 Register mode, the named  register is the operand.   TAB, TBA  
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Programmer model of 6800 

A    8 bits  

B    8 bits  

X    16 bits index register  

SP    16 bits   stack pointer  

CC    8 bits    H,I,N,Z,V,C  

 

Memory model of 6800 

64K :   00-FF for short,   0000-FFFF long  

 

Example:  P = M + N  

let P= $100, M =$101, N= $102  
   ldaa $101  

   adda $102  

   staa $100  

 

Example:  add 1 to 10  

In a high level language  
 

i = 1; sum = i  

while i <= 10  

  sum = sum + i  

  i = i+ 1  

 

in assembly language 

let sum =$100, i =101  
  ldaa #1  

   staa $101  

   staa $100  

loop: ldaa $101  

   cmpa #10  

   bgt exit    ; while i <= 10  

   ldaa $100  

   adaa $101  

   staa $100   ; sum = sum + i  

   inc $101    ; i = i + 1  

   jmp loop  

exit: ...  
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Example: Find maximum in an array AR[i] i = 1..10  

learn how to use index  
      .org h'100  

      ldx i  

      ldaa ar,x  

      staa max     ; max = ar[0]  

loop: ldaa i+1     ; use 8 bit of i  

      cmpa #2  

      bgt exit     ; while i <= N  

      ldaa ar,x  

      cmpa max     ; if max < ar[i]  

      ble skip  

      staa max     ; then max = ar[i]  

skip: inx          ; i = i+1  

      stx i  

      jmp loop  

exit:  

      .org h'10  

max:  .db 0        ; max  

i:    .dw 0        ; index must be 16 bit  

ar:   .db 4,5,6    ; array  

      .end  

  

Assembler a68  

directive .ORG, .END, .DB  define byte, .DW define word  

symbolic name   NAME:  

literal    H'100 (hex), 100, #2, #'A'  

 

In an assembler program, the assembly language directive helps to improve the 

readability of the assembly language program by providing the use of symbolic 

names.  The directives are special instructions.  They are pseudo instructions 

which do not translated into any actual machine instruction.  Mostly they provide 

the name and the constant value stored in the memory.  ORG set PC, EQU define 

symbol, DB, DW reserve storage. 

 

To simplify register allocation, variables are kept in memory (using DB, DW or 

EQU).  Although sometimes it is laborious to move variables between registers 

and memory, it is straightforward and easy to understand.  Symbolic names can 

be used to make a program easier to read.  From the last example: 
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  .org 0  

max   equ  $100  

AR    equ  $102  

   ldx #1  

   ldaa AR,x  

   staa max      ; max = AR[1]  

   ldx #2     ; i = 2  

  ...  

Tools  

An assembler can translate a source file into machine code file (in some file 

format, such as Motorola S-format).  This machine code file can be loaded into a 

simulator and executed.  A simulator allows students to execute and monitor the 

effect step by step. It shows the value of all registers and can display memory 

values.  The a68 assembler and the simulator, sim68 are available for download 

from the web page of this book. 

 

IBM System/360 ISA 

IBM System/360 [AMD64] is one of the longest-lived instruction set to date, the 

architecture was introduced in 1964. The goal of this family of computer is to 

have compatible instruction set but have a performance range of 50.  The task of 

designers is a difficult one.  It is aimed to perform both scientific and data 

processing applications.  The scientific applications are dominated by floating 

point operations.  The data processing applications involve movement of long 

strings.  Its long live brought light to a now classical problem in instruction set 

design: the shortage of addressing space.  As applications grow the requirement 

for address space increase very quickly.  A design that has the address space 

adequate at the time of its introduction quickly find itself lacking address space in 

just a few years later.  To quote from IBM [BEL76]   

 

"There is only one mistake . . . that is difficult to recover from  not 

providing enough address bits . . . " 

 

Programmer's model 

It is byte addressable, the smallest addressable unit is byte.  Addresses are "real" 

referring to physical location in the main memory.  Its successor System/370 

[CAS78] introduced a major advanced concept, "virtual" address, where address 



38 

does not refer directly to a physical location in the main memory but is mapped 

to a physical location by a dynamic addressing translation mechanism.  

 

S360 has 16 32-bit registers, R0 to R15.  R2 to R12 are general purpose.  R0, R1, 

R13, R14, R15 are special purpose and are used in subroutine linkages (Table 

2.3).  For floating point number operations the registers are paired into four 

floating point registers, each 64-bit, numbered : 0, 2, 4, 6. 

 

Table 2.3  S360 special purpose registers 

 
register caller callee 

R0 return value from the subroutine return value 

R1 send parameters to subroutine receive parameters 

R13 register save area save and restore registers 

R14 return address return value 

R15 the address of subroutine -- 

 

Addressing mode 

It has five addressing modes: register-register (RR), register-index (RX), register-

storage (RS), storage-index (SI) and storage-storage (SS).  The instruction format 

for each mode is (field:length in bit) : 

 

RR op:8 R1:4 R2:4 

 

RX op:8 R1:4 X:4 B:4 D:12 

 

RS op:8 R1:4 R3:4 B:4 D:12 

 

SI op:8 I:8 B:4 D:12 

 

SS op:8 L1:4 L2:4 B1:4 D1:12 B2:4 D2:12 

 

RR  register to register    R[R1] = R[R1] op R[R2]  

RX register to indexed storage  R[R1] = R[R1] op M[R[X] + R[B] + D]  

RS register to storage  R[R1] = M[R[B] + D] op R[R3]  

SI  storage to immediate  M[R[B] + D] op I  

SS  storage to storage  M[R[B1] + D1]:L1  op M[R[B2] + 

D2]:L2   where  L1, L2 are length of operands  
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Types of data 

It is byte-addressable.  A full word is 32-bit, a double word is 64-bit.  The natural 

size is 32-bit.  For arithmetic data, it has decimal, pack decimal, floating point 

numbers with single precision 32-bit and double precision 64-bit.  It has strings 

and characters, EBCDIC (extended binary coded decimal interchange code),  

 

Types of operations 

The S/360 has been built to accommodate many types of basic functions, with 

decimal data, binary data and floating-point data and instructions for arithmetic 

operations for each type of data.  The instruction format for decimal addition is 

not the same as that for binary addition, because the decimal addition does not 

use registers.  Floating-point arithmetic uses its own set of registers, and has 

special environments in regard to numbering registers.  The S/360 has the 

following classification of its instructions. 

 Arithmetic instructions 

 Conversion instructions 

 Data movement instructions 

 Logical instructions 

 Branch instructions 

 Miscellaneous instructions 

 

load/store 

L load 

LP  load positive 

LN  load negative 

LC  load complement 

LA  load address 

ST  store 

branch 

B branch 

BC  branch on condition, on condition code (CC bits) using the following 

mnemonics : 

BZ  branch on zero 

BP branch on positive 

BM branch on minus 
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BNZ branch on not zero 

BNP branch on not positive 

BNM branch on not minus 

BO  branch on overflow 

BNO branch on not overflow 

 

The addressing mode can be either RR (the destination address is in a register) or 

RX (the destination address is calculate from base + index + displacement) 

doing loop 

BCT branch on count, this is auto-decrement the operand (RR-type) and 

branch when the value is 0. 

BXLE branch on index low or equal 

BXH branch on index high  

calling subroutine 

BAL  branch and link (RR, RX)  the return address is loaded into op1 and 

branch to the destination address in op2. 

to return from subroutine 

B  r    branch register r  which store the return address.  This is used in 

pair with BAL r 

arithmetic/logic 

A add 

S subtract 

M multiply 

D divide 

C compare 

CL compare logical character 

logical operations,  

the operands can be RX RR SS SI 

N  and 

O or 

X xor 

TM  test under mask 

SL  shift left  arithmetic/logical 
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SR  shift right   arithmetic/logical 

string operations 

MVC  move characters 

CLC   compare logical characters 

TR   translate and test, string search 

TRT  translate and test table, table look up and character translation 

conversion  

CV   convert from packed decimal to binary 

CVD  convert from binary to packed decimal 

PACK   convert from zoned decimal to packed decimal 

UNPACK   convert from packed decimal to zoned decimal 

ED       edit, convert packed decimal to zoned for display  

EDMK  edit and mask, similar to edit but use pattern to insert a currency 

symbol such as $ 

 

Example of a program to perform W = X + Y - Z.  Assume W, X, Y, Z are in the 

memory. 

 
PROGRAM 

 START 0 

 BALR 12,0 

 USING *, 12 

 L 2, X  R2 = M(X) 

 A 2, Y  R2 = R2 + M(Y) 

 S 2, Z  R2 = R2 - M(Z) 

 ST 2, W  M(W) = R2 

 BR 14  STOP  

 

X DC F '10' DEFINE CONST FLOAT 10.0 

Y DC F '3'  DEFINE CONST FLOAT 3.0 

Z DC F '4'  DEFINE CONST FLOAT 4.0 

W DS F  RESERVE STORAGE FLOAT 

 END 
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Stack-based instruction set architecture 

What is a stack machine? 

Contrast to an ordinary processor of contemporary design which uses registers, a 

stack machine uses stack.   A stack is a LIFO (last in first out) storage with two 

abstract operations: push and pop. Push puts an item into stack at the top.  Pop 

retrieves an item at the top of stack.  

 

Calculation using stack. 

Because a stack is LIFO, any operation must access data item from the top. Stack 

doesn't need "addressing", as it is implicit in the operators, which use stack.  Any 

expression can be transformed into a postfix order and stack can be used to 

evaluate that expression without the need for explicitly locating any variable. For 

example, 

 

  B + C - D  ==>  
        B C + D -  (postfix)  

        push val B, push val C, add, push val D, sub.  
  A = B  ==>  

        A B =  
        push ads A, push val B, store. 

add takes top two items from stack add them and push the result back to stack. Similarly sub operators.  store takes 
one value and one address from stack and store value to address.  

Let's compare the above expression to the calculation using registers. 

  B + C - D  

    load r0, B  
    load r1, C  

    add r0, r1   ;  r0+r1 -> r0  
    load r2, D  
    sub r0, r2  

  A = B  

    load r0, ads A  
    load r1, val B  
    store r1, (r0)  ; r1 --> (r0)  
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One can see that the main difference is that registers must be  allocated, for 

example, r0 is used to store temporary result while in a stack machine the 

temporary storage is implicit.   ISA based on stack has an advantage over 

register-based ISA that it is very compact.  As most instructions have implicit 

argument, the size of instruction is very short, usually one byte.  Only a few 

instructions need argument, such as jump, push literal, that required more than 

one byte.  

 

Example of stack ISA  

We will illustrate an ISA that is based on a stack machine.  Let us ignore local 

variables to simplify the presentation (therefore reduce the complication of an 

activation record).  We need load, store, arithmetic operators, call, return and 

conventional jump and branch for flow of control. 

 

Notation:  TOP is the item on top of stack, NEXT is an item below TOP 

(therefore we can talk about 2 operands on stack by TOP, NEXT), M[ads] value 

of memory at ads.  "pop a"  is TOP --> a, "pop2" pops two items off stack.  

 

  lit #a push the immediate value a.  

  load pop a, push M[a].  

  store NEXT -> M[TOP], pop2.  

  add NEXT + TOP -> a, pop2, push a.  

  cmp if NEXT > TOP a = 1 else a = 0, pop2, push a.  

  call pop a, create new activation record, goto a.  

  return delete current activation record, go back pc'.  

  jz #a if pop = 0 then goto a.  

 

Please note that except lit #a and jz #a which has #a as argument, all other 

instructions have argument(s) implicit in the stack.  The state of computation 

consists of a stack pointer and a program counter.  If  we have two stacks one for 

computation and one for activation record (called control stack),  we  need only 

to store the program counter (return address) in the activation record and there is 

no need to do anything to computation stack on subroutine calls.  Calling a 

subroutine need just push the current program counter (return address) onto the 

control stack.  Returning is just pop the control stack and restore the previous 

program counter.  
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Reduced Instruction Set Computer 

As high-level languages became popular and started to replace assembly 

languages the design of instruction set began to take the central stage. The ISA 

design of that period (circa 1970) emphasised the support of high-level languages 

using instructions that perform complex operations such as move block of 

characters and having various addressing modes to accommodate accessing the 

data structure of high-level languages.  The intention is that with these complex 

instructions the "level" of assembly languages will be lifted up to be nearer to the 

high-level languages. (The difference between high-level languages and 

assembly languages is called "semantic gap" [ILI82]).  Thus, simplify the 

construction of compiler (which was one of the most complex programs of those 

days).  The ISA design also emphasised the small size of the executable code.  

The reason is that by having a small code size, the program will run faster.  One 

obvious fact is there will be fewer instructions to be fetched from memory.   

 

However, because of their complexity, the complex instructions require many 

cycles to execute.  The control unit was more difficult to design and the 

technique of "microprogram" became the standard engineering tool to battle this 

complexity.  The complexity of a control unit can be measured by the size of the 

microprogram (the DEC VAX 11/780 has 5140  96 bits of microprogram, it has 

one of the most complex ISA [LEV89]).  This complexity resulted in the longer 

cycle time.  The other negative aspect of the complex ISA is that the pipeline 

scheduling is not very effective and the cost of stall is very high.   

 

The study of dynamic execution of instructions of the programs written in high-

level languages [PATT82] [LUN77] [HUC83] showed that 1) the most frequently 

used instructions are the simple instructions 2) compilers do not use much of the 

complex instructions as it is difficult to match the context (conditions) of 

statements in the language to specialised instructions, therefore the compiled 

code contained mostly simple instructions.  Table 2.4 shows the result from 

[PATT82]. 

 

Arming with these findings, the movement of the new direction is designing 

instruction set had begun [PAT82] [PAT85] [STA88].  The ISA design was in the 

contrast with the earlier ISA, this new ISA emphasised on 1) making the simple 

instructions run fast 2) making the pipeline efficiency the main concern.  This 

idea led to the effort to make every instruction to run in one cycle.  The main 

technique is to have load/store instruction set and making use of large number of 

registers to store local values and to pass parameters between call/return.  The 

visible characteristic is that the new ISA has simplified instruction set (this does 
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not mean the number of instruction is reduced), for example, the number of 

addressing mode is restricted, the complex instructions which can not be 

completed in one cycle are abandoned, some complex operations are achieved by 

using a sequence of simple instructions instead.   

 
Table 2.3 Weighted relative dynamic frequency of high-level languages operation  

 

 Dynamic 

occurrence 

Machine 

instruction 

weighted 

Memory 

referenced 

weighted 
 Pascal C Pascal C Pascal C 

ASSIGN 45 38 13 13 14 15 
LOOP 5 3 42 32 33 26 
CALL 15 12 31 33 44 45 
IF 29 43 11 21 7 13 
GOTO  3     
OTHER 6 1 3 1 2 1 

 

The other main departure from the previous ISA design is the emphasis on using 

compilers to schedule efficient codes.  Many techniques in the new ISA requires 

sophistication of the compiler such as the use of delay branch requires compilers 

to be able to fill in the delay slot.  Fortunately, the software technology has been 

advanced to the stage that writing this sophisticate compiler becomes possible.  

With simplified instruction set, compilation techniques achieve a good deal of 

efficiency.  It was easier to generate a good code for this simplified ISA than for 

a complex ISA.  The result from this new thinking is that CPI of processor 

approaches 1.0.  The control unit is simplified to the point that the hardwired 

circuit is practical.  The cycle time is reduced.  

 

The complex instruction set was named "Complex Instruction Set Computer" 

(CISC) in contrast to the simplified instruction set which was then called 

"Reduced Instruction Set Computer" (RISC).  The year 1980-1990 becomes the 

golden age of the RISC philosophy when the microelectronics industry has 

matured and it is possible to produce a high performance processor on a chip.  

The RISC design has dominated the market and becomes synonymous with high 

performance.  Because of the regularity inherent in the RISC design, the 

computer-aided design (CAD) tools can be applied easily to the design and test 

process, hence it accelerates the time to market of the new processors. However, 

the compatibility of the old software keeps the complex instruction set alive, 

notable the Intel family of microprocessors, the 80x86 and later the Pentium 

family.  
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 Decode complexity Pipelining difficulty 

Processor No. of 
Inst. 
sizes  

Max. Inst. 
size in 
bytes 

No. of 
addressing 
modes 

indirect 
addressing 

load/store 
with 
combined 
arithmetic 

Max. no. 
of 
memory 
operands 

unaligned 
addressing 
allowed 

MIPS R2000 1 4 1 no no 1 no 
SPARC 1 4 2 no no 1 no 
HP PA 1 4 10 no no 1 no 
IBM RS/6000 1 4 4 no no 1 yes 

IBM 3090 4 8 2 no yes 2 yes 
Intel 80486 12 12 15 no yes 2 yes 
MC68040 11 22 44 yes yes 2 yes 
VAX 56 56 22 yes yes 6 yes 

 

 

Figure 2.2  Characteristics of some processors 
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Figure 2.2 shows characteristics of some processors that illustrate the difference 

between CISC and RISC designs.  The first four processors: MIRS R2000, 

SPARC, HP PA and RS/6000 are RISC.  They have one fixed instruction size, 

small number of addressing modes, has no indirect addressing, no load/store 

combined with arithmetic instructions and has maximum one memory operand.  

The other four processors: IBM 3090, Intel 80486, MC68040 and VAX are 

CISC.  This example is chosen to contrast both schools of thought, however, the 

division between them is not black and white.  There are many ISA that fall in 

between. 

 

The evolution of idea in the ISA design of both generations (CISC and RISC) is 

the change according to the technological force.  The CISC was successful 

because of microprogramming technique as well as RISC was successful because 

of the single chip processor technology.  The success of both ideas in the past can 

be a good example how a particular tradeoff is achieved.  The lesson learn can be 

applicable to the future ISA design which definitely will be affected by the 

technology yet to come (such as DNA computing and nanoelectronics).   

 

The current design uses both ideas in the implementation of a processor [HEN91] 

[FLY98] [FLY99]. The control is divided in to two parts 1) the execution of basic 

instructions and 2) the execution of the complex instructions.  The basic 

instructions will be completed in one cycle and multiple issued.  The complex 

instruction will have very deep pipeline, for example the Intel Pentium has 14 

stages pipeline in one model.  The complex instructions can also be translated at 

run-time into wide internal micro-operations, which simplify the multicycle 

pipeline especially for floating-point operations.  Flynn said in one of his article 

[FLY97] that  

 

"Tradeoffs between computer design cost-performance and programmer 

accessible functionality are as current a problem today as they were in 1953."  

 

and concerning the debate whether CISC or RISC is better that  

 

" ... Actual performance differences in instruction set efficiency are slight, 

but these differences still stir passions among hardware designers.  Within 

the past few years, there has been a continuing (and generally unproductive) 

debate over the cost-performance benefits of the so-called RISC instruction 

sets over earlier instruction sets labeled CISC."   
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No doubt, the instruction set design of the future processor will have another 

revolutionary idea as much as RISC has over CISC in the past. 
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Chapter 3 

Computer Arithmetic 

 

 

The arithmetic logic unit (ALU) is the part of the processor that performs 

calculation both the arithmetic and the logic operations.  It composed of 

functional units and registers including some status bit for storing the result of 

operations such as zero and overflow.  The functional units included adder, 

multiplier and shifter.  As an ALU is realised using logic gates, it relies on the 

computer arithmetic algorithms to perform calculation by repetition such as using 

multiple add-shifts to do multiplication.  This enables complex calculations such 

as floating point operations possible on an economical hardware. 

 

Number representation 

Decimal system 

A = 195710 

A = 1  103 + 9  102 + 5  101 + 7  100 

 

A is expressed in a decimal number.  The base is 10.  This representation has 10 

symbols 0, 1, 2, … 9 which constitutes digits. 

 

Binary system  

A number is represented as sum of weights that are a power of 2.  The base is 2 

and there are two symbols 0, 1 called binary digits or bits. 

 

A = 101012 

A = 1  24 + 0  23 + 1  22 + 0  21 + 1  20 

A = 24 + 22 + 20   = 2110 
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A number can be represented by n-bit in many ways.  For an integer, there are 

unsigned, sign-magnitude and two's complement representation. 

 

unsigned integer  







1

0

2
n

i
i

i aA  

 

An unsigned integer ranges over non negative numbers.  For n-bit integer its 

range is 0…2n  1. 

 

sign-magnitude 

The left most bit is sign, the right most n1 bit is magnitude.  It has several 

drawbacks. First addition and subtraction require special treatment of sign and 

relative magnitudes. Second, the number zero has two representations +0, 0. 

 

two's complement  

We have seen how to represent an unsigned integer but how a negative number 

can be represent without using sign-magnitude?  Suppose we have 3-bit binary 

a2a1a0 which can represent 23  8 positive numbers for 000 to 111  (0 to 7).  The 

fourth bit can be introduced to associate with the negative weight 23.  The 4-bit 

number can represent 10002 ( 810 ) to 01112 ( +710 ).  The decimal value is 

 

A = a3  23 + a2  22 + a1  21 + a0  20 

 

The number is negative is A3 = 1.  The properties of this representation are 

1 Bit A3 gives the sign of the equivalent decimal number, A3 =1 negative, 

A3 = 0 positive. 

2 There is one zero and it is positive. 

3 A positive decimal number is changed to a negative number of the same 

absolute value by inverting each bit followed by adding a 1.   
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a3 a2 a1 a0 decimal 

1 0 0 0 8 
1 0 0 1 7 
1 0 1 0 6 
1 0 1 1 5 
1 1 0 0 4 
1 1 0 1 3 
1 1 1 0 2 
1 1 1 1 1 
0 0 0 0 +0 
0 0 0 1 +1 
0 0 1 0 +2 
0 0 1 1 +3 
0 1 0 0 +4 
0 1 0 1 +5 
0 1 1 0 +6 
0 1 1 1 +7 

 

Figure 3.1  4-bit two complement numbers 

 

 

Example  Convert 1102  (+610) to a negative number 610. 

0010  inverse to 1001, 1001 plus 1  is 10102  =  610 

This number is called two's complement of the original number. 

 

The following expression defines the two's complement representation for both 

positive and negative numbers. if A is positive, the sign bit (a n-1) is zero.   The 

range of positive number is 0 … 2 n-2 .  The range of negative number is                  

1 … 2 n-1 . 
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Integer arithmetic 

Addition and subtraction  

Using two's complement representation, subtraction is performed by adding the 

two's complement.  For example, 5  3 = 2, (+5) + (3) = 2, (0101) + (1101) = 

10010.  The left most bit (carry bit) is overflowed.  We ignore the overflow and 

the result is 0010 = 2.  On any addition, the result may be larger than can be held 

in the word size being used.  This condition is called overflow.  When overflow 

occurs, the ALU signals the condition codes.  The overflow rule is: If two 

numbers are added, and they are both positive or both negative, then overflow 

occurs if and only if the result has the opposite sign. 

 

Subtraction is achieved using addition.  We can demonstrate by the following 

example.  If B = A, then A + B = A + (A) = 0.  For n-bit integer, B is a bitwise 

complement of A plus 1, that is  A.  Let an'  be a complement of an . 
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Multiplication 

Multiplication is a complex operation.  Multiplication firstly generates partial 

products, one for each digit in the multiplier, then summed them to produce the 

final product. Each successive partial product is shifted one position to the left 

relative to the preceding partial product. The multiplication of a binary number 2n 

is accomplished by shifting that number to the left by n bits.  The multiplication 

of two n-bit integers results in a product of up to 2n bits in length. 
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              1 0 1 1  Multiplicand 

        1 1 0 1         Multiplier  

        1 0 1 1 

      0 0 0 0  Partial products 

    1 0 1 1 

  1 0 1 1       

1 0 0 0 1 1 1 1  Product 

 

Figure 3.2  Multiplication of unsigned integers 

 

One of the well-known algorithms for two's complement multiplication is Booth's 

algorithm [BOO51].  Let Q, M, A be three n-bit registers, Q stores multiplier, M 

multiplicand, the result appears in AQ.   A concatenates to Q and when shifting 

right, the least significant bit of A will go to the most significant bit of Q.  There 

is one bit placed to the right of the least significant bit of Q (Q0), designated Q-.  

Booth's algorithm is as follows:  

 
A = 0, Q- = 0, M = multiplicand, Q = multiplier  
repeat n times  
      if (Q0, Q-) = 01 then A = A + M  

                       = 10 then A = A  M  
      arithmetic shift right A, Q, Q-    {preserve sign bit}  
end  

 

Note the efficiency of the algorithm.  Blocks of 1s or 0s are skipped over, with an 

average of one addition or subtraction per block. 
 

        0 1 1 1   
        1 1 0 1 (0) 

1 1 1 1 1 0 0 1     1-0 

0 0 0 0 1 1 1       0-1 

1 1 1 0 0 1         1-0  

1 1 1 0 1 0 1 1  

 

Figure 3.3  example of Booth's algorithm for (7)  (3) = 21 
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Why Booth's algorithm work?  

 

Observe that the number to partial product sum can be reduce.  Consider a 

positive multiplier where one contiguous 1s surrounded by 0s.  The number of 

shift-and-add can be reduced  by observing that 

2 n + 2 n-1 + . . . 2 n-K  =  2 n+1  2 n-K  

 

Example  

M* (011110) = M* (2 4 + 2 3 + 2 2 + 2 1) = M * (2 5  2 1) 

 

The product can be generated by one addition and one subtraction of the 

multiplicand.  Booth's algorithm performs subtraction when first 1 of block is 

encountered (1-0) and addition when the end of block is encountered (0-1). This 

scheme extends to any number of blocks of 1s in a multiplier and negative 

number.  

 

Division  

unsigned binary division  

The division is based on the long division.  It involves repetitive shifting and 

addition or subtraction.  Dividend is examined bit by bit from left to right until it 

is greater than or equal to the divisor, 0s are placed in the quotient, when it is 

divisible, 1 is placed in the quotient and the divisor is subtract from the partial 

dividend. Additional bits from the dividend are appended to the partial 

remainder until the result is greater than or equal to the divisor then the cycle 

repeat.  

 
                            0 0 0 0 1 1 0 1    Quotient 

Divisor           1 0 1 1 / 1 0 0 1 0 0 1 1    Dividend 

                              1 0 1 1 

Partial remainders          0 0 1 1 1 0  

                                1 0 1 1 

                                0 0 1 1 1 1 

                                    1 0 1 1 

                                      1 0 0    Remainder 

 

Figure 3.4  Division of unsigned binary integers 
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The algorithm is as follows: 

 
{ unsigned integer divide } 
A = 0, M = divisor, Q = dividend  
repeat n times 

shift left A, Q  
A = A - M  
if A < 0 then Q0 = 0, A = A + M  

else Q0 = 1 

end {quotient in Q, remainder in A}  

two's complement division 

This scheme, with some difficulty, can be extended to negative numbers.  The 

divisor must be expressed as 2n-bit two's complement number. 

 
{ two's complement integer divide }  
M = divisor, A Q = dividend  
while there are bits in Q 

shift left A Q  
if (M and A have the same sign) then A = A - M  

            else A = A + M  
if (sign of A not change) or (A = 0 AND Q = 0 ) then Q0 = 1  

if (sign of A change) and (A  0 OR Q  0) then Q0 = 0; restore 
the previous A  

if (divisor and dividend are not same sign) then two's complement Q  
end {quotient is in Q, remainder is in A } 

 
   A          Q       M = 1101 

0 0 0 0    0 1 1 1    Initial value 

0 0 0 0    1 1 1 0    Shift 

1 1 0 1               Add 

0 0 0 0    1 1 1 0    Restore 

0 0 0 1    1 1 0 0    Shift 

1 1 1 0               Add 

0 0 0 1    1 1 0 0    Restore 

0 0 1 1    1 0 0 0    Shift 

0 0 0 0               Add 

0 0 0 0    1 0 0 1    Set Q0 = 1 

0 0 0 1    0 0 1 0    Shift 

1 1 1 0               Add 

0 0 0 1    0 0 1 0    Restore 

Figure 3.5  example of two's complement division (7) / (3) 
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Floating- Point Numbers 

Very large and very small numbers can be represent using scientific notation 

which separately store significand and exponent, such as 2.14 * 1012 .  This allow 

a range of very large and very small numbers to be represented using only a few 

digits.  In binary numbers, a number is represent in the form: 

 

 Significand    Base  Exponent 
 

This number can be stored in a binary word using three fields: Sign bit, 

Significand and Exponent.  The base is implicit.  The exponent can be stored with 

bias, i.e. a bias is subtracted from the field to get the true value.   An example of 

32-bit floating-point format is 1 bit sign, 8 bits biased exponent and 23 bits 

significand.  The bias is 128. 

 

 0.11010001  2 10100 = 0 10010100 10100010000000000000000 

0.11010001  2 10100 = 1 10010100 10100010000000000000000 

 0.11010001  2 10100 = 0 01101100 10100010000000000000000 

0.11010001  2 10100 = 1 01101100 10100010000000000000000 

Figure 3.6  an example of 32-bit floating-point format 

 

To simplify the operations on floating-point numbers, it is required that they be 

normalized in the form: 

0.1bbb. . .b  2 E 

 
Therefore the left most bit of significand is always 1 and is "implicit" (no need to 

store this bit).  

 

Range of representable numbers 

With the above representation the following ranges of numbers are possible: 

Negative numbers between (1  2 24)  2 127  and 0.5  2 128 

Positive numbers between 0.5  2 128  to (1  2 24)  2 127 

 

Five regions on the number line are not included in these ranges: 

 Negative numbers less than (1  2 24)  2 127  , called negative overflow 

 Negative numbers greater than 0.5  2 128 , called negative underflow 
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 Zero 

 Positive numbers less than 0.5  2 128  , called positive underflow 

 Positive numbers greater than  (1  2 24)  2 127 , called positive overflow   

 

Remember that the maximum number of different values that can be represented 

with 32 bits is still 2 32.  The numbers represented in floating-point notation are 

not spaced evenly along the number line.  The possible values get closer together 

near the origin and farther apart as you move away.  This is one of the trade-off 

of floating-point: Many calculations produce results that are not exact and have to 

be rounded to the nearest value that the notation can represent. 

  

IEEE standard 754 

The most important floating-point representation is defined in IEEE Standard 754 

[IEE85].  The IEEE standard defines both a 32-bit single and a 64-bit double 

format.  The single format has a sign bit, 8-bit biased exponent, 23-bit 

significand.  The exponent bias is 127.  The double format has a sign bit, 11-bit 

biased exponent, 52-bit significand.  The exponent bias is 1023.  The implied 

base is 2.  The standard defines two extended formats, single and double, whose 

exact format is implementation-dependent.  The extended formats are to be used 

for intermediate calculations. 

 

There are some bit patterns that are used to represent special numbers such as 

zero, plus/minus infinity, NaN (not a number) and denormalized number etc. 

 
numbers bias exponent fraction value 

zero   0 0  0 

infinity  2047 0  infinity 

NaN  2047  0 NaN 

denormalized  0 f  0  2 e1022 (0.f) 

 

Figure 3.7  special numbers of IEEE 754 (double precision) 

 

Floating- Point Arithmetic 

For addition and subtraction, it is necessary for both operands to have the same 

exponent.  This may require shifting the radix point to achieve the alignment.  

The multiplication and division are more straightforward.  When the significand 
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is underflow the rounding operation is required.  Likewise when it is overflow the 

realignment (normalized) is required. 

 

Let x, y be two floating-point numbers; xs, ys be the significands; xe, ye be the 

exponents. Let xe  ye. The floating-point numbers arithmetic operations: 

x = xs B xe  

y = ys B ye  

 

x + y = (xs B xe  ye + ys) B ye  

x  y = (xs B xe  ye  ys) B ye  

x  y = (xs  ys) B xe + ye  

x / y = (xs / ys) B xe  ye  
 

Addition and Subtraction  

There are four basic phases of the algorithm for addition and subtraction: 

1. Check for zeros 

2. Align the significands 

3. Add or subtract the significands 

4. Normalized the result 

 

Let msd = most significant digit , S = significand, E = exponent  

 

The addition-subtraction algorithm is as follows: 

 
1. made implicit bit explicit  
2. check operand 0  
3. align by shifting smaller number to the right (increment its E) until two E 

are equal  
4. check 0  
5. add signed S  
6. check 0  
7. check S overflow if so shift right  
8. check E overflow if so report error  
9. normalize result, shift S left until msd is not zero, decrement E, E may 

underflow  
10. rounded off the result 
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Multiplication  

The multiplication and division are simpler than addition and subtraction.  The 

multiplication algorithm is as follows: 

 
1. check operand 0  
2. xe + ye  
3. substract bias  
4. check E overflow, underflow  
5. sign-magnitude multiply S  
6. normalized result and rounded (E may underflow) 

 

Division  

1. check operand 0  

2. xe  ye  
3. add bias  
4. check E overflow, underflow  
5. divide S  
6. normalized and rounded result 

 

Precision considerations 

Guard bits  

For the floating-point operations the significands are loaded into the registers.  

The length of the register is almost always greater than the length of significand 

plus an implied bit.  The register contains an additional bit, called guard bits, the 

are used to pad out the right end of the significand with 0s.  The purpose is to 

prevent the lost of least significant bit when one operand must be shifted right 

during floating-point operation.  As seen from the following example: a 

subtraction without and with guard bits. 

 
Without guard bit 

  1.000 . . . 00  2 

  0.111 . . . 11  2   

= 0.000 . . . 01  2 

= 1.000 . . . 00  222 
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With guard bits 

  1.000 . . . 00 0000  2 

  0.111 . . . 11 1000  2   

= 0.000 . . . 01 1000  2 

= 1.000 . . . 00 0000  223 

 

Rounding  

The rounding policy affects the precision of the result.  IEEE standard lists four 

approaches: 

 Round to nearest  to the nearest representable number 

 Round toward positive infinity 

 Round toward negative infinity  

 Round toward 0 (truncated) 

 

Round to the nearest is the default rounding mode in the standard.  The rounding 

to plus and minus infinity is useful in implementation of interval arithmetic.  In 

the interval arithmetic an upper bound and lower bound on the correct answer are 

kept.  If the range between the upper and lower bounds is sufficiently narrow, it 

indicates that a sufficiently accurate result is obtained. 

 

Denormalized number  

Denormalized numbers are included in IEEE 754 to handle E underflow, the 

result is denormalized by right-shifting S and increment E until E is within 

representable range. This method is also referred to as "gradual underflow" 

[COO81]. 
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Chapter 4 

Control unit 

 

 

A processor is composed of datapath and control unit. Datapath of a processor is 

the execution unit such as ALU, shifter, registers and their interconnects.  Control 

unit is considered to be the most complex part of a processor. Its function is to 

control various units in the datapath.  Control unit realises the behaviour of a 

processor as specified by its micro-operations.  The performance of control unit 

is crucial as it determines the clock cycle of the processor.  

 

Control unit can be implemented by hardwired or by microprogram.  A computer 

designer strives to optimise three aspects of control unit design: 

1. the complexity (hence cost) of the control unit  

2. the speed of control unit  

3. the engineering cost of the design (time, correctness etc.)  

 

Hardwired control unit 

In the past, hardwired control unit is very difficult to design hence its engineering 

cost is very high. Presently, the emphasis of computer design is the performance 

therefore hardwired design is the choice.  Also the CAD tools for logic design 

have improved to the point that a complex design can be mostly automated. 

Therefore almost all processors of today use hardwired control unit.  

 

Starting with a behavioural description of the control unit, the state diagram of 

micro-operations is constructed.  Most states are simply driven by clock and only 

transition to the next state.  Some states branch to different states depend on 

conditions such as testing conditional codes or decoding the instruction.    
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a) event : go to next state  
b) event : go to state 1 or state 2 depends on conditionals  

Figure 4.1 several types of states in a state diagram 

 

From the state diagram, a hardware realization can be constructed almost 

automatically by some CAD tools. The in-depth topic of logic design for 

sequential circuits and logic minimization can be consulted from many basic 

textbooks on the subject such as Katz [KAT93].  The control circuit is 

implemented using Programmable Logic Array (PLA).  In general, any sequential 

circuit (which can implement any state machine) can be constructed from 

combinational circuits with feedback.  The feedback information is the states.  If 

the feedback path uses no clock, the circuit is called asynchronous.  If the 

feedback path uses a latch with clock, the circuit is called synchronous.  

Synchronous circuits are used almost exclusively for sequential circuits today as 

they are easier to design and can be implemented reliably.  Most of the CAD 

tools handle synchronous circuits.  

 

Asynchronous circuit has been used for the reason of speed as in many early 

computer designs, for example, ILLIAC and many computers in the class called 

supercomputer.  But it is difficult to implement reliably and it is still much more 

difficult to do systematic design of a complex machine using asynchronous 

circuits. The combinational part of the control circuit can be regarded as a 

memory where its content is the map of the inputs to the outputs (states are 

considered to be a part of the outputs). This view of combination circuit as a 

memory is called Random Access Memory model (RAM) of computation 

machines.  

 

The bound of complexity of control is  States   Control inputs   Control outputs  

 

Microprogrammed control unit 

Maurice Wilkes invented "microprogram" in 1953 [WIL85].  He realised an idea 

that made a control unit easier to design and is more flexible. His idea is that a 
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control unit can be implemented as a memory which contains patterns of the 

control bits and part of the flow control for sequencing those 

patterns.  Microprogram control unit is actually like a miniature computer which 

can be "programmed" to sequence the patterns of control bits.  Its "program" is 

called "microprogram" to distinguish it from an ordinary computer program. 

Using microprogram, a control unit can be implemented for a complex 

instruction set which is impossible to do by hardwired. 

 

Microprogram approach for control unit has several advantages:  

1. One computer model can be microprogrammed to "emulate" other 

model. 

2. One instruction set can be used throughout different models of hardware. 

3. One hardware can realised many instruction sets. Therefore it is possible 

to choose the set that is most suitable for an application. 

 

To realise this idea it required a high speed memory which was not possible at 

that time.  The reason for speed is that as the control unit determines how fast a 

sequence of operations can be executed, the bottle neck becomes the speed of 

accessing the microprogram which is stored in a special memory.   At IBM, a 

chief architect of IBM 360 family, Gene Amdahl, has recognised the importance 

of microprogram and committed to implement it for IBM 360.  The in-house 

development for the high speed memory was pursued.  IBM had a great success 

for her 360 family. 

 

How microprogram work 

Like the RAM model, a microprogrammed control unit consists of microPC, 

micromemory, output buffer and a sequencing unit (Fig 4.2). A micromemory 

(sometimes called microstore) contains bit patterns that are used to control the 

datapath.  Each word of the micromemory is called "microword".  Each word of 

the micromemory is separated into several fields used for internal control, 

external control, conditional and specifies the next address.  Internal control bits 

are the signals that control the datapath.  External control bits are the signals that 

control external units such as memory (read, write), interrupt acknowledge etc.  

Conditionals are the bits that are used to determine the flow of microprogram; 

loop, branching, next instruction etc. Its input comes from the datapath (usually 

from the conditional code register).  Next address determines the next microword 

to be executed.  
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Figure 4.2 a microprogrammed control unit 

 

A microprogram is executed as follow :  

1. a word from microprogram at the location specified by the microPC is 

read out, control bits are latched at the output buffer which is connected 

to the datapath.  

2. if conditional field is specified and the test for conditional is true, the 

next address of microprogram will come from the next address field 

otherwise the microPC will be incremented (execute the next 

microword).  

 

What that has been described is called horizontal microprogram in which there is 

a one-to-one relationship between internal/external control bits and the actual 

control signal of the datapath (hence it is wide or "horizontal"). The microword 

can have other formats.  There are several possibilities : 

1. single format  one address, as just described above. 

2. single format  two addresses, each microword contains two next 

addresses field, one for result of test true, the other for result of test false. 

3. multiple format, such as, one format for the control bits without the next 

address field and another format for "jump on condition" with the address 

field.  The advantage is that the microword can be shorter than the single 

format.  The disadvantage is that to "jump" will take one extra clock.  
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Horizontal microprogram allows each control bit to be independent from other 

therefore enables maximum simultaneous events and also offers great flexibility. 

It is also waste a lot bit.  

 

For each field of microword, there may be a group of bits that are not activated at 

the same time therefore they can be "encoded" to use a fewer bit.  A decoder is 

required to  "decode" these bits and to connect them to the datapath.  This 

approach is called vertical microprogram. There are many possibilities to 

compact the micromemory to be as small as possible, sometime trading off speed 

for space, for example, two-level microprogram.  The first level is "vertical" i.e. 

maximally encoded, the microword of the level one is pointed to the "horizontal 

word" of the second level.  This is rather like the first level is composed entirely 

from "subroutine call" and the second level is the subroutine.  

 

 

control bits next address 

a) one-address format 

control bits true next false next 

b) two-address format 

0 control bits 

 

1 next address 

c) multiple format 

Figure 4.3 several formats of microword 

 

Microprogram becomes obsolete mainly because the present design emphasizes 

the performance and microprogram is slower than hardwired.  The change in 

instruction set design toward a minimum number of clock per instruction 

simplifies the instruction set to the point that microprogram is not really 

required.  Also the design of hardwired control unit can be mostly automated as 

opposed to microprogram which must be written and debug.  Hence, for the 

current instruction set architecture, hardwired control unit offers a lower 

engineering cost.  

 

Realisation of microprogrammed systems 

This section discusses the equivalence of hardware and software in realising a 

sequential system.  This concept will be illustrated by a simple example of 
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designing a 4-bit comparator in both hardwired and microprogrammed systems 

(this example is due to [MAN92]). 

 

An assembly of logic elements, whether combinational (AND, OR, NOT, NAND 

gates, demultiplexors, multiplexor etc) or sequential (flip-flops, registers etc.) is 

called  a "hardwired logic".  By incorporating memories and the content of 

memory is the test or assignment elements, the system is called a 

"microprogrammed logic system", the content is the "microprogram".  A 

microprogrammed system can be used to realise a synchronous sequential 

system, that is it can be used to implement a control unit.    

 

Example  a 4-bit comparator  input : A0 A1 B0 B1  Z is { EQ, LT, GT }.  One 

can write the logic expression of Z as 

 

Z = (A1' B1' A0 B0' + A1 B1' + A1 B1 A0 B0' ) . GT + (A1' B1' A0' B0' + A1 

'B1' A0 B0 + A1 B1 A0' B0' + A1 B1 A0 B0 ) . EQ + (A1' B1' A0' B0' + A1' B1 

+ A1 B1 A0' B0 ) . LT 

where A' is NOT A 

 

The expression can be tabulated in the table below : 

 
number A1 B1 A0 B0 Z 

0   0   0   0   0   EQ 
1   0   0   0   1   LT 
2   0   0   1   0   GT 
3   0   0   1   1   EQ 
4..7   0   1   X   X   LT 
8..11   1   0   X   X   GT 
12   1   1   0   0   EQ 
13   1   1   0   1   LT 
14   1   1   1   0   GT 
15   1   1   1   1   EQ 

 

This expression can be represented as a diagram of test and assignment primitives 

that is traversed sequentially by using synchronous sequential system which each 

clock reads an element of the diagram and executes the primitive. 
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Z = compare(A,B) 

 
 

Figure 4.4 diagram of compare 

 

Each primitive can be described as follows: 

 

 

 

Figure 4.5  test element 

test 

if V is true then goto ads1  else goto ads0 

 

 

 

Figure 4.6 assignment element 
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assignment 

output OUT and goto next 

 

The above diagram can be translated into "microprogram" as follows : 

 
0  if A1 then 1 else 2 

1  if B1 then 3 else 6 

2  if B1 then 8 else 3 

4  if A0 then 4 else 5 

5  if B0 then 7 else 6 

6  R = GT goto 0 

7  R = EQ goto 0 

8  R = LT goto 0 

 

Next, the microprogram encoded to map the primitives to a concrete 

representation.  The 4 cases of test inputs {A1 B1 A0 B0} are encoded into 2 bits.  

The output { EQ LT GT} is encoded into 3 bits using unary code. 

 
input   i1   i0 

A1   0   0 
B1   0   1 
A0   1   0 
B0   1   1 

 
output   z2   z1   z0 

GT   1   0   0 
EQ   0   1   0 
LT   0   0   1 

 
 

The microword has two types: test, assignment.   The address field has 4 bits to 

cover the whole microprogram address (0 . . 8) 

 

Figure 4.7  microword format for compare 
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The microprogram then can be written as follows : 

 
ads   T   i1  i0   ads1, next   ads0, z 

0000   1   0  0   0001   0010 

0001   1   0  1   0011   0110 

0010   1   0  1   1000   0011 

0011   1   1  0   0100   0101 

0100   1   1  1   0111   0110 

0101   1   1  1   1000   0111 

0110   0   -  -    0000   -100 

0111   0   -  -   0000   -010 

1000   0   -  -   0000   -001 

 

 

 

Figure 4.8  microprogrammed unit to realise the function compare 

 

The microprogrammed unit to realise the function compare is shown in Fig. 4.8.  

How many clocks it takes to evaluate compare (A, B)?  Observing the diagram 

(Fig. 4.4), on the longest path, there are 5 "steps" to traverse the diagram hence it 

takes 5 clocks to evaluate this function using the microprogrammed unit above. 

 

Equivalence of hardware and software 

The definition of microprogramming is due to Wilkes, who in 1953 suggested a 

method for designing the control unit of a processor, based on the use of 
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sequence of microwords  a microprogram  held in a read only memory (ROM).  

In this context, microprogramming is generally understood as the technique of 

producing interpreters for high-level language. 

 

At that time random access memory (RAM) that was available was much slower 

than the processor, leads to CISC (Complex Instruction Set Computer) to achieve 

high speed  the microprogram of CISC are organised horizontally; the need to 

control a complex processing unit requires each microword to consist of a large 

number of bits, often over 100. 

 

Firmware, specification of a microprogram, is not an interpretation algorithm but 

a logic system.  The concept of vertically organised microprogram follows that 

each microword is of fewer bits than in horizontally organised microprogram.  

The resulting simplicity enables a true optimization of the software to be 

achieved.  Firmware is the transformation and equivalence between hardware 

(logic systems) and software (microprogram). This hardware-software 

equivalence is a particular case of the equivalence between space and time 

 

Conclusion 

As the history tells us, the microprocessor followed the same trend as earlier 

computer designs.  Because of the limit of resource (the number of transistor in a 

chip), hardwired control was implemented and the instruction set architecture 

was toward a simple design.  The advantage of simpler design for control unit 

and ease of change popularised microprogramming.  Microprogram made it 

possible to achieve more complex instruction sets.  With a much larger micro 

memory a machine as elaborate as the VAX [LEV89] is possible.  In 1984, DEC 

wanted to offer a cheaper machine with the same instruction set as VAX.  They 

reduced the instructions interpreted by microprogram by trapping some 

instructions and performing them in software.  They discovered that 20% of 

VAX instructions occupied 60% of the microprogram, and yet they are used 

(executed) only 0.2% of the time.  The simpler subset of VAX ISA, called 

MicroVAX-1, implemented 80% of VAX instruction in microprogram, other 

20% is trapped to software, has the size of micro-memory reduced from 480K 

(VAX) to 64K (MicroVAX-1), and perform 90% of the performance of VAX-

11/780.  This is also an evidence toward a new thinking in instruction set design.  

The current design sees the revive of the idea of translating between the real 

executable code into the internal code which is suitable for controlling the 

functional units [GEP00] [KLA00].  The idea of "code translation" is used to 
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retain the ISA compatibility for the existing software to be run on the new 

hardware.   
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Chapter 5 

Processor Design: S1 a simple CPU 

 

 

To illustrate how a processor can be designed, we will describe the design of a 

simple hypothetical CPU called S1. It contains all the important elements of a 

real processor. The design is aimed to be as simple as possible so that students 

can understand it easily. The architectural description of S1: its organization 

(structure), its instruction set (ISA) and its behaviour (microsteps), is small 

enough to fit into a few pages. A simulator of S1 at an instruction-level is also 

provided. Studying how the simulator work will enable students to modify and 

design their own processors.  

 

S1 is a 16-bit processor.  The instruction format is 16-bit fixed length.  The 

address space is 10-bit, i.e. it has 1024 16-bit words.  It has 8 general purpose 

registers (R0..R7). 

 

 

 
 

Figure 5.1  S1 microarchitecture 
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The register bank has one write port, two read ports (2 operands can be read and  

move to ALU in one cycle).  The datapath is 16 bits.  The ALU can perform 

{add, cmp, inc, sub1} and stores the output in a temporary T register.  The 

instruction register IR stores the instruction to be decoded.  IR is also connected 

to the control unit CU.  The interface units to the memory consisted of a memory 

address register (MAR), and a memory data register (MDR).  The program 

counter, PC, stores the current instruction address and can be incremented by 1 

for the next instruction. 

 

Instruction format  

There are one long format (L-format) and one short format (S-format) for 

instructions.  The opcode is 3 bits.  This is not enough for all types of operations.  

One way to increase the number of opcode is to use "extended opcode". One 

opcode in L-format is used to designate the different format which has the 

additional field for more opcodes. This second format is the S-format.  In S-

format, the operands are registers, therefore there are enough room for more bits 

to encode the extended opcode.  One opcode (7) denotes the extension of opcode 

from L-format to S-format.  Another 4 bits is used (xop) to be the extended 

opcode.  This is adequate for this simple machine and still have some room for an 

extension of its instruction set (such as floating-point operations). 

 

The instruction has two formats.  A field in an instruction is denoted 
name:length. 

 

1 L-format :  op r, ads  

 
op:3  r0:3   ads:10  

  15..13 12..10    9..0             bit position 

 

2 S-format : 7 xop r1, r2 
 

op:3  xop:4  r1:3  r2:3   u:3    

  15..13  12..9  8..6  5..3   2..0  bit position 
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Instruction set 

opcode  mnenomics                       meaning 

 
0  ld M, r    M -> r load from memory 

1  st r, M    r -> M  store to memory 

2  jmp c, ads    jump conditional 

3  call  ads    push(PC), goto ads  

7  xop 

 

xop 

0  mv r1,r2    r1 -> r2 move reg-reg 

1  ld (r1),r2    (r1) -> r2 load indirect  

2  st r1,(r2)   r1 -> (r2) store indirect  

3  add r1,r2   r1 + r2 -> r1  

4  cmp r1,r2   compare, affect Z,S  

5  inc r1    increment r1 

6  ret    pop(PC)  

 

where r 0..7 , conditional code c 0..6 is: 0 always, 1 Z, 2 NZ, 3 LT, 

4 LE, 5 GE, 6 GT, M is the address 0..1023. 

 

The instruction 0..3 use the L-format which has 3-bit opcode (i.e. at most 8 

instructions) when the opcode is 7 the instruction use S-format which extend the 

operational code for another 4 bits (i.e. has maximum 16 extended instructions).  

There are only two addressing modes: register-register and load/store M to access 

the memory.  There are no immediate or index addressing.  (This is left as an 

exercise to add more addressing mode to S1).  The jump instruction has seven 

conditions: always, equal, not equal, less than, less than or equal, greater than or 

equal, greater than.  The condition is determined by the condition code S sign-bit, 

and Z zero-bit. 

 

S1 microarchitecture 

We study the operation of a hypothetical CPU in details, at the level of events 

happening every clock cycle when the CPU executes an instruction. Our 

description is in the form of Register Transfer Language (RTL) which represents 

the event of data movement inside a processor. Naturally, the description at this 

level of abstraction involves time. Each line of event happens in one unit of time 

(clock). We call this description "microstep".  
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The processor has the following registers: IR instruction register, PC program 

counter, MAR memory address register, MDR memory data register and general-

purpose registers r0..r7.  All registers are 16-bit.  Two condition codes are Z zero 

bit and S sign bit.  The memory has 1024 of 16-bit words. 

Pc state 

IR<0:15> 
PC<0:15> 
MAR<0:15> 
MDR<0:15> 
R[0:7]<0:15> 
Z, S    zero, sign bit 
Run 

Mp state 

M[0:1023]<0:15> 

 

S1 microsteps 

Notation  
// comment  

dest = source  // data move from source to destination  

e1 ; e2   // event e1 and e2 occur on the same time  

M[a]    // memory at the address a  

IR:a    // bit field specified by a of IR  

<name>   // label of sequence of operations 

op( )   // ALU function  

 

 
// running a program 

PC = 0 

Run --> ( <ifetch> 

     <execute> ) 

 

<ifetch>  
MAR = PC  

MDR = M[MAR]    // mem read  
IR = MDR ; PC = PC + 1  
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<execute> := (  // instruction decoding 
(op = 0) --> <load> 

(op = 1) --> <store> 

(op = 2) --> <jump> 

(op = 3) --> <call> 

(op = 7) --> <extend> 

) 

 

<extend> := (  // extended instruction decoding 
(xop = 0) --> <move> 

(xop = 1) --> <loadr> 

(xop = 2) --> <storer> 

(xop = 3) --> <add> 

(xop = 4) --> <compare> 

(xop = 5) --> <increment> 

(xop = 6) --> <return> 

) 

 

<load> 

MAR = IR:ADS  
MDR = M[MAR]  
R[IR:R0] = MDR  
 

<store> 

MAR = IR:ADS  
MDR = R[IR:R0]  

M[MAR] = MDR   // mem write 
 

<loadr> 

MAR = R[IR:R1]  
MDR = M[MAR]  
R[IR:R2] = MDR  
 

<storer> 

MDR = R[IR:R2]  
MAR = R[IR:R1]  
M[MAR] = MDR  
 

<move> 

T = R[IR:R1]  
R[IR:R2] = T  
 

<add> 

T = add(R[IR:R1], R[IR:R2])  
R[IR:R1] = T  
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<compare> 

CC = cmp(R[IR:R1], R[IR:R2]) // condition code set  
 

<increment> 

T = add1(R[IR:R1])  
R[IR:R1] = T  
 

<jump> 

if testCC(IR:R0)  // testCC( ) tests the IR:R0 against CC 
then PC = IR:ADS  
 

<call> 

T = add1(R[7])  
R[7] = T  

MAR = R[7]   // sp+1 then put to stack  
MDR = PC  
M[MAR] = MDR  
PC = IR:ADS  
 

<return> 

MAR = R[7]  

MDR = M[MAR]  // get item then sp 1  
PC = MDR  
T = sub1(R[7])  
R[7] = T  
 

The instruction fetch can be faster by combining the PC + 1 with reading the 

instruction from the memory. 
 

<ifetch2>  
MAR = PC  
IR = MDR = M[MAR]; PC = PC + 1  

 

We made a number of assumptions here.  The register bank is two read ports, one 

write port, reading and writing must not be on the same clock.  Therefore it takes 

two clocks to move data between registers.  The memory access is completed in 

one clock (assuming it has cache hit).   
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The timing of S1 in unit clock.  Assume the instruction fetch takes 3 clocks and 

the instruction decode take 0 clock. 

 
Table 5.1  S1 timing 

 

instruction clock 
ld 6 
st 6 
jmp taken 5 
jmp not-taken 4 

call 9 
mv r r 5 
ld (r) r 6 
st r (r) 6 
add 5 
cmp 4 
inc 5 
ret 8 

 

Call and return take the longest time in the instruction set. Calling a subroutine 

can be made faster by inventing a new instruction that does not keep the return 

address in the stack (and hence the memory) but keeping it in a register instead. 

Jump and link (JAL) just saves the return address in a specified register and jump 

to the subroutine. Jump Register (JR) then does the reverse. It does the job of the 

"return" instruction. The register that stored return address must be saved to the 

memory (i.e. manage by the programmer) if the call to subroutine is nested. This 

will reduce the clock to 5 for "jal" and 4 for "jr". This shows that using 

registers can be much faster than using memory.  
 

jal r, ads   store PC in r and jump to ads  

jr r    jump back to (r)  
 

<jal>  
R[IR:R1] = PC  
PC = IR:ADS  
 

<jr>  
PC = R[IR:R1]  

 

Example of an assembly program for S1. Find sum of an array : sum a[0] .. a[N]  

 

In a high level language 
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sum = 0  
i = 0  
while ( i < N )  

sum = sum + a[i]  
i = i + 1  

 

In S1 assembly language (with the translation to base-10 machine code, each 

field in an instruction is encoded as a number) 

 
.ORG 0    // address code  
ld ZERO r0    0  0 0 20  
st r0 SUM    1  1 0 21  
st r0 I    2  1 0 22  
ld N r1    3  0 1 23  
ld I r3    4  0 3 22  

loop  cmp r3 r1    5  7 4 3  
jmp GE endw   6  2 5 16  
ld BASE r2    7  0 2 24  
add r2 r3    8  7 3 2 3  
ld (r2) r4    9  7 2 2 4  
ld SUM r5    10  0 5 21  
add r5 r4    11  7 3 5 4  
st r5 SUM    12  1 5 21  
inc r3    13  7 5 3 0  
st r3 I    14  1 3 22 

jmp loop    15  2 0 5  
endw  ld SUM r0    16  0 0 21  

call print    17  3 0 1001  
call stop    18  3 0 1000  
 

.ORG  20    // data  
ZERO  0     20  0  
SUM  0     21  0  
I  0     22  0  
N  100     23  100  
BASE  25     24  25  
a[0]      25  a[0]  

a[1]      26  a[1]  
...      ...  

 

S1 runs this program in 1110 instruction with 5963 clocks, CPI = 5.37  

 



83 

How to run the S1 simulator 

The input file is an object file with the name "in.obj".  The simulator will start 

and load "in.obj" and execute starting from PC=0 until stop with the instruction 

call 1000.  

 

An object file has the following format  

 

a ads   set PC to ads  

i op r ads   instruction op  

i 7 xop r1 r2  instruction xop  

w data   set that address to value "data"  

t    set trace mode on  

d start nbyte  dump memory n byte  

e    end of object file 

 

Be careful, the input routine is not robust. A malformed input line can caused 

unpredictable result. The input loop is limited to 1000 words (to prevent infinite 

loop ). 

 

Control unit of S1 

This section shows how to implement the control unit of S1 both hardwired and 

using microprogram.   

 

Hardwired S1 

The state diagram of S1 hardwired control unit (Figure 5.2) simply follows the 

microsteps.  Each line of microstep is a state (assume decoding is done by a 

combinational circuit and it happens at the end of the instruction fetch without 

taking extra cycle, this can be achieved using a table lookup in a ROM).   The 

number of cycle for each instruction will in exactly the same as the timing 

calculated from the microsteps (Table 5.1). 

 

Some improvement can be made to the above design. To increase the speed the 

number of state for each instruction must be reduced. To reduce the complexity 

of the circuit, state should be shared wherever possible.  
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Figure 5.2  State diagram of S1 hardwired control unit  
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Reduce the number of state  

   <store>  

1. MAR = IR:ADS  

2. MDR = R[IR:R0]  

3. M[MAR] = MDR 

 

   <storer>  

1. MAR = R[IR:R2]  

2. MDR = R[IR:R1]  

3. M[MAR] = MDR 

 

The above states (1 and 2 of both instructions) cannot be merged as both MAR 

and MDR is on the same internal bus, therefore can not be accessed at the same 

time. If two internal bus are available then these states can be merged into one 

(the register bank already has two read ports) and the number of cycle is reduced. 

 
<store>  

1. MAR = IR:ADS; MDR = R[IR:R0]  

2. M[MAR] = MDR 

 

   <storer>  

1. MAR = R[IR:R2]; MDR = R[IR:R1]  

 
2. M[MAR] = MDR 

 

Share state  

   <load> 

1. MAR = IR:ADS  

2. MDR = M[MAR]  

3. R[IR:R0] = MDR  

 

   <loadr> 

1. MAR = R[IR:R1]  

2. MDR = M[MAR]  

3. R[IR:R2] = MDR 

 

The states 3 of both instructions can be shared if R0 == R2. We can do that by 

changing the opcode format to use fixed field encoding. Moving the field R2 to 

the same field as R0, bit 1210, and move the field xop to the back (Fig. 5.3).   
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Charing two states reduces the number of states, which reduces the complexity of 

the circuits. 

 

L-format 

 
op:3  r0:3   ads:10  

 15..13 12..10    9..0             bit position 

 

S-format 

 
op:3  r2:3  r1:3  xop:4   u:3    

15..13 12..10 9..7  6..3   2..0   bit position 

 

 

Figure 5.3  states of <load> and <loadr> after sharing 

 

 
   <add> 

1. T = add(R[IR:R1], R[IR:R2])  

2. R[IR:R1] = T  

 

   <increment> 

1. T = add1(R[IR:R1])  

2. R[IR:R1] = T  

 

Another example of sharing states, for "add" and "inc", the states 2 of both 

instructions can be shared.  
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Microprogrammed control unit for S1 

We use a single format microword. The fields are as follows :  

 

Dest, Src :  specify destination and source for internal bus.  

SelR :  selecting registers in register file.  

Mctl :  memory control for read/write.  

ALU :  specify function of ALU and latch the result to T register.  

Misc :  other control signal such as PC + 1.  

Cond :  for testing condition for jump to other microword.  

Goto :  next address.  

 

Dest =  { MAR, IR, R, MDR, T, PC } 

Src =  { MAR, IR, R, MDR, PC, IR:ADS } 

SelR =  { IR:R0, IR:R1, IR:R2, IR:R12 } 

ALU =  { PASS1, ADD, SUB, ADD1 } 

Mctl =  { RD, WR } 

Misc =  { PC+1 } 

Cond = { MRDY, Decode, U, testCC } 

 

 
Dest Src SelR ALU Mclt Misc Cond Goto 

 

Figure 5.4  The format of a microword 

 

Where MRDY is the memory ready signal (ignore in the simulator, assume no 

wait), Decode is a combination circuit that set microPC correctly to the 

appropriate address of the microprogram for the opcode,  U is unconditional, 

testCC  checks conditional code against the condition in the opcode (IR:R0) if the 

condition is false then jump to ifetch.  Totally there are 29 microwords to 

implement the instruction set of S1. (Table 5.2) 

 

The memory read/write step has "wait for memory ready" state. Because the use 

of cache memory, one can assume 0 clock waiting for memory ready when cache 

hits and more than 10 clocks for a miss penalty.  

 

Let us go through the execution of one instruction.  The instruction fetch starts 

with  

0: MAR = PC  
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Table 5.2  S1 microprogram 

 

Loc Label Dest Src SelR ALU Mctl Misc Cond Goto note 
0 ifetch MAR PC        

1 w0     RD  MRDY w0  

2  IR MDR    PC+1 Decode   

3 load MAR IR:ADS        

4 w1     RD  MRDY w1  

5  R MDR IR:R0    U ifetch  

6 store MAR IR:ADS        

7  MDR R IR:R0       

8 w2     WR  MRDY w2  

9        U ifetch  

10 loadr MAR R IR:R1       

11 w3     RD  MRDY w3  

12  R MDR IR:R2    U ifetch  

13 storer MAR R IR:R2       

14  MDR R IR:R1       

15 w4     WR  MRDY w4  

16        U ifetch  

17 mov   IR:R12 PASS1      

18  R T IR:R2    U ifetch  

19 add   IR:R12 ADD      

20  T T IR:R1    U ifetch  

21 cmp   IR:R12 SUB   U ifetch set CC 

22 inc   IR:R12 ADD1      

23  R T IR:R1    U ifetch  

24 jmp       testCC ifetch cc false 

25  PC IR:ADS     U ifetch jump 

26 jal R PC IR:R0       

27  PC IR:ADS     U ifetch  

28 jr PC R IR:R1    U ifetch  

 

 

Dest and Src of the internal bus MAR and PC, then wait for memory to fill in 

MDR.  

1: MDR = M[MAR] 

Memory read (reading the current instruction), after memory cycle has 

completed,  

2: IR = MDR ; PC = PC + 1  

move the instruction to IR, increment PC, then branch to each instruction 

depends on IR:OP and IR:XOP (we will elaborate on this instruction decoding 
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mechanism later). Suppose the instruction is "load", the microprogram go to 

location 2 (load) and the following sequence occurs  

3: MAR = IR:ADS  

then waiting for memory then  

4: MDR = M[MAR]  

5: R[IR:R0] = MDR  

The register is selected by IR:R0 and Dest and Src of internal bus are R and 

MDR. After completion, the microprogram branches back to instruction fetch 

(specified by the next address field).  

 

For ALU instruction, for example, "add" the following sequence occurs after the 

instruction fetch, go to location 19 :  

19: T = ADD(R[IR:R1], R[IR:R2])  

the registers are selected and read: IR:R1, IR:R2; to ALU and ALU function 

ADD is activated. The result from ALU is latched to T register. Then the result is 

written to back to register selected by IR:R1 and the microprogram branches back 

to the instruction fetch.  

20: R[IR:R1] = T  

 

Totally the microprogram is 29 words. Each microword is in fact composed of 

the control bits that control the signals in the datapath. We will assign the bits to 

each field of microword as follows :  

 

bit 0..4  Dest :  5 bits for write to R, PC, IR, MAR, MDR.  

bit 5..10  Src :  6 bits for read from R, PC, IR, MAR, MDR, T.  

bit 11..14  SelR :  4 bits for selecting IR:R0, IR:R1, IR:R2, IR:R1,R2  

bit 15..18  ALU :  4 bits for ALU function : PASS1, ADD, SUB, ADD 1.  

bit 19..20  Mclt :  2 bits for Mread, Mwrite  

bit 21  Misc :  1 bit for PC + 1.  

bit 22..25  Cond :  4 bits for jump control : Uncond, Mrdy, testCC, Decode. 

bit 26..30  Goto :  5 bits, micro store has 29 addresses therefore 5 bits to 

address each of them.  

 

So for the unencoded microword, the microword for S1 is 31-bit long. The 

instruction decoding, to branch to each microprogram sequence for each 

instruction, can be achieved by using IR:OP concatenate with IR:XOP (3 bits and 

4 bits) to point to a jump table which contain the location of microword in the 

microprogram.  
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Figure 5.5 Scheme for decoding opcode in ifetch  

 

The timing of microprogrammed S1 can be calculated by counting the number of 

microsteps required for each instruction.  Fetching an instruction takes 3 steps 

(location 0, 1, 2).  Assuming the instruction decoding happens at the same time as 

jumping to the proper location in the micromemory (takes zero cycle).  For 

example, ld instruction takes 3+3 = 6 steps (execute at the location 3, 4, 5) and 

st instruction takes 3+4 = 7 steps (execute at the location 6, 7, 8, 9).  The timing 

is shown in Table 5.3. 

 
Table 5.3  Timing for microprogrammed S1  

 

instruction  clock 
ld  6 
st  7 
jmp uncond  5 
jmp taken  5 
jmp not-taken  4 
jal 5 

mv  5 
ld (r) r 6 

st r (r) 7 

add  5 
inc  5 
cmp  4 
jr 4 

 

 

IR 

microPC 

JUMP Table 

IR:XOP IR:OP 
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To reduce the width of the microword, each field can be encoded as follows :  

 

Dest :  5 signals, 3 bits.  

Src :  6 signals, 3 bits.  

SelR :  4 signals, 3 bits (including NONE)  

ALU :  4 signals, 3 bits.  

Mctl :  2 bits  

Misc :  1 bit.  

Cond :  4 signals, 3 bits  

Goto :  only 6 distinct locations to jump to : ifetch, w0, w1, w2, w3, w4  hence 

3 bits.  

 

Totally the encoded or vertical microprogram for S1 is 21-bit long.  

 

 
Dest:5 Src:6 SelR:4 ALU:4 Mclt:2 Misc:1 Cond:4 Goto:5 

a) unencoded microword (31 bits) 

 
Dest:3 Src:3 SelR:3 ALU:3 Mclt:2 Misc:1 Cond:4 Goto:3 

b) encoded microword (21 bits) 

 

Figure 5.6 Comparing unencoded and encoded microword for S1  

 

Calculating CPI  

We will now illustrate how to calculate the CPI of both hardwired S1 and 

microprogrammed S1.  Using the program benchmark GCC (a C compiler) we 

record the following instruction mix:  

 
Table 5.4  GCC benchmark instruction mix 

 
load    21%  

store   12%  

ALU   37%  

set    6%  

jump (uncond)    2%  

jump taken   12%  

jump not-taken   10%  
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CPI for S1 with hardwired control unit will be 5.23  

(6   .21 + 6   .12 + 5   .37 + 5   .06 + 5   .02 + 5   .12 + 4  .10) 

 

CPI for S1 with microprogram control unit will be 5.35  

(6   .21 + 7   .12 + 5   .37 + 5   .06 + 5   .02 + 5   .12 + 4   .10) 

 

Microprogram takes the time longer for "store", therefore its CPI is slightly 

higher. For the simulation run of "sum.asm" program CPI hardwired = 5.37, and 

CPI microprogram = 5.46  

 

S1 microprogram simulator package 

The package included the simulator of the S1 microprogrammed control unit and 

the microprogram generator, which takes the readable specification of 

microprogram and generates bit pattern for the micromemory.  It is compiled and 

tested under Borland Turbo C compiler version 2.0.  All the tools and simulators 

can be found on the web page of this book.  The list of files is: 

 

s1m.h, s1m.c, supportm.c  simulator files  

mpgm.txt  microprogram file used by s1m.c  

in.obj  test machine code  

mgen.c, hash.c  microprogram generator  

mspec.txt  input microprogram in human readable text  

s1mx.txt  explain S1 instruction set and microprogram 

format.  

 

To generate a microprogram, run mgen.exe, it takes input from mspec.txt and 

outputs a microprogram  in the form that s1m.exe can read. (see mpgm.txt)  

 

S1 microprogram bit position and coding form 

bit  field             signal 
 

0 dest  r  
1   pc  
2   ir  
3   mar  
4   mdr  
5 src  r  
6   pc  
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7   ir  
8   mar  
9   mdr  
10   t  
11 selr  ir:r0  
12   ir:r1  
13   ir:r2  
14   ir:r1,r2  
15 alu  pass1  
16   add  
17   sub  
18   add1  
19 mctl  rd  
20   wr  
21 misc  pc+1  
22 cond  u  
23   mrdy  
24   testcc  
25   decode  
26 goto  5 bits 26..30  

 

How to use mgen.c to generate microprogram 

Mgen takes input from microprogram specification which is a readable text that a 

human programmer wrote. Mgen is a simple macro processor that substitutes 

symbolic names with numeric values (set microprogram bits).  

 

The output is in the form :  

 
nn  
aaaa xxxxxxxxxxxxxxxxxxx  
....  

 

where nn is the number of microword, aaaa is address and xxxxx... is  the 

microprogram bit. xxx... begins at the column 5.  

 

Input to mgen is in a simple form as follows :  
 

.w N  // width of microword N bits  

.a B E  // bit position of Goto field, B start, E 

end  

.s  // start symbolic name section  
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name bit  // "name" is the signal at "bit" position 
...  

.m  // start microprogram section  

:label name name ... /label ;  // each microword 
 ...  

.e  // end of microprogram spec.  

 

Within the microprogram section the label begin with ":" and the "name" is the 

name of signal (to be translated in to a number).  The symbol  /label destinates 

the label in Goto field.  Each microword (a line of microprogram) must ends with 

";". 

 

Example The microprogram for S1 from the file "mspec.txt" is illustrated 

(comment shows here for explanation, no comments are allowed in mspec.txt).  
 

.w 31  // width 31 bits  

.a 26 30  // Goto start at bit 26 end at 30  

.s  // symbol section  

dr 0  // dest R bit 0  

dpc 1  // dest PC bit 1  
...  

sub 17  // alu sub bit 17  
add1 18  

mrd 19  // memory read bit 19  
mwr 20  

pc+1 21  

u 22  // Cond uncond bit 22  
mrdy 23  

testcc 24  

decode 25  

.m  // microprogram section  

:ifetch dmar spc ;  // <ifetch> MAR = PC  

:w0 mrd mrdy /w0 ;  // MDR = M[MAR]; MREAD MRDY w0  

dir smdr pc+1 decode ;  // IR = MDR; PC = PC + 1 DECODE  

:load dmar sir:ads ;  // <load> MAR = IR:ADS  
:w1 mrd mrdy /w1 ;  

dr smdr ir:r0 u /ifetch ;  

...  

.e  // end  

 

This is the output (from mpgm.txt )  
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29  
0 0001001000000000000000000000000  
1 0000000000000000000100010000001  
2 0010000001000000000001000100000  
3 0001000100000000000000000000000  
4 0000000000000000000100010000100  
5 1000000001010000000000100000000  
6 0001000100000000000000000000000  
....  
27 0100000100000000000000100000000  
28 0100010000001000000000100000000  

 

S1m microprogram simulator reads this microprogram (mpgm.txt) to instantiate 

its micromemory.  S1m runs the same machine code program as S1, such as the 

program sum in "in.obj" which performs sum(a[0]..a[n]). The "in.obj" executed 

1109 instructions 6054 clocks with CPI = 5.46  
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Chapter 6 

Pipeline 

 

 

The principle of pipeline is to overlap the operation of various functional units 

therefore reduce their idle time. Pipeline is one of the very first technique to 

increase the performance invented since the early days of computer.  This chapter 

explores the technique of pipeline operations.  The emphasise is on the 

instruction pipeline.  Many techniques to improve the performance of pipeline are 

introduced.  One concrete design based on S1 machine is illustrated.   

 

Instruction pipeline 

Consider one important cycle in the working of a processor, executing an 

instruction. Assume the cycle is broken into 5 stages:  

 

1. instruction fetch IF  

2. instruction decode ID 

3. operand fetch OF  

4. execute EX  

5. write back WB  

 

To illustrate the overlapping of operations let see some simple example. A 

processor executes three instructions  i1, i2, i3.  Each instruction takes 5 steps:  

12345,12345,12345 

The horizontal axis is time, if each stage takes 1 unit time (it is not necessary that 

each stage takes equal time but for simplicity we assume a fixed cycle pipeline 

stage) total time is 15 units. If we arrange three instructions such that they can be 

overlapped:  

i1: 12345  
i2:  12345  
i3:   12345 



98 

The total time is just 7 units. At any time, each stage works on different 

instructions.  The pipeline after 3 clocks can be viewed like this:  

1  2  3  4  5  
i3 i2 i1 -  - 

 

Speedup 

In an ideal case, the pipeline always be fully used (the number of instruction is 

large) hence the speedup is  

 

execution time without pipe / execution time with pipe  

execution time with pipe = execution time without pipe/ no. of stage in pipe  

speedup = no. of stage in pipe 

 

How a pipeline is implemented 

Each stage composed of a functional unit follows by a latch. All latches are 

synchronised. 

 

 
T = time for logic to computer 
W = time for latch 

Figure 6.1 basic pipeline clock 

 

As we have seen, the number of stage determines the speedup. What is the limit 

of the number of stage? When a task is divided into several stages which enable 

overlap operations total time for executing tasks can be shorten but the delay 

(caused by the setting time of latch) of each stage remains constant. This delay 
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time is the limit of speedup. Therefore the latch circuits must be very fast.  

Amdahl's law can explain this limit. 

  

Stall of pipeline 

If there are enough instructions to start execution every cycle and they continue 

until completion without interruption, the pipeline will be fully used and the 

speedup attains theoretical maximum.  However, a pipeline is not always filled. 

When the flow of pipeline is interrupted, all stages before interruption are 

stopped (locked).  This is called the pipeline stall. The rest of the pipeline can 

continue to function. There are three causes of stall: 

  

1. structural hazard 

2. data hazard  

3. control hazard  

 

Structural hazard  

It is caused by conflicting or lacking of resources, such as when two stages of a 

pipeline accessing the same functional unit. Because the required resource is busy 

the pipeline must be stalled. (more about this in the section pipeline floating-

point unit)  

 

Data hazard  

It is caused by dependency of data in a sequence of instructions as illustrated by 

this example.  

i1: R1 = R2 + R3  
i2: R4 = R1 + R5 

 

The dependency of data is on R1.  R1 in i1 must be updated before R1 in i2 is 

read. Because of overlapping operation, R1 in i1 is updated at WB stage but R1 

in i2 is read in OF stage.  The time diagram below shows when this situation 

occurs.  x denotes the stage where hazard occurs. 

            x  
i1: 1 2 3 4 5  
          x  
i2:   1 2 3 4 5 
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Hence the pipeline must be stalled (i2 wait) until R1 is updated (in i1).  There are 

four possibilities of data hazard: 

 

1. Read After Read (RAR) 

2. Read After Write (RAW) 

3. Write After Read (WAR) 

4. Write After Write (WAW) 

 

The above situation is called Read After Write (RAW) hazard. 

 

 Write After Read (WAR)  

 

This is the situation where the operand will be updated by the next instruction 

while it is being read in the current instruction.  To avoid the incorrect result, the 

reading operation of the current instruction must be done before the writing 

operation of the next instruction.  The example below shows the dependency on 

R2. 

i1: R1 = R2 + R3  
i2: R2 = R4 + R5 

 

However, in this pipeline design the WB stage comes later than the OF, there is 

no WAR hazard as shown is the time diagram below. x denotes when R2 is read, 

y denotes when R2 is written. 

        x  
i1: 1 2 3 4 5  
              y 

i2:   1 2 3 4 5 

 

Write after Write (WAW)  

 
i1: R1 = R2 + R3  
i2: R1 = R4 + R5 

 

If R1 in i2 is updated before R1 in i1, the result will be in the wrong order. This 

hazard is presented in pipelines that have write in more than one pipe stage (or 

allow an instruction to proceed even when a previous instruction is stalled, as in 

the superscalar design, which is called out-of-order execution). 

 

There is no hazard for Read After Read dependency (without writing to the 

register, there is no data hazard). 
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Hazard detection 

The hazard can be detected when two instructions want to use the same 

resources.  Suppose instruction i is about to be issued and a previous instruction j 

is in the instruction pipeline.  A RAW hazard exists on register p if  i  reads p       

( Rregs i ) and p will be written by j (Wregs j ).  This hazard can be detected using 

a record of pending writes for all instructions in the pipe and compare with 

operand registers of the current instruction.  When an instruction is issued, 

reserve its result register.  On the completion of the operation, remove its write 

reservation. 

 

A WAW hazard exists on the register p if  p is-in Wregs i and Wregs j. 

A WAR hazard exists on the register p if p is-in Wregs i and Rregs j. 
 

Control hazard  

It is caused by the transfer of control (jump). When the transfer occurs, the 

instruction that has already been fetched and decoded may not be the correct 

instruction as the destination address may be unknown at the time of the next 

instruction fetch.  The pipeline must be flushed and start fetching the designated 

instruction.  The example below shows there is stall, wasted three instructions 

that are already in the pipeline. The wasted instructions are in bolded face, x 

denotes when the destination of jump is known and i* is the designated 

instruction. 

          x 
i1: 1 2 3 4 5  
i2:   1 2 3   
i3:     1 2   
i4:       1   
i*:         1 2 3 4 5 

 

Managing pipeline 

A stall causes the pipeline performance to degrade.  To improve the performance, 

the stall must be reduced or avoid.  The pipeline speedup with stall can be 

calculated from the following relations: 



102 

 

ideal CPI = CPI without pipeline / pipeline depth  

CPI with pipeline = ideal CPI + stall  

pipeline speedup = ideal CPI  Pipeline depth / (ideal CPI + stall) 

 

There are several techniques to reduce the stall.  For data hazard, the register 

forwarding is very effective.  For control hazard, the branch-prediction, branch 

target buffer and delay branch are the techniques that are widely used. 

 

Register Forwarding  

To reduce stall caused by data hazard, use register forwarding (or bypass) to 

handle RAW.  The bypass unit makes use of the temporary result by forwarding 

it to the next instruction.  This eliminates the stall because the next instruction 

can access the value without waiting to get it from the register bank. 

 

 

 
 

Figure 6.2 the ALU with register forwarding 
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          y x  
i1: 1 2 3 4 5  
          z 

i2:   1 2 3 4 5 

 

At stage 5 (WB) of i1 (x), the i1 will write it result back to the register file, while 

the i2 wants to read its operand at stage 3 OF (z).  This caused RAW.  Using the 

bypass unit (see Figure 6.2), the result of i1, which is already available at stage 4 

(y) can be used by the next instruction, i2.  The bypass unit checks if the result is 

in the buffer then select to use that result instead of reading from register file.  To 

make it possible for i1 to write and i2 to read at the same cycle, the cycle is 

divided into 2 parts: the front and the back (see the next diagram). Each occurs at 

half cycle.  The result must be produced by the front half and used by the back 

half.  The i1 EX stage produces a result at the front half of clock cycle (y at 4F) 

and i2 OF stage reads its operand at the back half (x at 3B)  

    y 

i1: 4F 4B  
       x  
i2: 3F 3B 

 

The next question is how deep the buffer in the bypass unit should be.  Consider 

a sequence of instructions where R1 has data hazard. 

i1: R1 = R2 + R3  
i2: R4 = R1 - R5  
i3: R6 = R1 + R7  
i4: R8 = R1 - R9 

 

          y x  
i1: 1 2 3 4 5  
          x  
i2:   1 2 3 4 5  
            x  
i3:     1 2 3 4 5  
i4:       1 2 3 4 5 

 

With a bypass unit, i1 only affect i2. There is also hazard between i1 and i3, to 

forward the result from i1 to i3 required a buffer of depth two. There is no hazard 

between i1 and i4.  

 

There are several methods to reduce stalls caused by control hazard: prefetch 

both next and target addresses, use branch prediction, and use delay branch. 
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Branch prediction  

We can predict the current branch (taken/not_taken) one way and back up if the 

decision is turn out to be wrong, for example, predicting that the branch is always 

taken.  It takes 1 clock per branch instruction if the prediction is right and 2 

clocks if the prediction is wrong.  The chance of being right is 50%.  However, 

the static scheme always becomes very ineffective in some case.  We can use the 

history of the previous branch to predict the current branch to allow the 

prediction to be more dynamic.  Using 1 bit of history will increase the chance of 

being right to 90%.  The prediction must be made at the decode stage of the 

current instruction (x) as the next instruction must be fetched.   

 
             x 

branch i1: 1 2 3 4 5 

       i2:   1 2 3 4 5  

 

The simplest scheme is the branch history table. The BHT contains the history 

bit (taken/not_taken) and is indexed by the lower bits of the current program 

counter.   With one bit of history the rule to decide is simply if the previous 

branch is taken then fetch from this branch target.  With this scheme the 

prediction will be wrong twice, one when enter the loop and the other when leave 

the loop. To improve the accuracy of the prediction, the state of history bit can be 

increased. Using 2 bits history with four states, the rule can be if wrong 

prediction twice then change prediction to the other way.  Figure 6.3 shows one 

possible arrangement for the prediction states with 2 bits. 

 

 

 

Figure 6.3 Two-bit branch prediction 
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Branch-target-buffer 

The prediction by BHT is not very accurate, as the information stored in BHT is  

limited.  The indexing by the lower bits of PC can be improved.  To improve the 

accuracy of prediction more information about the address of the jump 

instruction and the address of the destination of jump is required.  This 

information plus the history bit(s) are stored in "branch-target buffer" (BTB).  We 

need to know what address to fetch by the end of IF. That is, we need to know 

what next PC should be (even the newly fetch instruction is not yet decoded, so 

we don't even know if that instruction is a branch or not). Therefore we are 

predicting the next instruction address and will send it out (next instruction fetch) 

before decoding the instruction. If the instruction is a branch and we know what 

the next PC is, we can have zero stall on branch.   The main idea is to use a cache 

memory to store PC of instruction fetched and its predicted next PC and history 

bit. The steps are shown in the figure below. 

 

 
 

Figure 6.4 Steps in handling branch prediction 

 

Delay branch  

Another way to reduce the stall cycle caused by the branch is to change the 

semantic of the jump instruction.  By doing the actual jump in the next cycle 

(delayed), there will be one free time slot after the jump instruction.  The 

principle of this method is to use the stall cycle to do useful work by moving 
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some instruction to be executed in the stall cycle. The jump instruction is 

"delayed" i.e. caused the actual jump by some amount of clock (equal to stall 

cycle). Some instruction can be scheduled to be executed in that "delay slot". The 

instruction can be taken from the above, from the target, and from the fall 

through. 

from above  

The delay slot is filled by the instruction "above" the branch instruction (the 

symbol  <  >  denotes the delay slot). 

 
i1 jmp i2  
jmp i2    ==> <i1>  
< >  i2  
i2 

from target  

The delay slot is filled by the instruction at the destination.  The following 

example shows the jump backward (usually at the end of loop).  The target 

address (instruction i1) is moved to the delay slot and the jump destination is 

changed to i2. 

 
i1 i1  

i2  i2 

... ... 

jmp i1    ==> jmp i2  

< >  <i1> 

i3 i3 

 

from fall through 

The delay slot is filled with the instruction from the target address, similar to 

"from target" but the direction of branch is forward.  The jump address is 

changed to the next instruction after the target (i.e. fall through). 

 
i1  i1  
jmp i2 jmp i3 

< >       ==> <i2> 

i2  i3 

i3 

 

There are several considerations which choice of instruction scheduling is 

suitable.  Using from target, branch taken should be of high probability. Using 
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from fall through, branch not taken is of high probability. The instruction in delay 

slot must be "safe", that is, when the prediction is wrong, executing this 

instruction should not change the machine state until the outcome of branch is 

definitely known ( and hence knowing whether this instruction must be executed 

or not).  One delay slot can be filled with useful instruction about 50% of the 

time. The rest can be filled with NOP.  It takes 0 clock when an instruction can 

be found to be filled in the delay slot (this situation is true 50% of the time).  

However, if more instructions per cycle are issued, the delay slot becomes less 

useful. 

 

Advanced Pipeline 

In our previous discussion, each stage in the pipeline is executed in one cycle.  

For simple operations such as integer arithmetic this is possible.  However, there 

are several operations especially floating-point arithmetic that takes many cycles 

to complete.  To allow for such operations the depth of the pipeline can be 

increased. This is possible when all operations have the same number of stages.  

This may not be possible.  It is more economical instead to design a pipeline to 

have multi-cycle in the execution stage, however the control for such pipeline 

will be complicated. 

 

Pipeline of the floating-point unit 

For floating-point operations the pipeline will required to operate in multiple 

cycle.  We will examine a simplify cases of floating-point multiplication and 

addition and illustrate how a functional unit for such operation is design and 

control.   

 

Assume the inputs are two normalized floating-point numbers, A and B.  A 

floating-point multiplication carries out the following steps: 

 

1. Add two exponents 

2. Multiply two significands.  This may takes several cycles to perform 

partial products and sum them. 

3. Normalized the product 

4. Rounding 

 

The pipeline for the FP multiplier is shows in Fig 6.5. 
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Accumulate

Add  exponents

Add  exponents

Form partial product

Round

Normalise

Renormalise

 

Figure 6.5 the FP multiplier pipeline 

 

Similary for a floating-point addition, the following steps are performed: 

 

1. subtract exponents and swap operands if necessary 

2. shift the significand of B to the right 

3. add significands 

4. renormalized 

5. round 

 

The pipeline for a FP adder is shown in Fig 6.6.  The FP multiplier and FP adder 

have several common operations. They can be combined to form a single 

function unit as shown in Fig. 6.7. 

 

The control of this functional unit is complex because the collision exists if a new 

operation is admitted into the pipeline while one or more operations are in 

progress.  Davidson [DAV91] developed "reservation table" that gives the timing 

information of the flow of data through the functional unit.  The reservation table 
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Partial shift

Find leading 1

Partial shift

Add significands

Subtract exponents

Round

Renormalise

 

Figure 6.6 the pipeline of a FP adder 

 

is derived directly from the pipeline design. It is used to decide when to launch an 

operation into the pipeline. Only one operation can use any unit at any time 

otherwise it is said to have collision.   

 

 
 

Figure 6.7 a pipelined floating-point combined adder/multiplier unit 
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Assume the multiplication of significands takes 2 cycles to form partial products 

and 2 more cycles to add the partial products.  The reservation tables for FP 

multiplier and FP adder are shown in Fig. 6.8. 

 

 
 1 2 3 4 5 6 7 

exp add x       

mul  x x     

sig add   x x    

renorm     x  x 

round      x  

shift A        

lead 1        

shift B        

a) FP multiplier 

 
 1 2 3 4 5 6 7 8 9 

exp add x         

mul          

sig add    x      

renorm         x 

round        x  

shift A  x x       

lead 1     x     

shift B      x x   

b) FP adder 

Figure 6.8  the reservation table for a) FP multiplier b) FP adder 

 

If we launched two multiplications, one after another, the reservation table will 

look like Fig.6.9.  x is the first multiplication and y is the second.  When x and y 

occupy the same unit at the same time the collision occurs.  Fig 6.9 shows that we 

cannot launch another multiplication one cycle after the first multiplication.  The 

collision information is represented in a binary vector called "collision vector".  

Position i contains a bit that indicates whether a new operation can be launched i 

cycles after the first operation has been initiated.  The collision vector for 

launching two multiplication in succession is 110000.  It indicates that a new 

multiplication must be launched at least after two cycles after the first 

multiplication.  For two FP addition, the collision vector is 10000000.  We can 
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also determine the collision of a multiplication then addition and vice versa.  For 

more advanced treatment of the pipeline control see Kogge [KOG81]. 

 
 1 2 3 4 5 6 7 

exp add x y      

mul  x xy     

sig add   x xy y   

renorm     x y x 

round      x y 

shift A        

lead 1        

shift B        

 

Figure 6.9 the collision of two multiplications x and y 

 

Pipeline of multiple functional units 

 

 
 

Figure 6.10 an example of multi step pipeline 

 

Assume there are multiple functional units: FP adder, FP multiplier, FP divider, 

integer unit etc. and two separate register sets: FP and integer. This simplifies the 

pipeline control as it reduces hazard detection such as overlapping FP and Integer 

operations, except for load/store FP and movement between FP/Integer registers. 

Integer unit handles load/store to both register sets. Assume EX stage is repeated 

many times to do these operations. No other instruction using functional unit may 

issue until the previous instruction leaves EX. If an instruction cannot proceed to 
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the EX stage, the entire pipeline behind that instruction will be stalled (to avoid 

this stall, we need the capability to do out-of-order issue, the topic of next 

chapter). The following steps are required to issue a new floating-point 

instruction:  

 

1. Check for structural hazard  

2. Check for data hazard  

3. Check for forwarding  

 

Because all FP instructions require different execution time, this caused three 

complications:  

 

1. contention for register access at WB stage,  

2. WAR and WAW hazards and  

3. interrupts. (we ignore interrupt).  

 

FP load and FP operation can content for FP register on writes. This can be dealt 

with using priority scheme at the WB stage. The highest priority instruction can 

get access to register and all other instructions are stalled. A simple heuristic is to 

give the longest latency instruction the highest priority. If all instructions read 

their registers at the same time there will be no WAR hazards. WAW hazards 

occur because the results can be written in different order. The instructions can be 

completed in a different order from the order in which they are issued.  

 

Example  

DIVF F0 F2 F4  
SUBF F0 F8 F10 

Assume DIVF takes longer than SUBF to complete. The SUBF will complete 

first and writes its result before the DIVF. This hazard must be detected and 

ensure that the result of executing instructions is correct.  

 

S1 pipeline design 

To illustrate the design of a pipelined CPU, S1 will be modified to be a pipelined 

machine.  There are many factors that have to be considered: the number of stage 

of pipeline, the function of each stage of pipeline, and the behaviour of each 

instruction in the pipeline. 

 

S1-pipe has 5 stages: Fetch, Decode, Execute, Mem, Writeback.   
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The fetch stage (F) reads the instruction from the memory.  The decode stage (D) 

dispatches the instruction for appropriate sequences of operations.  Every 

instructions have the same F,D stages. The execute state (X) performs operations. 

For ALU instructions, the ALU operations are done in this stage.  For load/store 

instructions, the MAR and MDR are prepared.  The memory stage (M) reads or 

writes the memory.  The writeback stage (W) writes the result to the register. 

 

Structure 

Assume registers have 2 read ports and one write port. Every clock cycle, one 

instruction is fetched from the memory while other instruction may accesses the 

memory in M stage, therefore the memory must have 2 read ports and one write 

port (usually, the cache memory has this property).  There are a number of 

additional registers that are used to store the information between the stages of 

pipeline (the state of pipeline): LMDR, SMDR, PCm, PCw, IRx, IRm, IRw and 

T1.  The internal buses become 2 separate buses, R read bus and R write bus to 

allow concurrent operations to access registers and memory. 

 

 
 

Figure 6.11 the structure of S1 pipeline 
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ISA 

The number of stage of a pipe cannot be smaller than the longest instruction. For 

a 5-stage pipelined machine, at most an instruction must be completed in 5 

clocks. The instructions that are too long (ret, push, pop) will be difficult if not 

impossible to pipeline therefore they are eliminated. To handle the subroutine 

call, the "jump and link register" and "jump register" are used.  These two 

instructions can be completed within 5 clocks.  Besides these two new 

instructions, all other instructions must retain their original semantics in the 

pipelined version (pipeline does not change the meaning of an instruction). 

 

Microstep in the pipeline stages 

Fstage : Mdr=M[Pc]; Pc=Pc+1  
Dstage : Ir=Mdr  

 

 

inst Xstage Mstage Wstage 

load Mar=IRx:ads Lmdr=M[Mar] R[IRw:r]=Lmdr 

store Mar=IRx:ads ; 

Smdr=R[IRx:r] 

M[Mar]=Smdr  

loadr Mar=R[IRx:r1] Lmdr=M[Mar] R[IRw:r2]=Lmdr 

storer Mar=R[IRx:r2] ; 

Smdr=R[IRx:r1] 

M[Mar]=Smdr - 

jmp if CC 

PC=IRx:ads 

- - 

jal PCm=PC ; 

PC=IRx:ads 

PCw=PCm R[IRw:r1]=PCw 

jr if CC 

PC=R[IRx:r1] 

- - 

mov T=R[IRx:r1] T1=T R[IRw:r2]=T1 

add T=R[IRx:r1]+   

R[IRx:r2] 

T1=T R[IRw:r1]=T1 

inc T=R[IRx:r1]+1 T1=T R[IRw:r1]=T1 

cmp cmp(R[IRx:r1],  

R[IRx:r2]) 

- - 
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Design considerations 

1. shift register effect  

2. conflict of use of resources in different stages  

Shift register effect 

When some data must be used in the later stage, it must be moved along the pipe 

and hence there must be intermediate registers (latches). The data moves along 

the pipe using the same principle as a shift register.  

 

 

Example  If we want to transfer the value of A from stage 1 to B in stage 3, we 

use an intermediate register, stage 1 to stage 2 and stage 2 to stage 3. 

stage1  stage2   stage3  
T = A,  T1 = T,  B = T1  

 

The intermediate register is T1.  The pair T = A, T1 = T execute at the same time. 

T is read (at stage 2) before it is written into (at stage 1).  

 

Conflict of use of resources 

All stages execute at the same time, hence the pipe cannot have one resource 

being used in two different stages. For example, MDR will be used to fetch the 

next instruction at Fstage all the time therefore MDR can not be used in any other 

stages.  

 

Another example, LOAD instruction uses MDR = M[MAR] at Mstage and 

STORE uses MDR = R[IR:R1] at Xstage. MDR is used in two different stages 

(Mstage and Xstage). Moreover MDR is already been used in Fstage. Therefore, 

two new registers are assigned to avoid this conflict: Lmdr (load mdr), Smdr 

(store mdr). There are some situation which still has conflict such as an example 

below. 

       Xstage    Mstage  
storer MAR = ... M[MAR] = ...  

 

MAR is on the left hand side (being written into), therefore there is a conflict in 

writing and reading MAR at the same time, but for a memory chip, we assume 



116 

the address can be change during the write memory cycle as long as it was hold 

for a certain time. PC is also having a conflict. At Fstage, PC = PC+1 but for JMP 

instruction PC = IR:ads.  This situation can be remedied by using a multiplexor 

circuit for writing into PC and PC = IR:ads when the jump is taken (because it 

jumps and hence not using the next instruction in sequence). Fig. 6.12 shows the 

next address circuit according to this scheme. 

     Fstage   Xstage  
jmp  PC=PC+1  PC=IRx:ads  

 

 

Figure 6.12 the next address circuit 

 

How to assign each microstep into a stage? 

The assignment is done according to the guideline that a resource can not appear 

in two different stages. Let us see the example from S1 pipeline. At Xstage, most 

operations have the form A = R[..], i.e. reading register file. At Wstage, 

operations have the form R[..] = A, i.e. writing register file. If we move R[IR:R1] 

= PCw from Wstage to Xstage there will be conflict on writing a register with 

R[..] = A of other instruction.  

 

Performance evaluation 

Running the sum array benchmark (sum a[0]..a[n] where n = 100) and using the 

following timing for S1 (Table 6.1). 
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Table 6.1 the timing of S1 (count ifetch as 2 clocks)  

 

instruction clock 
load 5 

store 5 

jmp 3 

jal 3 

mov 4 

loadr 5 

storer 5 

add 4 

cmp 3 

inc 4 

 

 

The experiment is carried out to compare s1 and S1-pipe (S1-P) and S1-pipe with 

register forwarding (S1-PF) and S1-pipe with forwarding and delay branch (S1-

PFD).  The result is shown in Table 6.2. 

 

Table 6.2 comparison of S1 and pipelined S1 

 

CPU inst clock stall  stall % CPI speedup P:PF PF:PFD 

S1 1110 4642   4.18    

S1-P 1112 3136 2024 64.5 2.82 0.48   

S1-PF 1112 1304 202 15.4 1.18 2.54 1.39  

S1-PFD 1112 1114 2 0.18 1.002 3.17 1.81 0.18 

 

 

S1-P is faster than S1 48% and S1-PF is faster than S1 254%. S1-PF is faster than 

S1-P 139%. The maximum gain is obtained using forwarding. It reduced stall 

cycle from 64.5% to 15.4%. By using delay branch this can be reduced further 

but the gain is not as much as using forwarding. 

 

Summary 

The pipeline overlaps the operations and reduces the idle time in functional units.  

This chapter illustrates only one kind of pipelining, the instruction execution 

pipeline.  There are others such as pipeline in accessing memory, pipeline in 
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cache memory controller [TCH98], pipeline in virtual address calculation.  The 

stall in pipeline caused serious performance degradation.  Several techniques to 

reduce the stall have been demonstrated such as register forwarding and branch 

prediction.  There are many other techniques, several of which will be studied in 

the next chapter.  The reduction of stall caused by branch is still a very much 

active area of research, for example see [USS97]. 
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Chapter 7 

Instruction Level Parallelism 

 

 

The use of simple pipeline for instruction execution and a more complex pipeline 

for floating-point operations is a way to increase "instruction level parallelism" 

since the instructions can be evaluated in parallel.  In this chapter we will learn 

more about other techniques to increase performance through instruction level 

parallelism.  The technique that is based on software (a compiler) which 

rearranges instructions to reduce the number of stall is called static scheduling as 

the scheduling is done at compile-time.  The technique that uses hardware to 

issue many instructions concurrently is called dynamic scheduling as the 

scheduling is done at run-time.  We examine three static scheduling techniques: 

register optimization, register renaming and loop unrolling.  We study five 

architectural features to improve instruction level parallelism: scoreboard, 

Tomasulo, superscalar, superpipeline, and very-long-instruction-word (VLIW).   

 

Static scheduling 

If a compiler knows about architectural features of the target machine, the 

compiler can analyse a source program and generate sequences of instructions 

that minimise the number of stall.  The technique based on software is powerful 

as there are plenty of resources available to perform complex analysis.  The 

limitation is that there are many events that are not knowable at compile-time 

hence it is impossible to schedule many run-time dependent sequences of 

instructions. Register optimization is used to minimise the stall caused by load 

and store operations. Register renaming replaces the registers in conflict to 

eliminate hazards.  Loop unrolling is used to schedule instructions across basic 

blocks.  A basic block is defined as a straight-line code sequence with no 

branches in except to the entry and no branches out except at the exit. 
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Register optimization 

To reduce the number of stalls caused by load and store operations, the compiler 

keeps the operands for as many computations as possible in register rather than in 

memory.  The approach is as follows.  Each program quantity to be kept in a 

register is assigned a virtual register.  The compiler then maps this unlimited 

number of virtual registers in to a fixed number of real registers.  Virtual registers 

whose usages are not overlap can share the same real register.  If there are more 

quantities than the number of real registers, some quantities are assigned to 

memory locations.  The optimization task is to decide which quantities are to be 

assigned to registers at any given point in a program.  This problem is known as 

graph coloring.  The algorithm to solve graph coloring, which is NP-complete, 

can be used to allocate registers [CHA82].  

 

Register renaming 

This technique assigns idle registers to serve in place of program specified 

registers in order to avoid conflicts that could stall pipeline.  For example, the 

sequence of instructions: 

 

i1: R3 = R3   R5  

i2: R4 = R3 + 1  

i3: R3 = R5 + 1  

i4: R7 = R3   R4  

 

There are the following data hazards : i1-i2 RAW , i1-i3 WAW, i2-i3 WAR, i3-i4 

RAW.  By replacing the registers in conflict with different registers the conflict 

of resources can be avoid.  The following example shows how renaming is used. 

 

i1: R3b = R3a   R5a  

i2: R4b = R3b + 1  

i3: R3c = R5a + 1  

i4: R7b = R3c   R4b  

 

The renaming can be achieved by a compiler or by using hardware.  The 

hardware approach will be discussed in the section Tomasulo. 
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Loop Unrolling 

The simplest way to increase instruction parallelism is to exploit the iterative 

nature of the loop.   The technique work by unrolling the loop either by the 

compiler or by the hardware.  Here we examine the loop unrolling by software.  

To avoid a pipeline stall, a dependent instruction must be separated from the 

source instruction by a distance in clock cycles equal to the pipeline latency of 

that source instruction.   

 

Let us use an example to illustrate how a compiler unrolls loops to improve the 

instruction level parallelism.  The example is a program to multiply two matrices.  

This is a typical triple loop for matrix multiplication.  Assume integer numbers.  

The matrices have size N  N. 

 
1  for(i=0; i<N; i++) 

2    for(j=0; j<N; j++) { 

3      c[i][j] = 0; 

4      for(k=0; k<N; k++) 

5    c[i][j] += a[i][k] * b[k][j]; 

6    } 

 

Assume we have a 32-bit version of S1.  The S1-32 has the element size equal 

one word (word addressable where a word is 32 bits).  S1-32 instructions have 

the 3-operand format where op r1 r2 r3 means r1 = r2 op r3.  Its 

addressing mode includes register index with displacement in the format 

disp(base + index).  The load/store instructions have 1 clock stall and all 

other instructions take 1 clock to complete.  Assume each element is 32 bits and 

the matrix is stored in row-major, i.e. the arrangement in the memory is as 

follows: a11, a12, a13, … a1n, a21, a22, ... , an1, ..., ann.  The following assembly 

program will multiply two matrices   C = A  B. 

 
clk  

1 loop: ld1 aik 0(Rba + Rik) 

2  stall 

3  ld2 bkj 0(Rbb + Rkj) 

4  stall 

5  mul3 Rt aik bkj 

6  add4 cij cij Rt 

7  add5 Rik Rik 1 

8  add6 Rkj Rkj N 

9  cmp7 Rik Rend 

10  jnz8 loop 

11  st9 0(Rbc + Rij) cij 
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Explanation of variables: 

register aik, bkj hold the current value of a and b. 

register Rba, Rbb, Rbc hold the base address of the matrices A,B,C 

register Rik, Rkj, Rij hold the index to the aik, bkj, cij 

register Rt is temporary, Rend holds the address of the last element of the matrix 

A. 

 

Each instruction has suffix to help understanding the rearranging of the 

instructions.  This program takes 10 clocks to computer one element (not 

counting the last store).  Load instructions stall one clock each (ld1, ld2).   

 

Schedule loop to reduce stall 

Instead of wasting the stall cycle because of ld instruction, we can issue other 

instruction to perform a useful work.  We rearrange the program (code 

scheduling) to fill the stall cycle as follows : 

 
1 loop: ld1 aik 0(Rba + Rik) 

2  add5 Rik Rik 1 

3  ld2 bkj 0(Rbb + Rkj) 

4  add6 Rkj Rkj N 

5  mul3 Rt aik bkj 

6  add4 cij cij Rt 

7  cmp7 Rik Rend 

8  jnz8 loop 

9  st9 0(Rbc + Rij) cij 

 

Now the program computes one element in 8 clocks. 

 

Loop unrolling can eliminate branch 

To reduce the overhead of control flow stall (increment pointers and jump)  the 

loop can be unrolled.  The following example unrolls the loop once, using the 

offset in ld/st instruction to index the variables .  Therefore two instructions per 

loop are eliminated (add5, add6). 

 
1 loop: ld1 aik 0(Rba + Rik) 

2  stall 

3  ld2 bkj 0(Rbb + Rkj) 

4  stall 
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5  mul3 Rt aik bkj 

6  add4 cij cij Rt 

7  ld10 aik 1(Rba + Rik) 

8  add5 Rik Rik 1 

9  ld11 bkj 1(Rbb + Rkj) 

10  add6 Rkj Rkj N 

11  mul12 Rt aik bkj 

12  add13 cij cij Rt 

13  cmp7 Rik Rend 

14  jnz8 loop 

15  st9 0(Rbc + Rij) cij 

 

This program takes 14/2 = 7 clocks per element. 

 

In our example, unrolling loops improve the speed from 10 clocks per element to 

8 clocks to 7 clocks but increase the size of program substantially.  To exploit 

instruction level parallelism it is important to determine which instructions can be 

executed in parallel (assuming pipeline has sufficient resources).  If two 

instructions are dependent they are not parallel.  Instructions that can be 

reordered are parallel and vice versa.  The loop level parallelism is analysed at 

the source code.  The analysis involves determining what dependencies exist 

among the operands in the loop across the iterations of the loop. 

 

Dynamic scheduling in pipeline 

In the previous chapter, the pipeline fetches and issues an instruction unless there 

is a data dependence between an instruction already in the pipeline and the 

fetched instruction. When data hazard occurs the pipeline is stalled.  This is 

called static scheduling.  The stall caused by data hazard can be reduced by 

forwarding the result using a bypass unit.  This section introduces more hardware 

scheme to reduce the stalls, this is called dynamic scheduling as it can detect the 

dependencies at the run-time. 

 

All the previous pipeline technique that we described use in-order instruction 

issue. If an instruction is stalled in the pipeline, no later instructions can proceed. 

When there are multiple functional units, these units could be idle. For example,  

DIVF F0 F2 F4  
ADDF F10 F0 F8  
SUBF F8 F8 F14 

The SUBF cannot be issue because the dependence of ADDF on DIVF (RAW on 

F0). Yet, the SUBF does not depend on any instruction in the pipeline. If an 
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instruction can be executed out-of-order this stall can be eliminated.  We can 

check data hazards in the ID stage. In order to let an instruction start its execution 

as soon as its operands is available, the instruction issuing process must be 

separated from the hazard checking. The pipeline will do out-of-order execution 

which implies out-of-order completion.  For the simple pipeline in the last 

chapter, data hazards and structural hazards are checked during the instruction 

decode stage.  To allow out-of-order execution the issue process must be split 

into two parts: 1)  checking and waiting until no structural hazard 2) and then 

read operands.   The distinction must be made between the beginning of 

execution of an instruction and the completion.  Between these two time, an 

instruction is in execution.  Using multiple functional units and pipelines, 

multiple instructions can be in execution at the same time.  We introduce three 

techniques to do dynamic scheduling: scoreboard, Tomasulo and  superscalar. 

 

Scoreboard 

Scoreboard is a hardware technique that enables instructions to be out-of-order 

executed when there are sufficient resources and no data dependencies. It is 

named after the CDC6600 scoreboard [THO70] (first delivered in 1964 and was 

considered by many to be the first supercomputer). The goal of a scoreboard is to 

maintain an execution rate of one instruction per clock cycle by executing an 

instruction as early as possible.  This can be achieve only when there are no 

structural hazard, i.e. there are sufficient number of resources. The scoreboard is 

responsible for instruction issue and execution. It does all hazard detection.  

 

Every instruction goes through the scoreboard which keeps all information 

necessary to detect all hazards. The scoreboard determines when an instruction 

can read its operands and begin execution. The scoreboard controls when an 

instruction can write its result into the destination register. All hazard detection 

and resolution is centralised in the scoreboard.  

 

To illustrate the working of scoreboard we will use S1 with scoreboard (S1s). 

Assume S1s has 2 FP multipliers, one FP divide, one FP add and one integer unit. 

The integer unit handles all load/store, memory references, branches and integer 

operations. Each instruction goes through 4 steps, which replaces the pipeline 

stages, as follows:  

 

1. Issue, when there is no structural hazard the instruction is issued. 

Scoreboard updates its internal data structure. It guarantees that there is 

no WAW.  
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2. Read operands, the scoreboard monitors source operands. If  

2.1 no active instruction is going to write to it.  

2.2 no active functional unit is writing to the register containing the 

operands.  

Then when the source operands are available, the scoreboard tells the 

functional unit to read its operands and begin execution. RAW is 

resolved and instructions may be executed out-of-order.  

3. Execution, a functional unit begins execution. It notifies the scoreboard 

when the result is ready.  

4. Write result, when the functional unit has completed execution, the 

scoreboard checks or WAR hazards. An instruction is not allowed to 

write its results when  

4.1 there is an instruction that has not read its operands.  

4.2 one of the operands is the same register as the result of the 

completing instruction.  

4.3 the other operand was the result of an earlier instruction.  

 

The scoreboard controls the execution of an instruction by communicating with 

the functional units.  

 

Example, a scoreboard of S1s controls the execution of the following sequence 

of instructions:  

LF F6 34(R2)  
LF F2 45(R3)  
MULTF F0 F2 F4  
SUBF F8 F6 F2  
DIVF F10 F0 F6  
ADDF F6 F8 F2 

The scoreboard has three parts:  

1. Instruction status  

2. Functional unit status, each FU has the following fields  

2.1 Busy  

2.2 Op, instruction to be performed  

2.3 Dest , destination register  

2.4 Src1, Src2, source registers  

2.5 P1, P2, number of units producing Src1, Src2  

2.6 R1, R2, ready flags for Src1, Src2; they are reset when new values 

are read so the scoreboard knows that the source operand has been 

read. 

3. Register result status, which FU will write register. 
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Assuming the execution of the floating-point functional units are: add is 2 clocks, 

multiply is 10 clocks and divide is 40 clocks. Each instruction that has issued, has 

an entry in the instruction status table. Once the instruction issues, the record of 

its operands is kept in the functional unit status table. See the figure 7.1, the 

instruction status says that  

1) the first LF has completed  

2) the second LF has completed but has not yet written its result.  

3) the MULTF, SUBF and DIVF have issued but are stalled, waiting for 

their operands. 

 

The functional unit status says that  

1) the first multiplier unit is waiting for the integer unit. (RAW on F2). 

2) the add unit is waiting for the integer unit. (RAW on F2).  

3) the divide unit is waiting for the first multiplier unit. (RAW on F0).  

4) the ADDF is stalled due to structural hazard (FU Add is in used by 

SUBF). 

 

 
 

Figure 7.1 The scoreboard after issuing the first five instructions. 



127 

 

Now assume the MULF and DIVF are proceeded and ready to write results. There 

are RAW on  

1) the second LF to MULTF and SUBF (on F2)  

2) MULTF to DIVF (on F0)  

3) SUBF to ADDF (on F8) 

 

There is a WAR between DIVF and ADDF on F6. There is a structural hazard on 

FU add for ADDF. The DIVF has not yet read its operands. The ADDF has read its 

operands and is in execution, it was waiting for SUBF (structural hazard). The 

ADDF cannot write its results because of WAR on F6.  

 

 

 

 
Figure 7.2 The scoreboard when MULTF and DIVF are ready to write results. 
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Bookkeeping 

The scoreboard records operand specifier information, such as register numbers.  

For example, it records the source registers when an instruction is issued.  Here is 

the summary of bookkeeping for each step in instruction execution. 

 

Instruction issue  

Check functional unit is not busy (functional units status) and dest is not waiting 

for the result (register result status)  

 check busy field in FU = yes  

 check op field in FU = opcode  

 fill FU : Dest Src1 Src2  

 fill P1 P2 with the register result of Src1 Src2  

 check R1 R2 = not P1, not P2  

 write the name of FU to register result  

Read operands  

Wait for R1 R2 until ready, read operands  

 set R1, R2 = No  

 P1, P2 = 0  

Execution complete  

Wait until functional unit done  

Write result  

Check WAR hazard  

 when other instruction has this instruction Dest  as Src1 or Src2  

for all f  : Src1(f), Src2(f) != Dest(FU)   AND  

 when other instruction has written the register R1, R2 

R1 = Yes or R2 = Yes  

Wait until no harzard , set ready flag  

for all f : 

 if P1(f) = FU then R1(f) = Yes  

 if P2(f) = FU then R2(f) = Yes  

 reset register result  

 reset busy field of FU  
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The next section describes a technique called register renaming that eliminates 

name dependencies so as to avoid WAR and WAW hazards.  

  

Tomasulo 

Another dynamic scheduling technique similar to scoreboard is Tomasulo. This 

technique was invented by Robert Tomasulo in 1967 [TOM67] for the IBM 

360/91 floating-point unit [AND67]. The key concept is the renaming of registers 

to avoid WAR and WAW hazards. This function is provided by the reservation 

stations. A reservation station fetches and buffers an operand as soon as it is 

available, pending instructions designate the reservation station that will provide 

their input. When successive writes to a register appear, only the last one is 

actually used to update the register. As instructions are issued, the register name 

for pending operands are renamed to the names of the reservation station. This is 

the main difference between scoreboard and Tomasulo's algorithm. There can be 

more reservation stations than real registers, the technique can eliminate hazards 

that could not be eliminated by a compiler.  

 

Two other differences between scoreboard and Tomasulo are: first, hazard 

detection and execution control are distributed by each reservation station (in 

scoreboard it is centralised), second, results are passed directly to functional 

units rather than through registers. A common result bus allows all units waiting 

for an operand to be loaded simultaneously, this is called the common data bus 

(CDB) (Fig.7.3). 

 

The steps to execute an instruction:  

 

1. Issue, Get an instruction from the queue, issue it if there is an empty 

reservation station, send the operands to the reservation station if they are 

in the registers. If the operand is a load or store, it can issue if there is an 

available buffer. If there is no empty reservation station or an empty 

buffer, then there is a structural hazard. This step also performs the 

renaming registers.  

2. Execute, if operands are not yet available, monitor CDB waiting for the 

registers. When an operand is available, it is placed into the 

corresponding reservation station. When both operands are available, 

execute the operation. This step checks RAW hazards.  

3. Write result, When the result is available, write it on CDB and from 

there into the registers and any reservation stations waiting for this result.  
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Figure 7.3  A CPU with two floating point functional units each with two 
reservation stations, and one load one store buffer 

 

Although these steps are similar to those in the scoreboard there are three 

important differences.  First, there is no checking for WAW and WAR hazards  

they are eliminated by register renaming.  Second, the CDB is used to broadcast 

the result instead of waiting for the registers.  Third, the loads and stores are 

treated as functional units. 

 

The next two sections examine how to improve the instruction level parallelism 

further by issuing multiple instructions in one clock cycle. 

 

Superscalar 

The term superscalar describes a computer implementation that improves 

performance by concurrent execution of scalar instructions (more than one 
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instruction per cycle) [JOH90].  Scalar processor is a processor that execute one 

instruction at a time. A superscalar processor allows concurrent execution of 

instructions in the same pipeline stage. A superscalar processor is a machine that 

is designed to improve the performance of the execution of scalar instructions as 

opposed to vector processors that operate on vectors. 

 

The hazard affects a superscalar processor more than in a scalar processor as it 

prevents a greater amount of resources from being used. For example, when there 

is no instruction that is not dependent the processor will not execute any new 

instruction, this is called "zero-issue" cycle.  During this cycle, the wide pipeline 

that can execute more than one instruction at a time is wasted. 

 

The instruction parallelism of a program is a measure of the average number of 

instructions that a processor might be able to execute at the same time (given an 

unlimited resource).  Machine parallelism of a processor is a measure of the 

ability of the processor to take advantage of the instruction-level parallelism. 

Machine parallelism is determined by the number of instructions that can be 

fetched and executed at the same time by  the mechanisms that the processor uses 

to find independent instructions.  To achieve performance, both machine 

parallelism and instruction parallelism are required [JOU89]. 

 

Instruction-issue refers to the process of initiating instruction execution in the 

processor's functional units. Instruction-issue policy affects performance because 

it determines the processor's "lookahead" capability; that is, the ability of the 

processor to examine instructions beyond the current point of execution in hopes 

of finding independent instructions to execute.  There are three possible policies: 

in-order issue with in-order completion, in-order issue with out-of-order 

completion, and out-of-order issue with out-of-order completion.  We examine 

each policy in turn using an example of a superscalar processor. 

 

Assume a superscalar processor capable of fetching and decoding two 

instructions at a time, having three separate functional units and two writeback 

stages.  There are six instructions being executed.  The following constraints 

occur: 

 i1 requires two cycles to execute  

 i3 and i4 conflict for the same functional unit.  

 i5 depends on the value produced by i4. 

 i5 and i6 conflict for a functional unit.  
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In-order issue with in-order completion 

The simplest policy is to issue instructions in exact program order and to write 

results in the same order.  The figure 7.4 shows two instructions being in 

execution at once.  The results are written back in the same order.  The 

instruction issuing stalls where there is a conflict for a functional unit.   

 
          Decode  Execution        Writeback      clock 

 
i1 i2        1 

i3 i4  i1 i2     2 

i3 i4  i1      3 

 i4    i3  i1 i2 4 

i5 i6    i4    5 

 i6   i5   i3 i4 6 

    i6     7 

       i5 i6 8 

 

Figure 7.4  a superscalar with in-order issue and in-order completion 

 

In-order issue with out-of-order completion 

With out-of-order completion, the number of instructions allowed to be in 

execution in the functional units is up to the total number of pipeline stages in all 

functional units.  Instruction issuing is not stalled when a functional unit takes 

more than one cycle to compute a result.  Therefore instructions may be complete 

out of order.  The figure 7.5 shows i1 is completed out of order.  Total time of 

this sequence is reduced to seven cycles. 

          Decode  Execution        Writeback      clock 

i1 i2        1 

i3 i4  i1 i2     2 

i3 i4  i1    i2  3 

 i4    i3  i1 i3 4 

i5 i6    i4  i4  5 

 i6   i5   i5  6 

    i6   i6  7 

 

Figure 7.5  a superscalar with in-order issue and out-of-order completion 
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Out-of-order completion yields higher performance than in-order completion, but 

requires more hardware than in-order completion.  Dependency logic is more 

complex with out-of-order completion, because this logic checks data 

dependencies between decoded instructions and all instructions in all pipeline 

stages.  Out-of-order completion improves the performance of long latency 

operations such as loads or floating-point operations. 

 

Out-of-order issue with out-of-order completion 

With in-order issue, the processor stops decoding whenever a decoded instruction 

creates conflict or dependency on the instruction in the pipeline.  To be able to 

look ahead beyond the instruction with conflict or dependency, the processor 

must isolate the decoder from the execution stage, so that it continues to decode 

instruction regardless of whether they can be executed immediately.  This is 

accomplished by a buffer between the decode and execute stages, called an 

instruction window.  Instructions are issued from the window without regarding 

their program order but it is required that the program must behaves correctly. 

 
   Decode Window              Execution        Writeback      clock 

 
i1 i2          1 

i3 i4  i1,i2  i1 i2     2 

i3 i4  i3,i4  i1  i3  i2  3 

 i4  i4,i5,i6  i6 i4  i1 i3 4 

i5 i6  i5   i5   i4 i6 5 

 i6        i5  6 

 

Figure 7.6  a superscalar with out-of-order issue and out-of-order completion 

 

The instruction window is not an addition pipeline stage.  It is a buffer that keeps 

information about instructions to be issued.  The figure 7.6 shows that the 

processor discovers an independent instruction i6 and issues it out-of-order with 

i4.  The total time is reduced to six cycles. 

 

Superpipeline 

In a fully-pipeline operation, one result will be produced every clock cycle.  

Therefore the cycle-per-instruction is one.  To divide pipeline into more stages 

will result in a superpipeline.  In a superpipelined processor, the stages are 

divided into substages [JOU89a].  The substages are clocked at a higher 
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frequency than the major stages.  The processor can initiate an operation at each 

substage.  This effectively reduces the processor cycle time.   A superpipeline 

processor takes longer to generate all results than the superscalar processor for a 

given set of operations.  On the other hand, some simple operations in the 

superscalar processor take a full cycle whereas the superpipelined processor can 

complete these operations sooner.  For example, the superpipelined processor 

knows the result of the branch instruction sooner than the superscalar processor, 

thus reduces the impact of the control hazard.  The superpipelining is appropriate 

when the cost of duplicating resources is high and the ability to control clock 

skew is good (as it is susceptible to clock skew).  It is also appropriate for 

implementing a very high speed technology.  Superpipelining presents no new 

design problems over pipelined processors. 

 

Very long instruction word 

A superscalar processor uses dynamic scheduling, e.g. the hardware controls the 

issue of instruction dynamically. For static scheduling, the very long instruction 

word (VLIW) architecture [FIS83] depends on a compiler to schedule concurrent 

instructions and rearranging them into a long instruction word [ELL87], typically 

120-200 bits.  A single instruction specifies more than one concurrent operation.   

 

A VLIW processor can be visualised as a processor without instructions, just a 

processor that directly controls the functional units from its bit-pattern similar to 

the level of microprogram.  A compiler performs scheduling of parallel 

execution. Since hardware can have multiple functional units we can schedule as 

many of them to execute concurrently. The limitation is on instruction 

parallelism. A basic block is defined to contain a sequence of code without 

branching, i.e. a straight line code.  The number of instruction in a basic block is 

average about 10 lines of assembly. The number of instruction in a basic block 

must be enough to sustain parallel execution of functional units. One simple 

technique to increase the number of instruction in a basic block is loop unrolling. 

More advance technique required inter-block analysis, so called "trace 

scheduling". Trace scheduling is done by analysing the sequence of instruction 

executed.  Trace scheduling will be discussed in the next section. 

 

Suppose a VLIW processor has one load/store unit, two integer units and one 

branch unit. Assume the load/store unit can issue the next instruction before the 

first instruction is completed.  The load/store delay is 1 cycle.  Figure 7.7 shows 

scheduling of the code for matrix multiply on the VLIW processor. 
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clk load-store integer1 integer2 branch 

1 ld1 a ik 0(R ba + R ik)     

2 ld2 b kj 0(R bb + R kj)     

3 ld10 a2 ik 1(R ba + R ik)     

4 ld11 b2 kj 1(R bb + R kj)  mul3 R t a ik b kj    

5   add4 c ij c ij R t  add5 R ik R ik 1   

6   cmp7 R3 R ik R end   mul12 R2 t  a2 ik  b2 kj   

7   add6 R kj R kj N  add13 c ij c ij R2 t  jnz8  R3 

8 st9 0(R bc + R ij) c ij     

 

Figure 7.7  scheduling the matrix multiply code in a VLIW processor 

 

To avoid data hazard, the operands a ik, b kj at the instruction ld10, ld11, mul12 are 

renamed to a2 ik, b2 kj . This program takes 7/2 = 4.5 clocks per element assuming 

no branch delay.  Compare this result to the 7 clocks per element achieved by the 

software loop unrolling. 

 

Note on the use of flags 

 

We did not use flags for conditional branch as the flags are "global" and in the 

concurrent issue of instructions it is very difficult predict the effect on flags.  The 

instruction that sets flags and the instruction that tests the flag may not be easy to 

recognise when instruction scheduling "rearrange" the order of execution.  One 

way to solve this problem is to make the setting and testing "local" by using a 

register to store the result, for example, the instruction "cmp r1 r2 r3" 

compares r2 and r3 and stores the result {1, 0, 1} in r1 if r2 < r3, r2 = r3, r2 > r3 

respectively.  The conditional branch instruction takes the condition from a 

register, for example, "jnz r1 ads" means jump if r1 is not zero.  This will 

avoid the conflict of using global flags by concurrent instructions and facilitate 

the instruction scheduling. 

 

Trace scheduling 

Trace scheduling extends loop unrolling with a technique for finding parallelism 

across conditional branches.  It is consisted of two steps: trace selection and trace 

compaction. Trace selection finds the sequence, called "trace", to be put together. 

Loop unrolling is used to generate a long trace. Trace compaction packages the 

trace into a small number of wide instructions. There are two consideration when 

perform trace scheduling: 1) data dependency, 2) branch points. Data dependency 

forces partial order on operations and branch points impose constraint on moving 

code across the branches. Assume the following code:  
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1 a[i] = ...  
2 if cond  
3 then b[i] = ...  
4 else d ...  
5 c[i] = ... 

 

Trace selection selects the sequence 1,2,3,5 as the probability of the branch to be 

taken is higher. The branch point 4 is called branch "out" of the trace and the 

branch from 4 to 5 is called branch "into" the trace.  

 

Trace compaction tries to move 3 and 5 to the point before the branch 3, so that 

these operations can be packed into a wide instruction. In moving 3, the code in 4 

will be affected if it used b[], since moving 3 will change the value of b[]. 

Therefore, to move 3, 4 must not read 3. To move 5, c[] must be moved over 4, 

as 4 flow "into" the trace. This can be done by copy 5 but the check must be done 

similar to b[] to make sure the code can be moved. If 5 can be moved and the 

branch "out" is taken, 5 will be performed twice. This incurs penalty.  

 

Loop unrolling, and trace scheduling aim at increasing the amount of instruction 

level parallelism that can be exploited by a processor issuing more than one 

instruction on every clock cycle. 

 

Speculative Execution 

Another technique to schedule instructions across branch is to execute the 

instructions "speculatively", i.e. the instructions are issued and executed but may 

not be "committed" to write their results. The results is committed, i.e. written 

back to registers, after the outcome of the condition in the branch is known. 

Speculative execution can improve the performance given that the resources are 

adequate.  See the following example:  

 
if cond == true  

then a = b + 1  

else a = c + 1  

In normal execution 
test cond  

jump if false :2  

a = b + 1  

jump :3  

:2  a = c + 1  

:3  continue  



137 

 

In speculative execution 
test cond  

a = b + 1 || a = c + 1  

continue  

 

Both instructions; a = b + 1, a = c + 1, are executed speculatively if 

enough resources are available (functional units) but only one of them will be 

"committed" to write their results. The other result will be ignored depends on the 

result of the conditional test.  

 

One mechanism that is used in performing speculation is "predicate". Each 

instruction is tagged with a predicate field. This predicate depends on the 

conditional test and determines whether the current instruction will be committed 

or not. For the instructions that are issued concurrently, their predicates will be 

mutually exclusive, only one of them can be true. From the previous example:  

 

Using predicate  
test cond => p1, p2  

p1: a = b + 1 || p2: a = c + 1  

continue  

 

p1, p2 are the predicates which depend on the result of the conditional test. 

They are mutually exclusive, only one of them can be true. The instructions a = 

b + 1, a = c + 1 are tagged with p1 and p2 respectively. a = b + 1 and  

b = c + 1 are executed concurrently but only one of them will write their 

results depends on whether p1 is true of p2 is true. Only one of the result will be 

written back to the register.  

 

For load/store instructions, if execute speculatively may result in an exception. 

For example, load before the address of operand is known to be valid or a cache 

miss occurs. To allow load/store instruction to be executed speculatively, their 

execution are separated into two phases. The first phase load/store is executed 

without delivering the exception and the second phase when the result is needed 

the exception is delivered. See the following example:  

 
if cond == true then a = b[i]  
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In normal execution 
test cond  

jump if false :2  

a = b[i]  

:2  continue  

 

a = b[i] can be executed speculatively before the condition is known. This can 

be accomplished by "hoising" the a = b[i] up before the test. This will hide the 

latency of memory access because the instruction is issued much earlier than the 

result is needed.  

 

In speculative execution 
load.s r = b[i]  

test cond => p1  

p1: check.s a = r  

 

load.s gets b[i] without deliver an exception. An exception that will occur in 

case i is invalid or b[i] causes a cache miss is suppressed. When the result of 

load is needed check.s  a = r  is executed and this instruction will delivered 

the exception (if pending). If the exception occurs the processor will call a trap to 

operating system to bring in a new page in the virtual memory or a line of cache 

is refreshed.  

 

Example  The following example shows how speculative can improve the 

performance of a hard to schedule "pointer chasing" code. An associative list is a 

data structure that stores "key" and "value". To get a value of a key, the list has to 

be traversed and the key field compared until the required "key" is found or the 

end of list is encountered (Fig. 7.8). 

 
(("house" 1000) ("car" 200) ("table" 30))  

 

The program to the value of a key is as follows. 

 
1  for ( fp = lenv; fp != NIL ; fp = cdr(fp) )  

2    for ( ep = car(fp) ; ep != NIL ; ep = cdr(ep) )  

3      if ( sym == car(car(ep)) )  

4         return ( cdr(car(ep)) )  
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car 200

table 30

house 1000
 

Figure 7.8 the example data structure in dot pair.  

 

The control flow of the above program is as follows. 

 
line 1 :1  fp = cdr(fp)  

line 2 :2  if ( sym == car(car(ep)) ) goto :3  

line 3  if ep != NIL goto :2  

line 4 if fp != NIL goto :1  

line 5 exit  

line 6 :3  return  

 

The loop of interest is the inner loop (line 3). Induction variable ep is 

dereferenced twice and compared to the value sym. The two loads x = car(ep) 

and y = car(x) are in the loop's critical path. Speculation is used to start the 

loads as soon as possible. A compiler can schedule the loads as soon as ep is 

known, but before the processor determines whether it is a valid pointer.  

 

Suppose a hypothetical machine has five functional units, all the units can 

execute any instruction. Only two units have access to the first-level data cache 

which has the one clock latency. This allows two units to issue load and store 

instructions.  

 

 
clock unit 1 unit 2 unit 3 

1  ld ep1     

2  ep1 == NIL => p1   ld.s car(ep1)   p1: br nxt_fp  

3  check.s   ld x = car(car(ep1))   

4  sym == x => p2   p2: br return   br nxt_ep  

 

Figure 7.9 Schedule of the first iteration  
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The ld.s in cycle 2 is speculative if(sym == car(car(ep)), this is before 

the processor determines whether or not ep1 is a valid pointer. It is known at the 

cycle 3 when the check corresponding to ld.s car(ep1) can be executed. 

Once the processor loads car(ep1) in cycle two, it can load car(car(ep1)) 

in cycle three. In cycle four, the processor can check sym == x. This schedule 

shows that one loop iteration can be executed in four cycles without any stall.  

 

To use the resource more efficiently, the loop can be unrolled. The inner loop is 

unrolled twice.  

 

 
clk unit1 unit2 unit3 unit4 unit5 

0 ld ep1     

1 ld.s car(ep1)  ep == NIL => p1  ld.s ep2 = 
cdr(ep1)  

p1: br nxt_fp   

2 check.s  ld car(car(ep1))  ld.s car(ep2)  ep2 == NIL => 
p3  

 

3 cmp == sym => 
p2  

ld.s car(car(ep2))  p2: br return  p3: br nxt_fp   

4 check.s  ld nxt_ep1 
cdr(ep2)  

cmp == sym => 
p4  

p4: br return  br nxt_ep  

 

Figure 7.10 Schedule of the two iterations 

 

The loop's second iteration provides an example of the use of control speculation. 

In cycle one, the processor loads the next value of ep2 speculatively  that is, 

before it determines if the first iteration's induction variable is valid. The two 

loads depend on ep2 as well as the speculative loads of car(ep2) in cycle two 

and of car(car(ep2)) in cycle three. The program branches out in cycle three 

if the ep2 == NIL, so all the instructions using ep2 before that point are 

speculative. If any speculative load in a chain triggers an exception, the last load 

will deliver an exception to check.s. The processor can execute two loads in 

parallel in cycle one and two. Two iterations of loop can be executed in 4 cycles 

(the first ld ep1 is considered to be in the outer loop). Without control 

speculation, the static schedule of this code would take six cycles for two 

iterations of this loop. The loads dereferrencing the variable ep1 can be started 

before ep1 has been checked against NIL, similarly for ep2.  
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Pipeline in some real machines 

PowerPC601 

 

Figure 7.11   PowerPC601 pipeline 

 

PowerPC 601 has many functional units which have different pipeline:  

 Dispatch unit holds instruction buffer  

 Branch processing unit handles all branch instructions  

 Floating-point unit  

 Integer unit  
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Branch inst. Fetch Dispatch 

Decode 
Execute 
Predict  

    

Integer inst. Fetch Dispatch 
Decode 

Execute Writeback    

Load-Store Fetch Dispatch 
Decode 

Ads Gen Cache Writeback   

FP inst.  Fetch Dispatch  Decode Execute1 Execute2 Writeback  

 

PowerPC601 can issue branch and floating-point instructions out of order. 

Branch processing employs fixed rule to reduce stall cycle as follows.  

 

1. Scan the dispatch buffer (8 deep) for branch instructions. Target address 

are generated.  

2. Determine the outcome of conditional branches :  

a. will be taken: for unconditional and for known condition code and 

indicate branching  

b. will not be taken: for unconditional and for known condition code 

and indicate no branching  

c. outcome cannot yet be determine: for backward branch guess taken, 

for forward branch guess not taken. 

 

The designer did not use branch history for the reason that it will achieve 

minimum payoff.  

 

Pentium  

The Pentium has 5 stages pipeline , two integer units  

1. Prefetch  

2. Decode stage 1 (instruction pairing)  

3. Decode stage 2 (address generation)  

4. Execute  

5. Writeback  
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Figure 7.12  Pentium pipeline 

 

Instruction Pairing rule  

 

The instructions that can be issued together must meet the following constraints: 

1. both instructions are simple  

2. no RAW, WAW  

3. no displacement and immediate operand  

 

The simple instructions are instructions that are in the following groups: mov, 
alu r r, shift, inc, dec, pop, lea, jump, call, jump 

conditional near .  Pentium processor uses dynamic branch prediction 

scheme.  A branch target buffer (BTB) stores branch destination address 

associated with the current branch instruction. Once the instruction is executed 

the history is updated. The BTB is 4-way set associative cache with 256 lines. 

Each entry uses the address of branch instruction as a tag. The value field 

contains the branch destination address for the last time this branch was taken 

and a two-bit history field.  
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Further reading  
 

The "pointer chasing" example comes from [DUL98].  For a more detailed 

description of Intel IA64 use of speculative see [DUL98].  For the impact of 

compiler technology see [HWU95].  For the use of compredicate in branch 

prediction see [MAH94]. The historical aspect of VLIW begins from ELI-512 

[FIS83].  
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Chapter 8 

Vector machines 

 

 

This chapter discusses one of the most important class of computer architecture, 

vector machines.  A vector machine is a high performance machine suitable for 

vector computation that is prevalent in numerical problems.  It has two key 

qualities of efficiency and wide applicability.  Most vector machines have a 

pipelined structure and support a streaming mode of data flow through a pipeline.  

They also support fully parallel operations of multiple pipelines.  This chapter 

describes the general architecture of vector processors and the algorithm to match 

the architecture to the problems to obtain efficient processing over large classes 

of computations. 

 

What is a vector machine 

What more can be done beside pipelining and multiple issues of instructions to 

increase a processor performance?  There are two factors in performance 

limitation:  

1. Clock cycle time  the clock cycle time can be decreased by making the 

pipelines deeper but very deep pipelining can eventually slow down a 

processor. A superscalar design needs complex control unit to detect data 

hazard and to solve control hazard. This also limits the clock cycle time.  

2. Instruction fetch and decode rate  this prevents fetching and issuing of 

more than a few instructions per clock cycle.  

 

The cycle time is also limited by the cycle time of the control unit. Scheduling 

the pipeline and superscalar machines needs complex control units to detect data 

hazards and to reduce control hazards. It is just as difficult to schedule a pipeline 

that in n times deeper as it is to schedule a machine that issues n instructions per 

clock cycle.  
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Vector processors provide high-level operations that work on vectors  linear 

array of numbers. Vector operations have several important properties that solve 

most of the problems above:  

1. The computation of each result is independent of the computation of 

previous results, allowing a very deep pipeline without generating any 

data hazards. Essentially, the absence of data hazards was determined by 

the compiler or programmer.  

2. A single vector instruction is equivalent to executing an entire loop. 

Thus, the instruction bandwidth requirement is reduced.  

3. Because an entire loop is replaced by a vector instruction whose behavior 

is predetermined, control hazards that would normally arise from the 

loop branch are nonexistent.  

 

For these reasons, vector operations can be made faster than a sequence of scalar 

operations on the same number of data items, and designers are motivated to 

include vector units if the applications domain can use them frequently.  

 

The primary components of a vector processor are: vector registers each must 

have two read ports and one write port, vector functional units that can start a 

new operation on every clock cycle, vector load/store unit that words can be 

moved between the vector registers and memory with a bandwidth of one word 

per clock cycle after an initial latency, a set of scalar registers provide data as 

input to the vector register functional units, as well as compute addresses to pass 

to the vector load/store unit.  

(vector reg-reg  CRAY, vector mem-mem CDC) 

 

Vector operations 

The basic idea of vector processors is to combine two vectors, element by 

element, to produce output vector. If A, B, C are vectors with n elements, a 

vector processor can perform as one instruction, C = A + B, which is interpreted 

as  

 
for i = 1 to n  
  c(i) = a(i) + b(i)  
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Figure 8.1  CRAY-1 vector computer 

 

 

Most vector machines have a pipeline structure. Multiple pipelines may also be 

provided to increase performance. The price performance ratio of vector 

computers can be one to two order of magnitude increased throughput for vector 

computations when compared to serial computers of equal cost. But it is limited 

to the problems that fit the architecture, i.e. the problems that can be structured as 

a sequence of vector operations.  

 

Memory bandwidth 

Vector machines need large memory bandwidth to sustain the high data rate 

required to feed pipelined functional units. In the above example, the memory 

system must supply one element of A and B on every clock cycle. The ALU 

produces one output during each clock cycle. The difficulty is in designing a 

memory system to sustain a continuous flow of data from memory to ALU and 

the return flow of results from ALU to memory. Therefore for the C = A + B, the 

memory system must has at least three times the bandwidth of a conventional 

memory system. We can ignore the bandwidth for instruction fetches as a single 

vector operation can initiate a long vector operation. Therefore the bandwidth 

required for instruction fetches is negligible as compared to the bandwidth of 

instruction fetches in a conventional machine.  
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Two major approaches in designing memory system for vector machines:  

1. Using independent memory modules in main memory to support 

concurrent access to independent data.  Interleaving memory increases 

the memory bandwidth by parallely access every memory banks.  

2. Using intermediate high-speed memory.  

 

Interleaving memory increases memory bandwidth by parallel accessing every 

memory banks. Distribution of data in multi memory modules is important for 

the performance. Access to the same memory module will cause load/store stall.   

The figure shows eight memory modules.  They provide a system with eight 

times the bandwidth of a single module.  Each of three data streams has an 

independent path to the memory system so that each stream can be active 

simultaneously, provided that one module serves only one path at a time. 

 
M0---|  
M1---| stream A  
M2---|----------->|  
M3---| stream B   |-- Pipeline Adder --|  
M4---|----------->|                    |  
M5---| stream C                        |  
M6---|<--------------------------------|  
M7---|  

Figure 8.2  Eight 3-port memory modules sustain two reads one write at every 
clock.  
 

We will illustrate the use of interleaving memory to implement vector arithmetic, 

C = A + B.  Assume a memory cycle takes two clock cycles.  The bandwidth 

required to service the pipeline adder is at least six times the bandwidth of a 

single memory module.  The vectors A, B, and C are laid out in the memory so 

that they start in modules M0, M2, and M4 respectively (Fig 8.3).  Their 

successive elements lie in successive memories. 

 
M0 a0 b6 c4  
M1 a1 b7 c5  
M2 a2 b0 c6  
M3 a3 b1 c7  
M4 a4 b2 c0  
M5 a5 b3 c1  
M6 a6 b4 c2  
M7 a7 b5 c3  

Figure 8.3  physical layout of three vectors in the memory  
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pipe4                     0   1   2   3   4   5   6   7  
pipe3                 0   1   2   3   4   5   6   7  
pipe2             0   1   2   3   4   5   6   7  
pipe1         0   1   2   3   4   5   6   7  
M7                        RB5 RB5 RA7 RA7 W3  W3  
M6                    RB4 RB4 RA6 RA6 W2  W2  
M5                RB3 RB3 RA5 RA5 W1  W1  
M4            RB2 RB2 RA4 RA4 W0  W0  
M3        RB1 RB1 RA3 RA3  
M2    RB0 RB0 RA2 RA2                                 W6  
M1        RA1 RA1                 RB7 RB7         W5  W5  
M0    RA0 RA0                 RB6 RB6         W4  W4  
clock 0   1   2   3   4   5   6   7   8   9   10  11  12  

Figure 8.4  timing diagram for vector addition in pipeline(4 stages)  
R = read, W = write, A,B input vectors  

 

The figure 8.4 shows the vector addition in a vector processor with eight memory 

modules and 4-stage pipelined arithmetic unit.  The timing diagram shows the 

flow of data through eight memory modules.  The memory latency is 2 clocks 

both reading and writing.  Reading A0 of module M0 at clock 0 will enable the 

data to be available at the pipeline unit at clock 2. Writing the result W0 to the 

module M4 at clock 6 will finish at clock 8. 

 

Two vectors are allocated to modules so that no conflicts occur. At clock 0, M0 

and M2 initiate READs to the first elements of vectors A and B. These elements 

appear at the pipeline inputs at clock 2, and the corresponding output appears at 

the end of clock 5. At clock 1, M1 and M3 initiate READs to the second 

elements of the input vectors. At clock 5, the first output emerges from the ALU 

pipeline, the next clock, clock 6, M5 and M6 are busy reading A5 and A6. M5 

delivers A5 at the beginning of clock 7 and M6 delivers A6 at the beginning of 

clock 8. At clock 6, M4 initiates WRITE to put away C0, M0 initiates READ of 

B6. Note how the arrangement of timing enables all operations to proceed 

without a collision. In reality, the pipeline is never as well behaved as ideal 

examples are.  

 

At the peak rate of data access, at the clock no. 7, there are two memory modules 

still free.  This indicates that there is surplus memory bandwidth.  The number of 

memory module can be reduced to 6 modules to eliminate this surplus.  Now, 

observe that at the clock 7 all memory bandwidth is used (Fig. 8.5). 
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pipe4                     0   1   2   3   4   5   6   7  
pipe3                 0   1   2   3   4   5   6   7  
pipe2             0   1   2   3   4   5   6   7  
pipe1         0   1   2   3   4   5   6   7  
M5                RB3 RB3 RA5 RA5 W1  W1  
M4            RB2 RB2 RA4 RA4 W0  W0                  W6   
M3        RB1 RB1 RA3 RA3         RB7 RB7         W5  W5  
M2    RB0 RB0 RA2 RA2         RB6 RB6         W4  W4  
M1        RA1 RA1         RB5 RB5 RA7 RA7 W3  W3    
M0    RA0 RA0         RB4 RB4 RA6 RA6 W2  W2  
clock 0   1   2   3   4   5   6   7   8   9   10  11  12  

Figure 8.5  timing diagram for vector addition with 6 memory modules  
R = read, W = write, A,B input vectors  

 

S1 with vector units 

To illustrate the performance of a vector processor over a conventional processor, 

we examine a concrete example.  For a vector processor, we extend S1 

architecture to include vector facilities.  The machine is called S1v.  The S1v is a 

32-bit processor, it includes a vector load/store unit, 8 vector registers, and usual 

vector functional units: FP add, FP mul, FP div, plus an integer unit and a logical 

unit.  The vector load/store unit provides vector registers with one input on every 

clock cycle.  Each vector register contains 64 elements.  The vector instructions 

have 3-operand format. 

 

For a conventional processor, we extend the simple S1 to include floating-point 

facilities.  The extended S1 has f0.. f7 as 32-bit floating-point registers, it also 

has immediate addressing mode and a reasonable instruction set to perform 

floating-point arithmetic. This machine is called S1x.  

 

Take typical vector problem,  

Y = a * X + Y 

where Y, X, are vectors a is scalar This expression is called SAXPY or DAXPY 

(single-precision or double-precision A*X Plus Y) loop that forms the inner loop 

of the Linpack benchmark.  Linpack is a collection of linear algebra routines; the 

Gaussian elimination portion of Linpack is the segment used as benchmark. 

SAXPY represents a small piece of the SV elimination code, though it takes most 

of the time in the benchmark.  
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Assume that the number of elements, or length, of a vector register matches the 

length of the vector operation we are interested in. Starting addresss of X and Y 

are in rx, ry. 

 

DAXPY in S1x  

notation for the assembly code: op dest, source  

ld f0, a  
mov r4, rx  
add r4,#512  ; last address to load  

loop: ld f2,(rx)  ; load X(i)  
fmul f2,f0  ; a * X(i)  
ld f4,(ry) ; load Y(i)  
fadd f4,f2  ; a * X(i) + Y(i)  
st (ry),f4  ; store into Y(i)  
add rx,#8  ; increment index to X  
add ry,#8  ; increment index to Y  
cmp r4,rx  ; compute bound  
jnz loop  ; check if done  

DAXPY in S1v  

ld f0,a  ; load scalar a  
vld v1,rx  ; load vector X  
vmul v2,f0,v1  ; vector-scalar mul v2=f0*v1  
vld v3,ry  ; load vector Y  
vadd v4,v2,v3  ; vector add v4 = v2 + v3  
vst v4,ry  ; store the result  

 

Comparing the two code segments it is easy to see that the vector machine 

greatly reduces the dynamic instruction bandwidth, S1v executing only 6 

instructions versus almost 600 for S1x to compute 64 element vectors. Another 

important difference is the frequency of pipeline interlocks. In S1x every fadd 

must wait for fmul and every store must wait for the fadd. On the vector 

machine, each vector instruction operates on all the vector elements 

independently. Thus, pipeline stalls are required only once per vector operation, 

rather than once per vector element. In the example, the pipeline stall on S1x will 

be about 64 times higher than on S1v.  

 

Example calculation of the clock used and the number of instruction fetched and 

executed for both machines, assume every instruction take 1 clock to execute.  
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The time taken to calculate DAXPY for 64 elements :  

S1x : 3 + (9  64) = 579 clocks  

S1v : 1 + (5  64) = 321 clocks  

The number of instruction fetched and executed :  

S1x : 579 instructions  

S1v : 6 instructions  

 

The execution time of S1v can be greatly reduced by using the technique called 

"chaining". Instead of waiting for a vector instruction to complete, the instruction 

in the vector operation of the next instruction can be started as soon as the first 

element of the previous instruction finished. For this example, assume all vector 

instructions can be chained, it will take 1 + 5 + 64 = 70 clocks to complete.  

 

How to program a vector machine 

To use the vector unit, the program must be "vectorised", i.e. transform the loop 

into vector operations.  If VL is vector length of the machine  

for i = 1 to VL 

  c(i) = a(i) + b(i)  

can be transformed into one vector operation  

vadd v0 v1 v2  

where v0 holds c, v1 holds a, v2 holds b  

 

There are several consideration for programming vector machines such as vector 

length and vector stride because the data length does not necessary match the 

vector length of the machine.  

 

Vector length 

When the data lenght is not equal to vector length of a machine, the loop can be 

transformed into loop of vector operations, each of maximum length plus one 

loop for the rest of element. This is called "strip-mine". Let VLR be the vector 

length register that holds the number of element in a vector operation, MVL be 

the maximum length of vector unit (VLR  MVL).  The following program can 

be strip-mined  

 

for i = 1 to n  
  y(i) = a * x(i) + y(i)  
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to  
low = 1  
VL = ( n mod MVL )  
for j = 0 to ( n / MVL )  
  for i = low to low + VL -1  
    y(i) = a * x(i) + y(i)  
  low = low + VL  
  VL = MVL  

 

The inner loop (for i = .. ) can be vectorised with length VL. VL is equal to 

(n mod MVL) the first round through the loop, and becomes MVL for the rest. 

The last line, VL = MVL, sets VL to the maximum vector length for the second 

round the loop and the rest.  The variable low points to the beginning of the data 

block.  

 

low

i  =    0        1        2          . . .      n/MVL

MVL
n mod MVL

MVL

 

Figure 8.6  strip mining a vector 

 

Vector stride 

A vector stride is the distance separate elements that are to be merge into a single 

vector.  If the vector stride is not equal to one, it can caused slow down in the 

memory access.  A vector register is used to load non-unit stride vector and 

subsequently access to the vector register will have adjacent vector elements.  

The following program does matrix multiply. 

 

for i = 1 to 100  
  for j = 1 to 100  
    a(i,j) = 0.0  
    for k = 1 to 100  
      a(i,j) = a(i,j) + b(i,k) * c(k,j)  
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This program can be vectorised to multiply each row of b by each column of c. 

The inner loop is strip-mined with k. How adjacent elements in b and c are 

addressed? 

 

Example A 100  100 matrix, for row major order b(i,j) is adjacent to b(i,j+1)  

(1,1) (1,2) ... (1,100) (2,1) (2,2) ... (2,100) ... (100,100)  

and column major order b(i,j) is adjacent to b(i+1,j)  

(1,1) (2,1) ... (100,1) (1,2) (2,2) ... (100,2) ... (100,100)  

For row major order c has a stride of 100, b has a stride of one.  

 

Once a vector is loaded into a vector register it had logically adjacent elements. 

This enables the machine to handle the non-unit stride such as c above. Vector 

load for non unit stride is complicate and can caused memory bank conflict.  

 

Loop - carried dependency 

Not all the loops can be vectorised.  The following program is not vectorisable  

 

1 for i = 1 to 100  
2   a(i+1) = a(i) + b(i)  
3   b(i+1) = b(i) + a(i+1)  

 

This is because in the loop the computation used the value of an earlier iteration. 

a(i+1) = a(i). Also line 3 has RAW on line 2 for a(i+1) 

  

Improving performance of a vector machine 

This section describes the techniques to improve the performance of a vector 

machine.  The first technique, "chaining", improves the speed of running a 

sequence of vector operations.  Other technique introduces transformation to 

change loops into vector operations.  

 

Chaining 

It is invented by Seymour Cray and introduced in CRAY-1. When vector 

operations are running in sequence, the first result once completed is immediately 

make available to the next operation. Chaining allows vector operations to run in 
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parallel. A sustained rate of more than one operations per clock can be achieved 

even when the operations are dependent.  Consider a vector sequence  

vmul v1 v2 v3  
vadd v4 v1 v5 

 

 

 

 

 

 

 

 

 

Figure 8.7  Timings for a sequence of dependent vector operations 

 

After the first result of v2  v3 appears, the vector addition vadd can start 

immediately without waiting for the last result from vmul.  This allows two 

vector  instructions to proceed concurrently and finish sooner. 

 

Conditional statement 

For real programs the level of vectorisation is not very high.  The ability to 

vectorise is influenced by the algorithms used and how the programs were 

written.  It also depends on the ability of the compiler. To get best performance 

from a vector machine, a significant modification or a rewrite of a program is 

needed.  

 

When there are conditionals inside loops or the matrix is sparsed, programs can 

not be vectorised using the techniques we discussed so far.   The sparse matrix is 

stored in some compacted form which elements are accessed indirectly.  The 

following loop can not be vectorised. 

for i = 1 to 64  
  if (a(i) != 0) then a(i) = a(i) - b(i) 

The inner loop can be vectorised if we can selectively run it for the element 

which a(i) != 0. This can be achieved using a vector mask. The vector mask 

can be loaded from the vector test instruction and any vector operation will 

unchained    7          64          6        64 

vmul                  vadd 

total = 141 

vmul 

chained        7           64 

vadd 

6           64 
total = 77 
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operate on the element whose the corresponding entry in the vector mask is 1. 

The above loop can be vectorised using vector mask as follows: ra, rb are the 

starting address of a, b.  

lv v1 ra  ; load vector a into v1  
lv v2 rb  ; load vector b  
ld f0 #0  ; f0 = 0  
vsnes f0 v1 ; set VM to 1 if v1(i) != 0  
vsub v1 v1 v2 ; subtract under vector mask  
cvm  ; set vector mask to all 1  
sv ra v1  ; store the result to a 

This loop contains sparse matrix  

for i =1 to n  
  a(k(i)) = a(k(i)) + c(m(i)) 

The sum of sparse vector on array a and c using index vector k and m to 

designate the non zero elements of a and c (a and c must have the same number 

of non zero elements -- n ).  

 

For a sparse matrix, the supporting operation is called "scatter-gather". A gather 

operation takes an index vector and fetches the vector whose elements are at the 

addresses given by base_address + offsets in the index vector. After completing 

the computation, the vector can be store in expanded form using a scatter store 

with the same index vector. Suppose we have the instruction lvi (load vector 

indexed) and svi (store vector indexed), ra, rc, rk and rm contain the 

starting address of vector a, c, k, m. The inner loop of the above program can 

be vectorised as follows. 

 

lv vk rk  ; load k  
lvi va (ra + vk ) ; load a ( k(i) )  
lv vm rm  ; load m  
lvi vc (rc + vm ) ; load c ( m(i) )  
vadd va va vc  ; add  
svi (ra + vk ) va ; store a( k(i) ) 

 

The load indexed vector instruction is a generalisation of the load indexed scalar 

by using a vector register as an index register. 
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Vector reduction 

Reduction is a loop that reduces an array to a single value by repeated application 

of an operation. For example a dot product:  

 

dot = 0.0  
for i = 1 to 64  
  dot = dot + a(i) * b(i) 

 

This loop has a loop-carried dependency on dot and cannot be vectorised. If we 

split the loop to separate out the vectorisable part:  

 

for i = 1 to 64  
  dot(i) = a(i) * b(i)  
for i = 2 to 64  
  dot(1) = dot(1) + dot(i) 

 

The variable dot has been expanded into a vector, this is called "scalar 

expansion".  

 

Another technique is called "recursive doubling". A loop with recurrence is 

transformed using adding sequences of progressively shorter vectors -- two 32- 

element vectors and then two 16-element vectors, and so on. It is faster than 

doing all operations in scalar mode. An example of doing the second loop above 

with recursive doubling :  

len = 32  
for j = 1 to 6  
  for i = 1 to len  
    dot(i) = dot(i) + dot( i + len )  
  len = len / 2 

When the loop is done the sum is in dot(1).  

 

Performance of vector machines 

The time to complete a vector operation depends on  

1. vector start up time  

2. initiation rate  
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Vector start up time is the pipeline latency. It depends on the depth of the 

pipeline of that functional unit. Initiation rate is the time per result once a vector 

operation is running, usually one result per clock for a fully pipeline functional 

unit. The time to complete a vector operation on vector of length n is  

start up time + n   initiation rate 

 

Example Start up time for a vector multiply is 10 clocks. Initiation rate is one per 

clock. What is the number of clock per result for a 64 element vector ?  

clock per result = total time / vector length  

= (start up time + 64  initiation rate ) / 64  

= 1.16 clock per result 

What determine the start up time and initiation rate 

Let consider register to register operation (therefore ignore memory latency) 

 

start up time = depth of FU pipe, or the time to get the first result 

initiation rate = rate that a FU can accept operands, for fully pipe, one per clock. 

 

Pipeline depth is determined by type of operation and clock cycle time.  

 

Example Cray -1 has the following vector unit characteristic:  

 

start up time  

FP add  6  

FP mul  7  

FP div  20  

FP load  12  

stall 4 clocks on RAW 

 

Sustained rate is the time per element for a set of vector operations.  

 

Example what is the sustained rate for the following sequence of instruction. 

Assume a vector of length 64 ?  

vmul v1 v2 v3  
vadd v4 v5 v6  



161 

We can chart the time line :  

 

 start at complete at 
vmul 0 7+64 = 71 
vadd 1 1+6+64 = 71 

 

Because of independent vector operations, both instruction run concurrently most 

of the time. Sustained rate is one element per clock, this sequence executes 128 

FLOPS in 71 clocks = 1.8 FLOPS per clock.  

 

A simple model of vector performance 

The equation for execution time of a vector loop with n elements, Tn. [HEN96] 

 

Tn = Tbase +   n / MVL    ( Tloop + Tstart ) + n  Telement 

 

Tn total running time  

Telement time to process one element  

Tloop overhead for scalar code to strip-mine  

Tstart vector start up time  

Tbase overhead to compute starting address and set up vector control, occur 

once for one vector operation.  

 

There are start-up overhead Tstart and the overhead of executing the strip-mined 

loop Tloop.  The strip-mining overhead arises from the need to reinitiate the vector 

sequence and set the VL.  The values Tstart , Tloop and Telement are compiler and 

processor dependent. 

 

Example For CRAY-1 Tbase 10 clocks, Tloop 15 clocks. What is the total running 

time for DAXPY using CRAY-1 with 64 element vectors?  

 

DAXPY start at complete at 
lv v1 rx 0 12 + 64 = 76 
vmul v2 s1 v1 12 + 1 = 13 13 + 7 + 64 = 84 
lv v3 ry 76 + 1 = 77 7 7 + 12 + 64 = 153 
vadd v4 v2 v3 77 + 1 + 12 = 90 90 + 6 + 64 = 163 
sv ry v4 160 + 1 + 4 = 165  165 + 12 + 64 = 241 

 

Tstart = 241  64   Telement  = 241  192 = 49 
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calculate the other way from the pipeline latency  

12 + 7 + 12 + 6 + 12 = 49  

Using MVL = 64, Tloop = 15, Tbase = 10, Telement = 3  

Tn = 10 +   n/64   (15+ 49 ) + 3 n  = 4 n + 64  

 

The sustained rate is over 4 clock cycles per iteration. 

 

The peak performance is the performance without the start-up overhead.  The 

peak performance is higher than the sustained performance.  We can calculate the 

peak performance of a vector machine by  

 

R* =  
n

lim  ( operation per iteration  clock rate / clock cycle per iteration ) 

 

R* is MFLOPS rate on infinite vector length  

 

Peak performance = number of FLOPS per iteration * clock rate / Telement  

 

Rn = number of FLOPS per iteration * clock rate / Tn 

 

Example The peak performance of CRAY-1 200MHz on DAXPY is  

 

R* =  
n

lim  ( operation per iteration   clock rate / clock cycle per iteration ) 

The numerator is independent of n  

 

R* =  (operation per iteration  clock rate ) /
n

lim (clock cycle per iteration ) 

n
lim (clock cycle per iteration ) = 

n
lim ( Tn / n ) = 

n
lim (( 4n + 64 ) / n)) = 4 

R* = 2  200 MHz / 4 = 100 MFLOPS 

 

Example The Linpack benchmark is a Gaussian elimination on a 100  100  

matrix.  The vector lengths range from 99 to 1.  A vector of length k is used k 

times.  Thus the average vector length is 66.3.  We obtain an accurate estimate 

for the performance of  DAXPY code, for 66 element vectors. 

T66 = 2  (15 + 49) + 66  3 = 326  
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assume our vector processor has 200 MHz clock  

R66 = 2   66   200 / 326 = 81 MFLOPS  

 

Final remarks 

The first vector machines were the CDC STAR-100 [HIN72] and TI ACS 

[WAT72], both announced in 1972. Both were memory-memory vector 

machines. Cray who worked on CDC 6600 and the 7600, founded Cray Research 

and introduced the CRAY-1 in 1976 [RUS78]. The CRAY-1 used a vector-

register architecture to significantly lower start-up overhead. Most importantly, 

the CRAY-1 was also the fastest scalar machine in the world at that time.  

 

CRAY-1 does not have FP units. It also used T, B register as high speed access to 

memory, similar to the use of cache memory to increase the memory bandwidth. 

However, the memory management falls into the hand of programmer. It also has 

instruction buffer, similar to instruction cache. 

 

CDC-STAR has three data streams feeding pipeline functional units similar to a 

simple vector machine. It used delay-line to distribute memory access across the 

memory banks.  

 

Notwithstanding, the vector machines, once called the supercomputer class, have 

very high scalar performance as they are built for highest possible performance 

without compromising with cost. In the real-world use for many applications they 

run very fast even though those applications rarely used vector units.  

(something about MMX and Patterson IRAM?) 
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Chapter 9 

Stack machines 

 

 

Stack machines are processors that the instruction set operate on implicit data in a 

stack structure. They were once very popular for implementing "virtual machine" 

mostly in software. It is very natural to translate a high level language, especially 

the block-based languages, so called structured languages (PASCAL, C and 

others), into these virtual machines. Stack machines can be implemented directly 

into hardware as well. It has the advantage of being quite simple and its 

executable code is very compact. This chapter explores stack machines in more 

details.  

 

The use of stacks 

A stack is a LIFO (last in first out) storage with two abstract operations: push and 

pop. Push will put an item into stack at the top. Pop retrieves an item at the top of 

stack. Because a stack is LIFO, any operation must access data item from the top. 

A stack does not need explicit addressing as it is implicit in the operators which 

use stack.  Any expression can be transformed into a postfix order and a stack can 

be use to evaluate that expression. In stack machines, the allocation and 

reclamation of the temporary space is done automatically via the stack.  

 

Calling subroutines  

The stack structure also plays an important role in the calling of subroutines (or 

function calls).  When a program transfers the control to another section of 

program, the current state of computation is saved (composed of a program 

counter, local variables, and other values). The place where the state of 

computation is saved is called "activation record". When an execution of a 

subroutine is completed, the previous state of computation is restored (this action 

is called "return" from subroutines). Local variables can also be stored as a part 

of the activation record. Because many of today programming languages are 
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structured or "block oriented" the creation and deletion of activation records 

behave like LIFO.  A stack is used to store activation records. Two pointers are 

required to keep track of the thread of control: fp  frame pointer which points to 

the current activation record and sp  the current stack pointer which points to 

the current stack area.  

 

 

Figure 9.1  an activation record  

 

Local variables can be referenced via offsets from the frame pointer.  

 

Parameter passing by stack  

When a function call is made, parameters can be passed from the caller to the 

callee by pushing them on the stack. The call to a function creates a new 

activation record. The new activation record can be arranged such that its local 

area is overlapped with the old stack area, therefore the passing parameters 

become a part of the local area of the new activation record.  The parameter 

passing occurs without the need to copy them to the new stack. (This scheme is 

very much like the register window scheme [PAT82] used in SPARC processor 

family). For example, function f calls function g(A,B). A and B are pushed and 

the call creates a new activation record ( the AR n+1 ). The previous state of 

computation (fp', sp', pc') is saved in the new activation record. As the 

new activation record overlapped the old stack, A and B are in the local area of 

the new activation record (Fig. 9.2) 
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Figure 9.2  the state of stack after a function call occurred  

 

Figure 9.2 shows the state of stack after a funcion call occurrred, pc is the current 

program pointer, pc' is the previous pc. The frame pointer links activation 

records together. The stack pointer points to the current stack which is used for 

storing temporary value of current calculation.  

 

Pure stack machines  

Accessing the local area required instructions to have "addressing" to the 

variables. This is against the spirit of implicit operand. If the local variables are 

not used, how can operands in the computation stack are accessed?  With an 

exception for the top two items all other items are difficult to get to. We need to 

be able to reorder and copy a number of items in the stack in order to use them. 

The following instructions did that:  

 

dup  duplicate TOP  

swap  swap TOP and NEXT  

rot  1,2,3 -> 3,1,2 get the third item to the top  

over  copy NEXT to TOP , 1,2 -> 2,1,2  

 

These are just some of the possible instructions. With these instructions, the need 

to access local variables by addressing them explicitly is minimised. An example 

of their use. 

Define f(X,Y) = X*X + Y*Y  
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The function f can be evaluated with the following sequence of stack-

instructions.  Assume X and Y are the top two items on computation stack when 

call f.  

dup mul  ; X*X  
swap  ; Y, X*X  
dup mul add  ; Y*Y + X*X  

 

Thinking about rearranging items on stack make it difficult to use pure stack 

instructions. Having variables avoids the reordering of items on stack because a 

variable can be accessed by using its name. However, the current compilation 

techniques can handle the ordering of stack items therefore it frees a programmer 

from this low level detail.  

 

Microarchitecture of stack machines 

A stack machine instruction set can be implemented in many ways. In stack 

machines, the general purpose registers are not necessary.  Two specialised 

registers are needed to store the state of computation: frame pointer and stack 

pointer.  The stack structure  can be either internal of external to a processor. If it 

is internal the access time is faster. The stack can be regarded, in a way, as data 

cache.  However, the size of stack varies depended on the characteristic of the 

running program.  When the stack is internal, it has a real size limit.  Therefore it 

is necessary to have a mechanism to handle the stack underflow-overflow by 

pulling and pushing the data between the stack and the main memory (called 

stack spilling).  The stack can also reside in the main memory. The number of 

stack can be more than one  Multiple stacks improve the speed of execution.  

Figure 9.3 shows a typical microarchitecture of a stack machine. 

 

To improve the speed of execution, 2 top elements on the stack can be cached 

into registers. In Fig. 9.3, the register A and B can be used for this purpose. This 

will reduce the amount of data movement in the stack because there are a large 

number of binary operations in the stack which required popping out 2 elements, 

performs operation and pushing back the result onto the stack.   
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Figure 9.3  a stack machine microarchitecture  

 

 

Example result = A op B, requires 3 data movements in the stack:  

pop A  
pop B  
op  
push result  

If the top 2 elements are cached (stored) in the register A and B. The data 

movement will be reduced to one. 

A = A op B (access registers)  
pop B  

By caching some elements to registers, the registers are considered a part of the 

stack. Other operations can be modified to work with this scheme.  

 

Push x performs  

push B  
B = A  
A = x  

and Pop x performs  

x = A  
A = B  
pop B  
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As data movement between registers is faster than accessing the stack, the use of 

caching will improve the speed of execution for binary operations and for other 

operations that access 2 top elements.  

 

R1 stack machine 

To illustrate a concrete example of a stack machine, the R1 virtual machine will 

be discussed. The R1 is a stack-based instruction set which is an architectural 

neutral byte code aims to be portable and reasonably efficient across many 

platforms [CHO98]. The R1 is intended to be a virtual machine for the purpose of 

controlling real-time devices. It provides the support for concurrency control and 

protection of shared resources including real-time facilities such as clock and 

time-out. The interpreter for R1 is an abstract machine which execute the byte 

code, providing the multi-task environment for the target machine. The reason for 

choosing stack-based ISA is the compactness of code size and the ease of 

implementation. It is well known that many virtual machines are stack-based 

(example from symbolic computation text).  

 

R1 instruction set 

The instructions can be categorised into 6 groups:  

1. load/store local  

2. load/store  

3. control flow  

4. arithmetic  

5. logical  

6. support for real-time and concurrency.  

 

The instructions are as follows. 

load/store local :  lval, rval (left value or store, right value or load)  

load/store :  lvalg, rvalg, fetch, set  

control flow : jmp, jz, call, ret0, ret1, func  

arithmetic : add, sub, mul, div, minus, index  

logical :  not, and, or, lt, le, eq, ne, ge, gt  

others :  lit (push literal)  

 

Let us ignore the instructions that support real-time and concurrency. Load/store 

local instructions access to local variables. Load/store instructions access to data 

segment. Control flow instructions include jump, conditional jump, call and 
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return. Table 9.1 below shows the instruction set and its encoding. The opcode is 

one byte. There are three instruction formats: zero-operand, one-operand and 

two-operand. All arithmetic and logical instructions are zero-operand. The 

load/store and control flow instructions are one-operand. Only one instruction 

that is two-operand.  It is the invocation of function, which also create the 

activation record (func). All operands are 16 bits.  

 

Table 9.1  R1 instruction set  

 
 0 1 2 3 4 5 6 7 

0 lit lval lvalg rval rvalg fetch set index  

8 jmp jz call func proc ret0 ret1 stop  

16 add sub mul div minus not and or  

24 le lt eq ne ge gt print printch  

32 send receive wait signal     

 

 

op:8 

 
op:8 arg:16 

 

op:8 arg1:16 arg2:16 

 

Figure 9.4 R1 instruction formats  

  

Operational semantics of R1 instruction set  

The execution model of R1 has one stack.  The activation records (thread of 

control) are stored in the stack (pointed to by Fp).  The local variables are stored 

in the activation record (accessed by the pointer Fpi where i is the number of the 

variable) and the calculation is done on top of the current activation record 

(pointed to by Sp). The following descriptions are the meaning of each 

instruction of the R1 instruction set.  Ip is the instruction pointer. 

 

Notation 

 

CS code segment, DS data segment, SS stack segment, M the memory. 

Aop arithmetic operators { add, sub, mul, div, minus }  

Lop logical operators  { not, and, or, le, lt, eq, ne, ge, gt }  
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Uop unary operators  { print, printch }  

 

[Lit n]  push( n )  

[Lvalg ref]  push( ref ) 1 

[Lval i]  push( Fpi ) 1 

[Rvalg ref]  push( DS[ref] ) 1  

[Rval i] push( SS[Fpi] ) 1 

[Fetch]  push( M[ pop ] )  

[Set]  M[ pop1 ] = pop2  

[Index]  push( base_ads + index ) 2 

[Jmp ads]  Ip = ads  

[Jz ads] if pop = 0 then Ip = ads 3 

[Call ads]  push( Ip ), Ip = ads 4 

[Func np nl]  save state, new stack frame, pass parameters 5 

[Proc pid np nl]  new process descriptor, initialise state, awake  

[Ret0]  remove stack frame, restore state  

[Ret1]  remove stack frame, restore state, return a value  

[Stop]  terminate the process  

[Aop]  push ( pop1 Aop pop2 )  

[Lop]  push ( pop1 Lop pop2 )  

[Uop]  push ( Uop pop )  

 

1 the variable access  

2 the effective address calculation for an array variable 

3 if top of stack = 0 jump  

4 call to subroutine  

5 create new stack frame, invoke a function  

 

Example of a program : bubble sort  

This example shows how a high level language program can be translated into 

ISA of a stack machine. Given a[n] an array of integer, the bubble sort program 

sorts the items in a[] in ascending order. Initially, i=0, j=0. 
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while( i < n ) {  
  while( j < n ) {  
    if( a[j] > a[j+1] ) {  
      t = a[j];  
      a[j] = a[j+1];  
      a[j+1] = t;  
    }  
    j = j+1;  
  }  
  i = i+1;  
}  

Data segment (word)  

1: t  
2: j  
3: i  
4: n  
5: a[0]  
6: ...  

 

Code segment (byte)  

The code segment shows how the stack-based instruction set is used. 

 
68:rval 3 rval 4 ge  // if not(i<n) exit  

75:jz 187  

78:rval 2 rval 4 ge  // if not(j<n) goto 173  

85:jz 173 

88:lval 5 rval 2 index load  // get a[j]  
       lval 5 rval 2 lit 1 add index load gt  // get a[j+1]  
109:jz 159  // if a[j]<= a[j+1] skip  
112:lval 1 lval 5 rval 2 index load store // t = a[j]  

124:lval 5 rval 2 index  // get address of a[j]  
       lval 5 rval 2 lit 1 add index load store  // a[j] = a[j+1]  
144:lval 5 rval 2 lit 1 add index rval 1 store // a[j+1] = t  
159:lval 2 rval 2 lit 1 add store  // j = j+1  
170:jmp 78  // loop while(j<n)  
173:lval 3 rval 3 lit 1 add store  // i = i+1  
184:jmp 68  // loop while(i<n)  
187: 

  

Frequency of instruction used 

To measure the behaviour of R1 instruction set, the Stanford integer benchmark 

[HEN] is used. This benchmark is a small (not realistic) suite of programs. It is 
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composed of seven small programs: hanoi, permutation, quicksort, bubble sort, 

sieve (prime number), matrix multiplication and 8-queen. The dynamic 

instruction count are collected and tabulated in Table 9.2. Fig. 9.5 shows the 

frequency of used of each instruction. This measurement ignores all aspects of 

multi-task support instructions in R1.  

 

bubble sort  sort 100 integers  

hanoi  move 5 disks between 3 poles  

matmul  multiply two matrices of size 10 x 10  

perm  permute 5 digits  

qsort  quick sort 100 integers  

queen  find all solutions of 8-queen problem  

sieve  find all prime numbers < 100  

 

Table 9.2  the number of dynamic instruction count in the benchmark  

 
bubble 110,611  

hanoi 1,300  

matmul 41,099  

perm 6,901  

qsort 88,002  

queen 752,804  

sieve 57,788  

 

Total number of instruction executed 1,058,520.  Fig. 9.5 shows the frequency of 

each instruction executed.  Rval is the most frequently used at 267,045.  The 

frequency of used of R1 instruction set running Stanford integer benchmark 

grouped into category is shown in Table 9.3 below.  

 

Table 9.3  the frequency of used of R1 instruction set  

 
load/store local (lval, rval) 28%  

load (rvalg, fetch) 12%  

store (lvalg, set) 13%  

control flow 10%  

arithmetic 20%  

logical 11%  

others 6%  

total 100%  
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Figure 9.5  the frequency of instructions used (  1000) 

 

Comparing this data to 80x86 which is a register machine. The top 10 most 

frequently used instruction of 80x86 running SPECint92 are [HPA96]:   

 

Table 9.4  the top 10 most frequently used instruction of 80x86 

 
load 22% 

conditional branch 20% 

compare 16% 

store 12% 

add 8% 

and 6% 

sub 5% 

move reg-reg 4% 

call 1% 

ret 1% 

total 95% 

 

Table 9.5 compares 80x86 and R1. The difference between the two is that R1 has 

a large number of load/store local (28%) where as 80x86 uses more load/store 

(34%) than R1 (25%). Access to local variables in a register machine is to its 

register set but accessing local variables in a stack machine is to its stack. 

Therefore for a stack machine load/store local are very frequent. 
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Table 9.5 Comparison between 80x86 and R1 

 
 80x86 R1 

load 22 12 

store 12 13 

control flow 22 10 

arithmetic 13 20 

logical 22 11 

load/store local - 28 

others 9 6 

total  100 100 

 

In a register machine, access to its register set is encoded into each instruction.  

The R1 accesses its stack very frequently, rval is the most frequently used 

instruction followed by index and lval which are used to access variables. 

 

Improving the speed of execution 

The improvement of R1 ISA is achieved by replacing some long sequence 

frequently used byte-codes by specialised shorter codes which can be executed 

faster due to the reduction of stack operations [CHO97].  The sequence are 

classified into 4 classes :  

1. increment, decrement and combined operators (such as "+=" in C 

language).  

2. array access  

3. assignment  

4. flow control  

 

The first group such as a = a + 1 can be replaced by the combined   operator 

a += 1. The instruction sequence is  

lval a, rval a, lit 1, add, set.  

This sequence is replaced by  

inc a  

or the sequence a = a + expression  

lval a, rval a, ... exp..., add, set.  

is replaced by a new instruction    

addset a.  
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Some flow control instruction such as while a < b has the following sequence  

rval a, rval b, lt, jz $1  

is replaced by the new instruction  

jmp_ge a b $1  

(jump if greater than or equal comparing local variable a and b )  

 

Totally 21 new instructions are added to R1 instruction set in an experiment. 

These new instructions are used by the compiler when generating optimized 

code. Running the Stanford integer benchmark shows that these instructions help 

to speed up 25-120%. The main reason for the speed up is the reduction of the 

operations on the stack, it has been reduced by 20-80%. Comparing the 

executable code size, the extended instruction set reduced the size of the 

executable by 10-34%.  

 

Stack vs register 

Stack machines use stacks to store temporary value during calculation and also 

stored activation records during transfer of control to subroutines. Where as in 

register machines registers must be allocated explicitly to store temporary values 

and an explicit LIFO manipulation must be done (via some kind of pointer) to 

handle activation records.  

 

It is interesting to compare the stack-based machine to the register-based 

machine. Presently, register-based machines dominate the design in computer 

industry as they have higher performance. However, the stack-based machines 

can be much simpler, hence cheaper to produce. The question of performance 

therefore is important. One work [WON99] uses R1 to experiment with 

comparing stack-based to register-based by designing a register machine and 

compare it to R1 at the level of instruction set simulation.  We will summarise 

this work as follows. 

 

The main trust for improving upon a stack-based instruction set is the observation 

that for a stack-based machine, the performance limit of the interpreter is likely to 

be the fetch-limit, i.e. the time spending on fetching and decoding an instruction. 

Hence to improve the performance the number of instruction to be executed 

should be reduced. This can be achieved by designing an instruction set that each 

instruction performs as much work as possible.  
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Based on this assumption, an obvious alternative architecture  a register-based 

machine is investigated. By comparing two virtual machines:  stack-based and 

register-based using Stanford integer benchmark suite, the result shows that 

register-based virtual machine interpreter is 1.5 to 2 times faster than the stack-

based virtual machine interpreter. Comparing the size of the executable code, 

they are similar. Although each instruction of the register-based machine is larger 

(32 bits) there are fewer instruction. Therefore the total size of executable code of 

both machines are similar.  

 

This work is based on the simulation at the instruction level without concerning  

concrete implementation at the microarchitecture level.  The comparison can 

illustrate the trend that the reduction of dynamic instruction count in stack 

machines can speed up its execution. However, it is not possible to make any 

conclusion about the cycle time, whether the cycle time will increase or decrease.  

This is still required further investigation.  

 

Conclusion 

There are a number of contemporary programming languages that use stack 

abstraction, for example, Forth, Postscript. Also many languages use "virtual 

machine" models to implement their executable representations. Pascal has P-

system, Smalltalk uses stack for calculation, JAVA has byte-code that use stack 

model.  R1 the real-time concurrent language, uses stack machine as virtual 

machine. 

  

The stack architecture was very popular and can be dated back quite far, from the 

Burrough machine with a version of an early multi-tasking operating system. 

Presently, the RISC architecture dominates the computer design. For a more 

current discussion about modern stack architecture, the readers are invited to 

consult Koopman’s book. [KOO89].  Presently, one of a commercial CPU that is 

being designed especially for byte-code interpreting is based on stack architecture 

[PIC96] [MGH98]. PicoJava is a special CPU which executes Java byte-code, 

aims for a low power and the embedded applications market, such as Network 

Computers and hand-held devices.  PicoJava is not the only commercially 

available stack-based processor. There are many others such as Harris RTX etc. 

  

Stack machines are arguable almost the simplest kind of architecture. Its LIFO 

structure is quite suitable for block-oriented language. The code size for a stack 

machine can be very compact because most instructions have no operand field. 

Stack architecture used to be very popular method to implement high level 
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language machine. Most of modern register machines are faster but there is some 

renewal effort to improve stack architecture. Notably, Sun's Picojava processor 

which aims to execute JAVA virtual machine byte-code. Stack architecture may 

prove to be suitable for the machine in the future.  
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Chapter 10 

Memory System Design 

 

 

This chapter discusses the memory system design.  We discuss the memory 

basics, how a memory module is organised.  The hierarchical of memory, which 

is one of the most important aspects of a high performance computer system 

today, is introduced.  The high-speed memory, the cache memory design is 

explored.   The operating system services, which provide logical memory space, 

have a strong implication on the memory system design.  The relationship 

between processors and operating systems are discussed.  We conclude the 

chapter with a discussion of the memory technology, its rapid changes and the 

future of technology. 

 

Memory basics 

There are many types of memory in a computer system.  The major type of 

semiconductor memory is random-access-memory (RAM).  We will discuss the 

memory technology topic in the later section.  A memory module consists of an 

array of memory cells.  A memory cell can store one bit of information.  To read 

or write a memory cell, it must be selected (addressed) and the control signal 

(read/write) is asserted.  The data can be read off or written into the cell via the 

data line.  

 

 

 

 

 

 

Figure 10.1  a memory cell 

 

address 

read/write 

data 
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A memory module is built on an array of memory cells.  The most widely used 

type of RAM is dynamic RAM (DRAM).  A DRAM is made with cells that store 

data as charge on capacitors.  It requires periodic refreshing of the cell's content.   

Fig. 10.2 shows a typical organisation of a 16 Mbit DRAM ( 4M  4 bits).  The 

memory array is organised as four arrays of 2048  2048 elements.  The address 

lines supply the address A0 .. A11.  They are fed into row and column decoders 

(211 = 2048).  The row and column addresses are multiplexed to reduce the 

number of pin of the memory package.  The row-address-strobe (RAS) and the 

column-address-strobe (CAS) signals provide the control to the memory chip.  

The circuits on the chip included refreshing logic and input/output (I/O) lines 

interface to the external bus.  A number of these typical chips are used to build up 

a larger memory for a computer system. 

 

 

Figure 10.2  a typical 16 Mbit DRAM ( 4M  4 bits ) 

 

Memory hierarchy 

There are many types of memory in a computer system.  The range spanned the 

memory in the control unit, the processor, the high-speed memory (the cache), 

the main memory, and finally in the secondary storage (the disk cache).  We 

discuss each of them in turn.  Fig.10.3 shows a typical memory hierarchy. 
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Figure 10.3  a memory hierarchy in a computer system 
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The control unit contains a micromemory storing the microprogram.  It is a read-

only-memory (ROM) (sometimes it may be a writable micromemory, in that 

case, it is a high-speed RAM).  The page table, which is used to map virtual 

address (explained in the later section), contains the content-addressable-memory 

(CAM).  A CAM is a special kind of memory.  Rather than retrieving the content 

by the address lines, the content of a CAM is retrieved by the "association" of the 

pattern of data.  The query such as "Is there any number 105 stored in this 

memory?" demonstrates the principle of the CAM.  A CAM is generally more 

expensive than a RAM.   

 

Within a processor there are registers.  The registers have very fast access time.  

They are used to store temporary values during computation.  The ALU has a 

ROM storing many constant values used in the floating-point calculations such as 

rounding operations. 

 

A cache memory is a high-speed memory connecting a processor to a main 

memory.  Because the speed of a processor in much faster than the speed of a 

main memory (at least by a factor of 10).  The cache memory is matched to the 

processor speed.  It is much smaller than the main memory, but using a scheme 

of storing the recently used data and instructions enables a cache memory to 

behave as the larger main memory.  The cache table is a CAM.  Its use will be 

explained in the later section. 

 

The main memory is usually organised as one large unit.  It can also be organised 

as a number of parallel memory units.  Each unit can be addressed independently.  

The figure shows a four-way parallel main memory with 32-bit words.  This 

improves the memory bandwidth.  

 

The next level in the hierarchy is the secondary storage, usually it is the magnetic 

disk. The secondary storage has an access time much slower than the main 

memory (a disk is at least 10,000 times slower than a RAM).  Using the principle 

of a cache memory, the disk cache, a large RAM, is as intermediate backup to the 

main memory.  The goal is to buffer large amount of data to and from the main 

memory and the secondary storage.  This arrangement improves the performance 

and reduces the system cost.  The figure shows 64K of 512-bit words. 

 

The cost of a memory varies with its speed.  A multi-level memory hierarchy 

provides a large amount of memory that is not expensive. If the hierarchy is 

properly matched to the patterns of addresses generated by programs run on the 

system, its effective speed can match the processor speed.  The address patterns 
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generated by programs are an important factor in the design of a memory system 

and will be discussed further in the later section.  Figure 10.4 shows a typical 

parameters of memory hierarchy. 

 

 

Level 1 2 3 4 

Name Registers Cache Main memory Disk 

Typical size < 1 KB < 4 MB < 4 GB > 1 GB 

Technology CMOS 
BiCMOS 

On-chip or off-
chip CMOS 
SRAM 

CMOS DRAM Magnetic 
disk 

Access time (ns) 25 310 80400 5,000,000 

Bandwidth 
(MB/sec) 

400032000 8005000 4002000 432 

Managed by Compiler Hardware OS OS/User 

Backed by Cache Main memory Disk Tape 

Figure 10.4  a typical memory hierarchy (from [HEN96] p.41) 

 

Interleaved memory 

The constraint of a von Neumann architecture is that a single memory module of 

conventional design can access no more than one word during each cycle of the 

memory clock.  There are several ways to increase memory bandwidth (bits/bytes 

per second). 

 reduce cycle time  

 increase word size  

 concurrent access (banking, interleaving)  

 

Reduction of the cycle time can be achieved by using a faster memory, which is 

more expensive.  Increasing the word size will increase the number of connection 

between memory and processor.  In term of the number of pin on the package, 

increasing the number of wires implies increasing the number of pin.  The last 

alternative, interleaved memory, is achieved by arranging multiple memory 

arrays into parallel units, each of which can be accessed independently.  All units 

are addressed at the same time, hence the consecutive locations can be accessed 

with zero delay after the first data is available.   

 



186 

Cache 

A cache memory is a high-speed memory connecting a processor to a main 

memory.  It is much smaller than the main memory but it is faster.  Its advantage 

is that the average memory access time is nearly equal to the speed of the fastest 

memory, whereas the average unit cost of the memory system approaches the 

cost of the cheapest memory.  

 

A cache memory stored the most frequently used values from the memory.  This 

is possible because the principle of locality of references [DEN68].  The patterns 

of addresses generated by programs run on a system exhibit two kinds of locality: 

1. Temporal, the values that have been accessed will be accessed again in 

the near future.  

2. Spatial (array, vector, code segment), the values near the location of the 

recently accessed will be accessed in the near future. 

 

Temporal locality 

Cache memory stored the most frequently used values from the memory. The 

access pattern has "temporal locality", the locations in the memory may be 

spatially separated but the cache memory stored them together when they are 

accessed.  

 

 

Figure 10.5   cache memory stored values that "temporally related" 

 

Working set of an application is the amount of memory the application required 

in a period of time. It varies with time.  
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Cache performance 

When the processor attempts to fetch a word from main memory, the word is 

supplied from the cache if it is resident there.  If not the word is supplied from 

main memory, but the cache is also loaded with a block of words including the 

one requested.  Thus, subsequent accesses to the same word can be handled at the 

cache speed. 

 

Let h, the cache hit ratio, be the fraction of the references to main memory that 

can be found in the cache. 

  mce ThThT  1  

 

where Te the effective cycle time, Tc the cycle time of cache memory, Tm the 

cycle time of main memory.  The speed up due to cache is  

cmc TTS /  

Let express the speed up in term of hit ratio 
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Thus, if h = 1/2 we can not achieve a speed up of more than 2.  The figure shows 

maximum Sc versus h. 
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Figure 10.6  maximum possible cache speed up versus hit ratio 

 

Example  We want to compare two size of cache memory, 512 K bytes and 1 M 

bytes.  Let the average hit ratio of 512 K bytes cache be 0.93 and the average hit 

ratio of 1 M bytes cache be 0.97.  Let Tc / Tm = 0.12. 

Sc 512 = 1 / ( 1  0.88  0.93 ) = 5.5 

Sc 
1M = 1 / ( 1  0.88  0.97 ) =  6.85 

Thus, adding 512 K bytes to the cache achieved a system speed up improvement 

of 

24.0
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5121
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c
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SS
 

This 24 percent improvement could be a good return on relatively small 

investment. 

 

Example  We want to assess how much a cache contribute to the performance of 

a system.  Assume a cache miss penalty is 50 clock cycles, all instructions take 2 

clock cycles (not take into account the caches miss), the miss rate is 2%.  There is 

an average of 1.33 memory references per instruction.  What is the impact on 

performance when taking cache behaviour into consideration? 

 

We start with the definition of performance 

Performance = how fast a processor finishes its job 

execution time = number of instruction used  cycle per instruction  cycle 

time 

 

Taking the behaviour of memory into account 

Sc 
Tm/Tc 

h 
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execution time = (CPU execution cycle + memory stall cycle)  cycle time 

memory stall cycle = number of instruction used  memory reference per 

instruction  miss rate  miss penalty 

Threrefore 

execution time = number of instruction used  (cycle per instruction + 

memory reference per instruction  miss rate  miss 

penalty)  cycle time 

= n.o.i.  (2 + (1.33  2%  50)  cycle time 

= n.o.i.  3.33  cycle time 

 

Therefore the execution time increases with CPI from 2 (no cache miss) to 3.33 

with a cache that can miss.  Without a cache at all, CPI would be 2 + 50  1.33 = 

68.5, a factor of 30 times longer!   

 

Cache organisation 

A cache memory stored some part of the main memory.  The main memory can 

be viewed as "blocks".  A cache stored a number of these blocks, which are 

indexed by part of the address bit.  The size of the block varies.  For any size 

larger than one, the lower address bits are used as "offset" to indicate the required 

word within a block.  The relationship between the size of the block, the size of 

the cache, the organisation of the cache and the hit ratio are complex.  The larger 

cache size has a higher hit ratio.  The cache contains the memory for storing the 

address, called "tag", and the memory for storing the blocks.   

 

Figure 10.7  the relationship between main memory and cache 
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The activities in a cache consist of the request for reading and writing.  In 

response to those requests, there are these possible events: load hit, load miss, 

store hit, and store miss.  A cache is classified according to its organisation.  We 

will discuss three major organisations: fully associative cache, direct map cache, 

and set associative cache. Mostly they differ in the way they response to the 

request: 

1. Where can a block be placed in the cache?  

2. How is a block found if it is in the cache?  

3. Which block should be replaced on a miss?  

4. What happens on a write?  

 

Fully associative 

In a fully associative cache, the tag memory is made of CAM, therefore a block 

can be placed in any slot in the cache.  The search for address matching is done 

with all tags in parallel using the retrieval by association.  If a conventional 

memory (RAM) is used, it will require scanning every address.  If there is no 

ordering among the content, scanning will take O(n). If there is ordering, using 

binary search will take O(n log n). An associative memory takes just O(1) to find 

the required content. 

 

 

Figure 10.8  a fully associative cache 

 

However, the CAM is expensive and the fully associative cache is used mainly in 

places where the speed is important and the small cache size is appropriate.  To 

increase the cache size without increasing the tag size (the tag is made of CAM), 

the block size (made of RAM) can be increased. 
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Direct map 

A direct map cache uses RAM instead of CAM to store tags. The lower bits of 

address are used to index the block.  Therefore a block has a unique place in the 

cache.  The addresses that have the similar higher bits will be placed in the same 

slot.  This reduces the effectiveness of the cache, as some addresses will collide.  

Due to its simplicity, a direct map cache can be implemented with efficiency (it 

can be very fast). 

 

 

Figure 10.9  a direct map cache 

 

Example to understand how a cache stores the tags, let us follow a simple 

exercise.  Assume a cache has 8 slots with a block size 1.  A sequence of memory 

requests is issued by the processor.  Suppose the address sequence is 0, 1, 3, 6, 9, 

13, 14, 3, 18, 19, 13.  The following diagram shows the state of tags. 

 

                   address             Tag t+3     Tag t+7     Tag t+10 

0 8 16  0  0  0 

1 9 17  0  1  1 

2 10 18      2 

3 11 19  0  0*  2 

4 12 20       

5 13 21    1  1* 

6 14 22  0  1  1 

7 15 23       

         address sequence:      0,1,3,6   9,13,14,3* 18,19,13* 

      Figure 10.10  the state of tags after the sequence of accesses 
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The tag is calculated by (address / 8) and the index to the slot is (address mod 8).  

The address marked with * are the cache hits.  There are two hits in this example. 

 

Set associative 

To improve the performance of a direct map cache, the set associative cache uses 

a number of direct map caches in parallel, called a set, k.  The search of the 

matching address is done on k tags in parallel.  The mechanism requires only k 

set of comparators and a multiplexor to select data from  k sets.  This improves 

the hit ratio as it reduces the chance of collision which different addresses map to 

the same slot.  Having a set of caches introduces another consideration, which set 

to be replaced when a miss occurs?  This question is settled with cache 

replacement policy. 

 

 

Figure 10.11  a set associative cache 

 

Replacement policy 

On a load miss, the value must be read from the main memory and also the whole 

block must be updated into the cache.  There is no choice which block to be 

replaced in the direct map cache.  The selection is done in hardware using the 

lower address bits to index the slot.  For the fully associative cache and the set 

associative cache there are two major policies: 

1. Random replacement, the block to be replaced is randomly selected so 

that it is uniformly distributed in the cache. 

2. Least-Recently-Used (LRU), this policy replaces the block that has been 

unused for the longest time. 
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The random replacement policy is easy to implement in hardware, requiring only 

a random number generator.  The LRU policy must keep track of the number of 

access to each block hence it is more complicate.  Nearly all caches in 

commercial production use LRU.  

 

Write policy 

Reads dominate cache accesses.  All instruction accesses are reads.  For data 

accesses, writes constitute 7% of the overall memory traffic and about 25% of 

data cache traffic.  Reads can be made fast.  A block can be read at the same time 

as the tag is read and compared.  If it is a miss the value read can be ignored.   

 

It is not the case for writes.  Because the tag checking cannot be done in parallel 

with the memory access (write cannot be undone), writes normally take longer 

than reads.  On a write request, there are two options: 

1. Write through, the information is written to both the block in the cache 

and to the block in the main memory. 

2. Write back, the information is written only the cache.  The modified 

cache block will be written to main memory only when that block is 

replaced. 

 

There is a bit associated with each block in cache called the dirty bit.  This bit is 

set when the content of that block is modified.  When the block is going to be 

replaced, the dirty bit is examined, if it is clean, it is not necessary to write this 

block to the main memory.  This reduces the frequency of writing back to the 

main memory. 

 

Address Trace  

To measure the performance of a cache memory, a miss ratio is measured from 

an address trace. Some problems are presented:  

1. the workload on the trace may not be representative  

2. the initialisation transient may grossly affect the evaluation  

3. the trace may be too short to obtain accurate measurement.  

 

The length of the trace is important for accuracy. Also the concern about 

initialisation of cache (should or should not take into account for cache miss). If 

cache size is 1,000 blocks, assuming 1 byte per block, and the miss ratio is 1%, 

for a miss to occur once for every block requires the trace length of 100,000 

addresses just to initialise the cache.  An empirical formula for the trace length is: 
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Trace length = cache size 1.5 

This formula implies that for each quadrupling of cache size, the trace length 

increases by a factor of 8.  A typical simulation run to collect the address trace 

covers hundreds of milliseconds at most.  

 

Improving cache performance 

The performance gap between processors and memory is increasing every year.  

During 1980-1986 the processor performance increased 35% per year and 1987-

2000 it increased 55% per year while the memory performance increased during 

1980-2000 only 7% per year.  In the year 2000, the processor is about 500 times 

faster than memory.  The cache is becoming more and more important to bridge 

this gap.  The average access time of a memory system is. 

Taverage = Thit + miss rate  miss penalty 

All three factors Thit, miss rate, and miss penalty are considered in improving 

cache performance.   

 

To reduce miss rate the larger block size can be used.  The larger block size takes 

advantage of spatial locality.   However, increasing block size will increase the 

miss penalty.   Another way to reduce miss rate is to increase associativity.  A 

rule of thumb for cache is that a direct map cache of size N has about the same 

miss rate as a 2-way set associative cache of size N/2.  An 8-way set associative 

is as effective in reducing misses as fully associative cache of the same size. 

Using two separate caches for instruction and data instead of a unified cache can 

be beneficial.   A processor relies on prefetching instructions to fully use the 

pipeline.  Having a separate instruction cache reduces the interference from data 

access.   

 

The miss penalty can be reduced by using a second-level cache.  In designing a 

cache, it is always a question of whether to make the cache larger or to make it 

faster.  By adding another level of cache between the first cache and the main 

memory, the first cache can be fast while the second cache can be large.  The 

second cache will reduce the number of traffic to the main memory.  It is, in 

essence, reducing the miss penalty. 

 

The hit time can be reduced in two ways.  First, a simpler and smaller hardware is 

faster, therefore the simple organisation of cache such as a direct map cache can 

be faster than a complicate cache.  Second, use an on-chip cache.  Because the 

advancement of microelectronics, the number of logic on a chip has been 
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increasing.  It has been possible to include a cache on the same die as a processor.  

The on-chip cache is much faster than an off-chip cache due to shorter paths and 

smaller delay in signal paths.  However the size of an on-chip cache is limited. 

 

For more detailed discussion of high performance cache design, there are 

numerous research papers on the subject, for example [TAE98] [TAE98a].  The 

thesis describes the design of a cache controller for a high performance processor.  

Many other organisations of cache have been introduced to cope with the 

changing of the workload that emphasis multimedia applications [CHI00]. 

 

Example The on-chip cache of Intel 486 is a 4-way set associative, the line size 

is 16 bytes, total cache size 8Kbytes  To simplify the hardware, it used pseudo-

LRU having 3 bits: r0, r1, r2.  The replacement policy works as follows.  Let the 

set be s0, s1, s2, and s3.  The most recently access sets the bit using these rules: 

if the set is s0 or s1 set bit r0  
if the set is s0 set bit r1  
is the set is s2 set bit r2  

 

Then, the replacement follows these rules: 

if r0 r1 = 00 replace s0  
if r0 r1 = 11 replace s1  
if r0 r2 = 10 replace s2  
if r0 r2 = 11 replace s3  

 

Virtual Memory 

An operating system provides a multi-task capability.  It performs three types of 

scheduling: accepting a number of processes, switching between processes, and 

handling I/O requests.  One important function of an operating system is memory 

management.  Many programs, including the operating system itself resided in 

main memory.  The allocation and reclamation of memory for these programs 

must be done dynamically by the operating system. 

 

The process in memory contains instructions and data.  When a process is 

swapped in and out, the addresses of these instructions and data will be changed.  

A process is not likely to be loaded into the same place each time it is swapped. 

The concept of logical address and physical address is used to solve this problem.  

A logical address is expressed as a location relative to the beginning of the 

program.  A physical address is an actual location in main memory.  A part of 
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processor hardware is designed to support the mapping between logical to 

physical addresses. 

 

Paging 

To facilitate memory allocation, main memory is divided into small fixed-size 

blocks, called pages.  A number of pages are allocated to each process on 

demand.  To translate a logical address to a physical address, the operating 

system maintains a page table for each process.  The page table shows the 

location for each page of the process.  A processor uses the page table to produce 

a physical address. 

 

Figure 10.12  translation of logical to physical address 

 

With demand paging it is possible for a process to be larger than main memory.  

A process executes in main memory referred to as real memory.  A user perceives 

a much larger memory, the size of disk, referred to as virtual memory. 

 

Parameter First-level cache Virtual memory 

Page size 16128 bytes 409665,536 bytes 

Hit time 12 clocks 40100 clocks 

Miss penalty 

(Access time) 

(Transfer time) 

8100 clocks 

(660 clocks) 

(240 clocks) 

700,0006,000,000 clocks 

(500,0004,000,000 clocks) 

(200,0002,000,000 clocks) 

Miss rate 0.510% 0.000010.001% 

Data memory size 0.0161MB 168192 MB 

Figure 10.13  Typical ranges of parameters for caches and virtual memory (from 
[HEN96] p.441) 
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Figure 10.13 shows the difference between first-level caches and virtual memory.  

Comparing the two, the difference in magnitude is about 10 to 100,000. A 

cache miss is 850 costly as a cache hit but a page fault is 6,00020,000 as 

costly as a page hit.  A cache miss latency is in the range of hundred of clocks but 

a page fault latency is in range of millions of clocks. A processor can execute a 

fair number of instructions during this time. 

 

Address translation 

The address translation requires accessing the page table.  The page table resides 

in main memory.  If it is large, accessing a page table may cause page fault.  The 

worst case requires two memory accesses to get the data.  A special cache, a 

translation lookaside buffer (TLB), caches page table entries, hence improving 

the speed of address translation.  The TLB functions the same way as an ordinary 

cache and contains page table entries that have been most recently used.  The 

principle of locality of references also applied to TLB, if the accesses have 

locality, then the address translation of the accesses must also have locality. 

 

The operation of paging and TLB is as follows [FUR87]. 

 
Request access to a page 
CPU checks TLB 
if the page table entry is not in TLB then 
    access page table 
    if page is not in memory then generate Page Fault 
                                           else update TLB 
CPU generates physical address 
 
Page Fault 
OS call routines to read the page from disk 
CPU activates I/O hardware 
If memory is full then perform Page Replacement 
page table update 
restart request to access a page 

 
The virtual memory mechanism (TLB) must interact with the cache system.  

When a memory access occurs the TLB is looked up, if the matching page is 

present, the real (physical) address is generated.  If TLB does not contain the 

page, the entry is accessed from the page table.  Once the real address is 
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generated the first-level cache is consulted, if the cache is a hit, the cache 

supplies the word.  If it is a miss, the word is retrieved from main memory. 

 

 

Figure 10.14  Translation lookaside buffer and cache operation 

 

Address translation can easily be on the critical path and hence determining the 

clock cycle of a processor.  The TLB is usually smaller and faster than a first-

level cache.  The TLB access is sometimes pipelined to improve its speed. 

 

TLB size 328192 bytes 

Block size 48 bytes (1 page table entry) 

Hit time 1 clock 

Miss penalty 1030 clocks 

Miss rate 0.1%2% 

Figure 10.15  Typical parameters for a translation lookaside buffer 

 

Page Replacement 

A page fault is different from a cache miss as the page fault is very costly and the 

latency is very long.  During that time, a processor can perform a significant 

amount of processing.  This processing power can be used to reduce the miss 

rate.  Another difference is that virtual memory supports a multi-task 

environment.  The behaviour of tasks swapping in and out of main memory are 
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very dynamic compared to the behaviour of a cache miss that occurs in a single 

thread of execution over a shorter period of time. 

 

When a page fault occurs, a new page must be loaded from the secondary 

memory, usually a disk.  The trashing behaviour describes the situation where 

there are excessively high traffic between main memory and the disk.  Trashing 

causes significant impairment of system performance.  The replacement policy is 

similar to that of a cache, the LRU.   However, the question arises on how many 

pages to be allocated to a process?  The answer is to allocate as many pages as 

the process needs at a given time.  This requires the notion of a working set, the 

footprint of a program execution over a short period of time. 

 

How to find working set 

W(t, w) the working set at time t for window w. It is the set of pages referenced in 

the last w seconds at time t.  The following steps allocate pages according to the 

working set of a program: 

1. when page fault, add a new page to the working set  

2. from set of pages not referenced. within w, delete the LRU page 

otherwise let the set grow  

3. if two or more pages not referenced within w, delete two LRU pages,  w 

is measured by process time.  

 

Page-fault frequency method 

This method is based on the observation that a high page fault signals the change 

in phase to a  new working set  

1. select a threshold Z  

2. when page fault, estimate frequency. f = 1/(t1t0)  

3. f > Z assume change phase, add page to the working set  

4. f < Z assume stable. add new page, remove the old page (LRU)  

5. f < Z over some period, assume stable and dead pages, reduce working 

set and delete unreferenced. page (LRU)  

 

How to allocate the number of pages to a program 

The optimal is to get least page-fault rate.  In a muti-task environment there are 

many processes competing for resources.  The allocation must consider all 

processes.  Let  Ri (xi) be fault rate of process i with xi be the memory allocation. 

The optimality can be achieved in the following sense:  
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The fault rates for each process for their respective allocation are equal.  This 

implies that an optimum allocation depends on fault rate derivatives.  Figure 

10.16 compare the working set method and the page-fault frequency method. 

 

 

 working set page-fault frequency 

assumption 
immediate future will be like 
the recent past 

transient between two program 
phases signaled by higher than 
normal fault rate 

implementation 
difficult because of sliding 
window 

observable quantities use 
hardware logging  

Figure 10.16  comparison of the working set method and the page-fault 
frequency method 

 

Memory technology 

Memory system design is becoming increasingly important as a computer system 

performance improved.  There are three major reasons for this. First, the new  

generation of microelectronics technology improves speed and reduces power 

consumption.  However, the data transfer rate on a circuit board is independent of 

technology scaling and remains at about 1 ns. 

 

Second, the use of parallelism in processor design demands higher data transfer 

rate but data parallelism cannot be exploited because the number of chip-to-chip 

connections (the packaging) is limited. 

 

Third, as memory is larger, the time for address decoding is at least logarithmic 

increased, hence the memory becomes slower. As a result, while processor 

performance improves exponentially according to Moore's law, memory system 

performance does not. 

 

History 

Before 1960s, computer memory systems consisted of cathode-ray storage tubes, 

ferrite cores, and thin magnetic films [ECK97].  The first semiconductor memory 

was a six-transistor SRAM (static random access memory) cell, which is now 
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used mostly for cache and battery-backup memory.  The one-transistor dynamic 

memory was invented in 1968 [DEN68a] [DEN84].  The DRAM became very 

successful, because of its low bit cost and high density. The DRAM has 

dominated the computer main memory market. 

 

DRAM operation 

A DRAM is characterised by its access time and its cycle time.  An access time is 

the time between the request (the address is presented) and the time when the 

data is ready.  A cycle time is the time between two consecutive memory 

operations.  This is longer than the access time due to the electrical characteristics 

of the memory circuits. 

 

The memory cell consisted of storage capacitor and selection transistor.  Its 

binary state is represented by the amount of charge it holds.  The storage 

capacitor is implemented as a MOS (Metal Oxide Semiconductor) capacitor.  The 

memory array composed of cross-point array of memory cells. Its operational 

scheme is as follows. 

 

 

Figure 10.17  read operation of DRAM 

 

For read operation, the RAS (row address strobe) latches the row address and 

decoding.  The CAS (column address strobe) decodes column address and 

multiplexes data.  The row and column address inputs are usually multiplexed to 

minimize the number of pins in the DRAM package.  Since the read operation is 
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destructive, the data must be written back to the memory cells in parallel with the 

column access.  This causes delay in RAS cycle time.  The array then must be 

precharged for the next memory access operation. 

 

The write operation is similar, only difference is the I/O bit is forced into a new 

logic state.  In other words, writing to a DRAM cell is similar to writing back to 

the cell with a new logic state. 

 

The limitation in performance of DRAM involves two aspects: the latency and 

cycle time in the row access and the data rate in the column access.  The 

performance in row access is caused by the resistance capacitance time constant 

in both charging and discharging the dynamic memory cell and array.  The cycle 

time in column access determines the data rate. Widening the width for the chip-

to-chip connections increases the cost as the number of I/O drivers and packing 

pins increases.   

 

High-speed DRAM development 

The research and development in late 1980s results in chips access time in the 

low 20 ns range and a column access time in the low 10 ns range, using CMOS 

(Complementary Metal Oxide Semiconductor) technology [LUN89] [TAK90]. 

 

For faster data rate, EDO (extended data out) DRAMs improve the data rate for 

column access by adding an extra pipeline stage in the output buffer.   A typical 

4-M bit EDO DRAM with  8 I/Os operating at 33 MHz column access cycle can 

provide a peak data rate of 266 Mbytes/second per chip. 

 

In the 16-Mbit generation, SDRAM (synchronous DRAM) employed a high-

speed synchronous interface.  The data rate was improved using pipelining the 

data path or prefetching data bits over wider data lines.  The performance was 

also improved by interleaving multiple banks of memory arrays (normally two) 

on the same chip.  The peak data rate for a 16-Mbit SDRAM with  16 I/O 

operating at 66 MHz is 1.1 Gbps (133 Mbytes/second) per chip.  JEDEC ( the 

Joint Electron Device Engineering Council) has standardized both EDO DRAM 

and SDRAM. 

 

For faster random access, the performance near SRAM level is achieved by 

integrating a small amount of SRAM as cache or using multiple banks of DRAM. 

These designs are: EDRAM (enhanced DRAM), CDRAM (cached DRAM), and 

MDRAM (multibank DRAM). 
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Rambus DRAM [KUS92] uses a packet-type memory interface to realise a peak 

data transfer rate of 500 Mbps per data I/O pin (4 Gbps, or 500 Mbytes per chip) 

with a 250 MHz clock. The improved version, called Concurrent Rambus, 

realises a peak data rate of 600 Mbps per data I/O pin. 

 

There are many types of memory that designed for specific applications, for 

example VRAM, WRAM, and 3DRAM.  Video RAM (VRAM) realised 

concurrent dual port access by multiplexing the data in the DRAM array.  The 

internal data rate, with 4,096 full transfer, operating at 10 MHz, is 41 Gbps (5.1 

Gbytes/second).  It is aimed for video application using video screen refresh data.  

Window RAM (WRAM) improves graphics operations in a GUI environment.  It 

simplifies VRAM design and it has additional functions such as bitblt (bit-block-

transfer) and block write for graphics applications.  3DRAM has been especially 

designed for processing 3D graphics applications.  The read-modify-write 

operation, which occurs frequently in 3D graphics can be achieved with one write 

operation. 

 

DRAM Trend 

The performance of a computer system can be associated with memory system 

bandwidth and memory system capacity [KAT97]. 

 

performance = k1 (memory system bandwidth) 

 = k1 (DRAM data rate) Ndram  / Nbank 

 

performance  = k2 (memory system capacity) 

 = k2 (DRAM density) Ndram 

 

where Ndram is the number of DRAMs in the system, Nbank is the number of banks 

sharing the same data bus, and k1 and k2 are coefficients.  By dividing the two 

equations. 

 

DRAM data rate = Nbank (k2/k1) (DRAM density) 

 

This equation implies that the DRAM needs a higher data rate as its density 

increases.  The coefficient Nbank(k2/k1) is called full frequency [PRZ96], it 

depends on the application.  The empirical numbers are 100 Hz for PC graphics, 

10 to 20 Hz for PC main memory, and less than 10 Hz for servers and 

workstations.  The driving forces of DRAM changes are low-end and graphics 
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applications, where the data rate requirement per DRAM density is higher.  The 

transition to high-speed DRAM occurred not in the high end of the market but in 

the low end.  The high-speed memory DRAM could provide smaller memory 

granularity for a given bandwidth requirement. 

 

There are three major candidates for the next generation of high-speed DRAMs. 

1. SDRAM-DDR (SDRAM double data rate), which uses a synchronous RAS 

and CAS similar to SDRAM.  The data transfer is at both edges of teh clock.  

A 16-Mbit SDRAM-DDR with 16 I/O operating at 100 MHz clock (200 

MHz data rate) can provide 3.2 Gbps. 

2. Rambus DRAM, the data rate can achieved a peak of 13 Gbps per chip due to 

400 MHz clock (800 MHz data rate) and 16-bit bus width. 

3. SLDRAM (Ramlink IEEE standard 1596.4) [GIL97], It builds on the features 

of SDRAM-DDR by adding an address/control packet protocol.  The internal 

DRAM address and control paths are decoupled from the data interface to 

achieve higher bandwidth. 

 

Beyond high-speed DRAM lies the merging between logic and memory, using 

the processing at the memory cell.  Putting RAM and processor together can 

achieved a very high bandwidth, such as one proposed by Patterson [PAT97]. 
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Chapter 11 

Magnetic Disk 

 

 

This chapter examines the most important type of secondary storage, the 

magnetic disk.  Magnetic disks have dominated the secondary storage market 

since 1965.  Magnetic disks are almost an integral part of all computer systems.  

It provides long-term, non-volatile storage for files and is used for virtual 

memory.  The use of multiple disks to improve reliability and performance is 

discussed.  Finally, the I/O functions that control data transfer between I/O and 

main memory is explained. 

 

Disk basics 

The read-write mechanism is based on the magnetic field produced by the read-

write head and magnetic patterns are recorded on the disk surface.  The 

organisation of data on the platter is a concentric set of rings, called tracks.  

Adjacent tracks are separated by gaps.  This prevents errors due to misalignment 

of the head.  The density is the amount of bits per inch on each track.  Data are 

recorded in block-size chunk called sectors.  Adjacent sectors are separated by 

inter-record gaps. A sector position is identified by its relative position to the 

control data recorded on the disk.  The capacity of a disk is expressed as areal 

density (bit/inch2 ) 

areal density = track/inch on a disk surface  bits/inch on a track 

 

Example A disk format, Seagate ST506 is as follows.  Each track contains 30 

sectors of 600 bytes each.  Each sector stores 512 bytes of data plus control 

information.  The ID field is a unique identifier used to locate a sector.  The 

SYNC byte is a special pattern that delimits the beginning of the field.  The ID 

and data fields contain error-detecting codes (a cycle redundant code, CRC). 

 



208 

 
index  Physical sector 0  (600 bytes per sector),  . . .   Physical sector 29 

 
Gap 
1 

ID 
Field 
0 

Gap 
2 

Data 
Field 
0 

Gap 
3 

. . .  Gap 
1 

ID 
Field 
29 

Gap 
2 

Data 
Field 
29 

Gap 
3 

17 7 41 515 20   17 7 41 515 20 

 

 
ID Field      Data Field 

 
Sync 
byte 

Track 
# 

Head 
# 

Sector 
# 

CRC   Sync 
byte 

Data CRC 

1 2 1 1 2   1 512 2 

 

 

Figure 11.1  Winchester disk format Seagate ST506 

 

Disk access time 

The disk is rotating at constant speed.  The head must be positioned on the 

desired track to read or write data.  The time to move a head to the track is known 

as seek time.  Then, the system waits for the desired sector to line up with the 

head, this time is known as rotational latency.   

access time = seek time + rotational latency 

 

After the sector lines up with the head, the transfer can take place.  The transfer 

time is the time it takes to transfer a block of bits, typically a sector.  It is a 

function of the block size, rotational speed, recording density and speed of 

electronics connecting the disk to a computer. 

 

Example What is the average time to read or write a 512-byte sector of a typical 

disk?  The advertised average seek time is 9 ms, the transfer rate is 4MB/sec., it 

rotates at 7200 RPM, and the controller overhead is 1 ms.   

 

average disk access time =  average seek time + average rotational delay + 

transfer time + controller overhead 

 

9 ms + 0.5/7200 RPM + 0.5 KB/4 MB/s + 1 ms = 14.3 ms. 
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Disk Performance 

The advances in disk technology improve disk performance. These advances 

include increased rotational speed, faster seek times, and higher data rates. Some 

other advances such as disk density or total drive capacity also impact the 

performance [NGS98]. We will discuss these advances.  

 

Disk performance is measured by "total job completion time" for a complex task 

involving a long sequence of disk I/Os.   The time for a disk drive to complete a 

user request consists of:  

 command overhead  

 seek time  

 rotational latency  

 data transfer time  

 

Performance parameters 

Command overhead   the time takes for the disk controller to process and 

handle I/O request  depends on the type of interface (IDE or SCSI), type of 

command read/write, use of drive's buffer. Typical value is 0.5 ms for buffer miss 

and 0.1 ms for buffer hit.  

 

Seek time   the time for the head to move from its current cylinder to the target 

cylinder.  

 

Settling time  the time to position the head over the target track until the correct 

track identification is confirmed. A typical seek time is 10 ms.  

 

Rotational latency  In the past disk spins at the speed 3,600 rpm. Today the 

highest speed is 10,000 rpm and typically 5,400 rpm. representing the average 

latency 5.6 ms.  

 

Data transfer time  It depends on "data rate" and "transfer size". There are two 

kinds of data rate : media rate and interface rate.    

 

Media rate depends on recording density and rotational speed.  

 

Example, a disk rotating at 5,400 rpm with 111 sectors (512 bytes each) per track 

will have a media rate 5 Mbytes per second.  
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Interface rate is how fast data can be transferred between the host and the disk 

drive over its interface. SCSI drives can do up to 20 Mbytes per sec. over each 8-

bit-wide transfer. IDE drives with the Ultra-ATA interface support up to 33.3 

Mbytes per sec.    

 

Transfer time equals transfer size divided by data rate. The average media 

transfer time is 0.8 ms, the average interface transfer time is 0.4 ms.  

 

Example The typical average time to do a random 4-K byte disk I/O is  

overhead + seek + latency + transfer  

=  0.5 ms + 10 ms + 5.6 ms + 0.8 ms  

= 16.9 ms  

 

Locality of access   Most I/Os are not random, the effect is that the real seek 

time is about one third of random seek time. Taking this into account the above 

example will be  

overhead + seek + latency + transfer  

=  0.5 ms + 1/3 * 10 ms + 5.6 ms + 0.8 ms  

=  10.2 ms  

 

Caching   With caching the mechanical component, i.e. seek and latency, are 

eliminated. Data transfer takes place at the interface data rate. Typical time to do 

4K I/O becomes  

overhead + transfer = 0.1 ms + 0.4 ms = 0.5 ms  

 

Increase recording density 

 bits per inch (bpi)  

 track per inch (tpi)  

 

Increase BPI  

BPI is called "linear density", determines the number of sectors on a track. With 

"zoned recording", each zone the number of sectors per track is constant. BPI 

toward the outer diameter of a zone is somewhat lower than the BPI toward the 

inner diameter of the same zone. Increasing BPI affects a higher media data rate, 

puts constraint on rpm, has fewer head switches, and a bigger cylinder.  

 

Higher media rate  media data rate = 2 pi  radius  bpi  rotational speed  
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Constraint on rpm  increasing bpi can push data rate beyond what the drive's 

data channel can handle. Today's disk electronics can handle up to 25 Mbytes per 

sec.  

 

Fewer head switches  Switching to the next track on the same cylinder is called 

"track switch" and switching to the next track on the next cylinder is called 

"cylinder switch".  

average switch time = (request size - 1/track size)  head switch time 

 

Bigger cylinder  When BPI increases, more sectors per track, more sectors per 

cylinder. When operating within a small range of data, more sectors in a cylinder 

has 2 effects:  

1. The seek distance is reduced  

2. The number of seek is reduced  

 

Higher track per inch  

Seek time composes of two parts:  

1. travel time  

2. settling time  

seek time = A + B  sqrt( seek distance ) + C  log(TPI) 

where A,B,C are some constants specific to the disk drive.  

 

TPI has two opposing effects on the seek time. Higher TPI means shorter 

physical seek distance, means shorter travel time. On the other hand, tracks are 

narrower require longer settling time.  

 

No ID record format  

The conventional format, each sector has ID field (or header). To increase 

capacity, no-ID recording eliminates the ID field, allowing more data sectors on 

each track. The drive can find the sectors by keeping a table of relations between 

sectors and embedded servos.  
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File system  Allocation unit  

The size of allocation unit of a file system affects the total capacity of a drive.  

For example, file allocation table (FAT) of DOS, Windows, the allocation unit is 

called "cluster", the cluster size is 16 sectors for a drive with capacity 512  

1,024 M bytes.  

 

For larger files  bigger cluster size is better. 

 

For small files  larger cluster size means larger distance between file, hence 

longer seek time. With a file occupies only small portion of a cluster, look ahead 

buffer is less effective. Result: smaller cluster size is better.  

 

RAID 

Multiple disks can be organised to use redundancy to improve reliability and 

performance.  Using an array of disks that operate independently and in parallel.  

Separate I/O requests can be handled in parallel as long as data reside on separate 

disks.  A single I/O request can be executed in parallel if the block of data is 

distributed across multiple disks.   

 

RAID (Redundant Array of Independent Disks) is proposed to close the gap 

between processor speed and slow electromagnetic disk drives.  The strategy is to 

use multiple drives and to distribute data to enable simultaneous access, therefore 

improving I/O performance. The RAID consists of level zero to level five.  An 

excellent survey written by the inventor of the RAID is [CHE94].  

 

The reliability of a disk is stated by the manufacturer in terms of the Mean Time 

To Failure (MTTF), assuming a constant failure rate  that is, an exponentially 

distributed time to failure  and that failures are independent.   

 

Example  MTTF rated of the disk IBM 3380 (7.5 Gbytes formatted) is 30,000 

hours and in practice this figure is 100,000 hours [IBM87]. 

 

The arrays are divided into reliability groups, with each group having extra 

"check" disks containing redundant information.  When a disk fails, within a 

short time, it should be replaced and the information will be reconstructed onto 

the new disk using the redundant information.  This is called Mean Time To 

Repair (MTTR).  The MTTR can be reduced if the system includes extra disks to 

act as "hot" standby spares; when a disk fails, a replacement is switched in 
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electronically.  Periodically, a human operator replaces all failed disks.  There are 

five different organisations of disk arrays (not counting Level 0), beginning with 

mirrored disks and progressing through a variety of alternatives with differing 

performance and reliability. 

 

RAID level 0 

The data is distributed across all disks in the array by stripping.  It increases the 

chance of handling multiple I/O requests in parallel.  It also achieves high data 

transfer if the request contains large amount of contiguous data, compared to the 

size of a strip.  A single I/O request involves the parallel transfer of data from 

multiple disks, increasing the effective transfer rate.  RAID 0 can also handle 

high I/O request rate by balancing I/O load across multiple disks. 

 

RAID level 1 

Every disk in the array has a mirror disk that contains the same data.  A read 

request can be serviced by either of two disks.  A write request requires both 

corresponding strips to be updated.  When a drive fails, the data may be accessed 

from the second drive.  RAID 1 can achieve high I/O request rates if the bulk of 

the requests are reads.  

 

RAID level 2 

All member of disks participate in executing every I/O request.  The spindles of 

the individual drives are synchronised [KIM86] so that each disk head is in the 

same position on each disk at any given time.  Data striping is RAID 2 is very 

small as a single byte or word.  An error-correcting code is calculated across 

corresponding bit positions on each data disk.  The bits of code are stored in 

multiple parity disks.  Typically, a Hamming code is used.  This code is able to 

correct single-bit errors and detect double-bit errors.   
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Figure 11.2  the organisation of RAID 
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RAID level 3 

RAID 3 is similar to RAID 2.  The difference is that RAID 3 uses simple parity 

bit so it requires only a single redundant disk.  In the event of a drive failure, the 

parity drive is accessed and data is reconstructed from the remaining drives.  The 

contents of any strip of data on any one of the data disks in an array can be 

regenerated from the contents of the remaining disks in the array.  Because the 

data strip is very small, RAID 3 can achieve very high data transfer rate.  

However, only one I/O request can be executed at a time. 

 

RAID level 4 

Each drive operates independently.  Separate I/O requests can be satisfied in 

parallel.  The strips are relatively large.  A bit-by-bit parity strip is calculated 

across corresponding strips on each data disk, and the parity bits are stored in the 

parity disk. Each time a write occurs, two reads and two writes must be 

performed.  One read for the data strip and second read for parity strip to 

calculate new parity.  One write to update data and second write to update the 

parity strip. 

 

RAID level 5 

In RAID 4, every write operation must involve the parity disk, which becomes a 

bottleneck.  RAID 5 is organised similar to RAID 4 but the parity strips are 

distributed across all disks to avoid the potential I/O bottleneck. 

 

Performance of RAID 

To compare all organisations we define several parameters:  

 

D = total number of disks with data (not including extra check disks)   

G = number of data disks in a group (not including extra check disks)   

C = number of check disks in a group   

nG = D/G = number of groups  
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The group MTTF is approximately  [PAT88] 
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Since the formula is the same for each level, we assume the following parameters 

D = 100, G = 10, MTTFDisk = 30,000 hours, MTTR = 1 hour with the check disk 

per group C determined by the RAID level. 

 

To compare the performance, the following parameters are considered: 

 

 Reliability overhead cost  this is the cost of extra check disks. 

 Useable storage capacity percentage 

 Performance  it is measured by the number of reads and writes per second.  

It is measured for several types of load: 

For high data rate  Large blocks of data, with large defined as getting at 

least one sector from each data disk in a group.  During large transfers, 

all disks in a group act as a single unit, each reading or writing a portion 

of the large data block in parallel. 

For high I/O rate  Small blocks of data, which is read-modify-write 

sequence of disk accessing.  This is a suitable measure for transaction-

processing systems which contains many small transfers.  During the 

small transfers, each disk in a group can act independently. 

We measure the effective performance per disk. 

 

One additional factor needs to be considered, the slow down factor S.  When 

individual accesses are distributed across multiple disks, average queueing, seek, 

and rotational delay may differ from the single disk case.  When many arms on 

different disks seek to the same track, the average seek and rotate time will be 

larger than the average for a single disk.  To account for this, the factor S is 

included, 1   S   2,  when a group of disks work in parallel.  With synchronous 

disks [KIM86], the spindles of all disk in the group are synchronised so that the 

corresponding sectors of a group of disks pass under the head simultaneously, 

there is no slow down, S = 1. Figure 11.3 summarises the performance 

parameters of all RAID levels. 
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 RAID 1 RAID 2 RAID 3 RAID 4 RAID 5 

MTTF >500 years >50 years >90 years >90 years >90 years 

Total no. of disk 2D 1.4D 1.1D 1.1D 1.1D 

Overhead cost 100% 40% 10% 10% 10% 

Usable storage 
capacity 

50% 71% 91% 91% 91% 

Efficiency per 
disk (event/sec.) 

     

Large read 1.00/S .71/S .91/S .91/S .91/S 

Large write .50/S .71/S .91/S .91/S .91/S 

Large R-M-W .67/S .71/S .91/S .91/S .91/S 

Small read 1.00 .07/S .09/S .91 1.00 

Small write .50 .04/S .05/S .05 .25 

Small R-M-W .67 .07/S .09/S .09 .50 

 

Figure 11.3  The performance parameters of all RAID levels (from [PAT88]) 

 

 

To achieve reliability and performance, the RAID starts with mirrored disks, and 

with each succeeding level improving:  

 the data rate  characterised by a small number of request per second for 

massive amounts of sequential data. 

 the I/O rate   characterised by a large number of read-modify-write to a 

small amount of random data. 

 the useable storage capacity 

 

Figure 11.4 shows the performance improvement per disk for each level RAID.  

The highest performance per disk  comes from either Level 1 or Level 5.  In 

transaction-processing situations using no more than 50% of storage capacity, 

then the choice is mirrored disks (Level 1).  For a high data rate, Level 5 looks 

best with high data rate and high useable storage capacity. 
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Figure 11.4 The efficiency per disk and usable storage capacity of all RAID levels 
for D = 100, G = 10, S = 1.3. (from [PAT88]) 

 

I/O functions 

The processor and memory are connected to input/output devices via I/O 

modules.  Peripherals do not connect directly to the system bus.  The data rate of 

peripherals is much slower than the processor and memory and the data formats 

are usually different. There will be many I/O devices connected to an I/O 

controller. Each device has an identifier and it is used to communicate with the 

I/O controller.  There are many activities in an I/O controller:  

 control and timing  

 CPU communication  

 device communication  

 data buffering  

 error detection  

 

The following scenario illustrates the control of data transfer from an external 

device to the processor.  

1. The CPU interrogates the I/O module to check the status of the device.   

2. The I/O module returns the device status.  

3. If the device is operational and ready to transmit, the CPU requests the 

transfer of data, by means of a command to the I/O module.   
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4. The I/O module obtains a unit of data from the external device.   

5. The data are transferred from the I/O module to the CPU. 

 

There are three techniques for I/O operations: programmed I/O, interrupt-driven 

I/O and direct memory access (DMA).  With programmed I/O, the CPU directly 

controls I/O operations, it must wait until the I/O operations are completed.  As 

the CPU speed is much higher than an I/O module, this is wasteful of CPU time.  

With interrupt driven I/O, the CPU issues an I/O command and continues to 

execute other task, it is interrupted by I/O module when the data transfer is 

completed.  Both programmed I/O and interrupt-driven I/O, the CPU is 

responsible to exchange data between main memory and input/output devices.   

 

The programmed and interrupt driven I/O have limitations that the I/O transfer 

rate is limited by the speed of the CPU and also the CPU is tied up managing I/O 

transfer.  With direct access memory, the I/O module exchanges data with main 

memory without the CPU involvement.   

 

DMA function 

The DMA module takes over the control of the system bus from the CPU in order 

to transfer data to and from memory.  It can forced the CPU to temporarily 

suspend operation, this is referred to as cycle stealing.  The DMA module steals a 

bus cycle.  When a CPU wishes to read or write a block of data, it issues 

command to the DMA module, the following: 

 read or write request 

 the addresss of I/O device 

 the starting location in memory 

 the size of data to be read or write 

 

The CPU delegates the I/O operation to the DMA module.  The DMA module 

transfers data, one word at a time, directly to memory.  When the transfer is 

completed, the DMA module sends an interrupt signal to the CPU. 

 

Evolution of I/O Channels  

The evolution of I/O functions started from a simple control of CPU to the 

delegation of the task to the I/O system without the CPU involvement.  The 

following steps show how I/O functions have evolved: 

 

1. the CPU directly control I/O  
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2. I/O controller, the CPU uses programmed I/O.  The CPU is isolated from 

specific details of devices interface.  

3. add interrupt, increase efficiency  

4. I/O controller uses DMA  

5. I/O controller is enhanced to become a processor, running special I/O 

instructions.  

6. I/O controller has local memory, a large set of I/O devices can be 

controlled with minimum CPU intervention.  

 

Step 5 and 6, I/O controller is called I/O channel.  The term I/O channel is 

associated with IBM mainframes as IBM is the first to recognise the importance 

of using direct access devices for external storage and used it in their major 

operating system OS/360 [PRA89].  Putting a lot of functionality into an I/O 

controller, so called, the intelligent I/O control, is attractive but in practice the 

CPU will be advanced in a much higher rate due to the market pressure. A CPU 

is fabricated using the most advanced process technology for performance 

reason.  Hence, in practice, I/O channel will be one or two generations behind the 

CPU in terms of speed. Therefore, when the speed of the CPU is much higher 

than I/O channel it makes sense to let the CPU controls devices directly.  
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Chapter 12 

Future architecture 

 

 

The future of computer architecture ties closely with the advancement of 

microelectronics.  This chapter reviews the progress of architecture and projects 

the future based on the fact that one billion-transistor device will be possible 

(circa 2010).  There are many alternative proposals ranging from more 

conservative designs to revolutionary designs.  As the future is not likely to be 

predictable with accuracy, we see only the sketch of what is possible for the 

future computer architects. 

 

Evolution of computer architecture 

The evolution of computer architecture has progressed from simple sequential 

machines to modern out-of-order execution machines.  In the early days, the main 

challenge has been to design and construct the large and complex systems that 

required team of engineers.  The emphasis in term of computer design has been 

the instruction set architecture (ISA).  As the technology advanced, especially 

microelectronics industry that can produce a large amount of resources, the 

number of transistors, on a single chip, it enables the designer to build the most 

complex part of computer, the processor, on a chip.  A new dimension on 

performance issue brought about many new ideas in computer architecture.  We 

will review this evolution as follows. 

 

Sequential execution  

A simple machine performs instruction execution that composed of instruction 

fetch, decode, execute and writeback in sequence.  Each instruction is complete 

before the next instruction begins. 

I1, I2, I3  
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Overlapped execution (pipeline)  

A pipelined machine achieves a higher performance by using the overlapping of 

execution.  Each instruction execution is divided into a number of steps, which 

are then executed by independent hardware units.  The functional units are used 

concurrently.  The next instruction can begin before the first instruction is 

finished.  In this way, many instructions can be resided in the pipeline at once.  

Fetch, Decode, Execute  
       Fetch,  Decode, Execute  

 

Without caches, memory access is much slower than processors.  The rate of 

instruction execution is limited by the speed of fetching instruction from 

memory.  The time spending in fetching an instruction is larger than the time to 

decode and execute it. To increase performance, designers tried to do "more" in 

one instruction during execution, the execution phase is multistep. 

------ Fetch----- Dec  Exe   Exe  

                                       -----Fetch--- Dec  Exe   Exe  

 

The characteristic of the ISA in this era is that the CPI is large.  The cycle time is 

also large because the complex circuits required executing complex instructions. 

This also increases the chance of having conflict in the pipeline because one 

instruction stays in the pipeline for long time that it interferes with other 

instructions.  

 

The invention of cache memory reduces the fetch time greatly. Current design 

concentrates on reducing CPI and cycle time. By simplifying the execution of 

one instruction and with appropriate choices of the ISA, the pipeline can be more 

effective and circuits can be simpler and faster.  

 

Superpipeline 

Once the pipeline enables CPI to reach 1.0, the only way to increase speed is to 

reduce cycle time. To make it possible, the pipeline is divided into finer grain 

which reduce the clock time for each stage. This technique  is called 

"superpipeline".  

Fet1, fet2, dec1, dec2, wrt1, wrt2  
             Fet1, fet2, dec1, dec2, wrt1, wrt2  
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Superscalar 

To increase performance further we need to issue more than one instruction per 

clock. This is called "superscalar". It relies on the instruction-level-parallelism 

(ILP).  As the number of simulateneous instructions in the pipeline increase, the 

stall becomes very costly.  Several techniques were invented to reduce the 

number of stall cycles, for example branch prediction, out-of-order execution, 

and speculative execution.  It is becoming more difficult in extracting the 

instructions that can be executed concurrently from programs.   

Fetch, decode, execute, writeback  
Fetch, decode, execute, writeback  
       Fetch,  decode,  execute, writeback  
       Fetch,  decode,  execute, writeback  

 

Of course, the combination such as superpipe-superscalar is possible. 

Fet1, fet2, dec1, dec2, wrt1, wrt2  
Fet1, fet2, dec1, dec2, wrt1, wrt2  
      Fet1, fet2, dec1, dec2, wrt1, wrt2  
      Fet1, fet2, dec1, dec2, wrt1, wrt2  

 

Summary  

The evolution from a non-overlap execution (sequential) machine to an 

overlapped execution (pipeline) machine was the first step.  The pipeline 

technique can be used for instruction execution or for complex instruction (such 

as floating-point) execution that required multi-cycle in the pipeline.  The CPI for 

a pipelined machine approaches one.  Multiple functional units are used to allow 

concurrent execution of instructions.   Scoreboard and Tomasulo methods are 

hardware technique that enable dynamic execution in which instructions can be 

rearranged by hardware to execute according to the resource availability.  The 

superpipeline machine has CPI equals 1.0 with a high clock rate.  The superscalar 

has CPI less than 1.0.  Another class of machine is vector machines.  Vector 

machines reduce fetch time and increase effective pipeline using the data-level-

parallelism (DLP) but its use is restricted to the class of program that fits to 

vector computation.  With this background in mind, now we start to look into the 

future. 
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Driving factors 

In 2010 the microelectronics industry will be able to manufacture 800 Million 

transistors processors with thousands of pins for 1,000 bit-bus and with the clock 

speed over 200 GHz.  The device will consume around 180 W of power.  The 

current trend is that the on-chip wires are becoming much slower than logic gates 

as the device size getting smaller.  It will be impossible to maintain one global 

clock over the entire chip.   

 

The hardware alone will not be able to extract more parallelism from programs.  

A new compiler technology is required to extract parallelism from code.  The 

present workloads are becoming more multimedia-centric and will continue to be 

so in the future.  The design and manufacturing of complex devices such as one-

billion transistor processor will be a challenging task for engineers.  Verifying 

that the design works correctly and testing each chip now consume 40-50% of 

Intel chip's design cost.  The architecture that simplifies this process will have a 

great impact. 

 

Multimedia workloads 

The multimedia workload is different from the traditional workload of the past 

[DIE97].  The characteristics of multimedia are as follows.  It requires real-time 

response, the data streams are continuous.  It is fine-grained data parallelism, and 

the workload is multitask.  Finally, multimedia workload requires very high 

memory bandwidth. 

 

All signal processing and graphics applications have inherent data parallelism.  

Input data streams are large amount of small data elements such as pixels, 

vertices and signal values.  These data frequently need identical processing such 

as filtering and transformations.  Vector units with wide data path would achieve 

significant speed up for such workloads.  Because input data are streams, cache 

performance will suffered from poor locality of data.  Data prefetch and cache 

bypass schemes become more important.   

 

General purpose processors have been enhanced with special functional units to 

support multimedia, for example Intel's MMX, Sun's VIS for SPARC, Silicon 

Graphic's MDMX for MIPS, Digital's MVI for Alpha, and Hewlett-Packard's 

MAX2 for PA-RISC.  The future architecture will provide similar functional 

units to handle multimedia workloads. 
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Proposals for future architectures 

We review seven proposals that aim to make full use of one billion transistors on 

a chip.  They range from evolutionary designs, which emphasise software 

compatibility and retaining the current programming model, to revolutionary 

architecture that break away from current practices. The more traditional designs 

employ some recent advance concept such as trace cache and multiple branch 

predictors to improve the performance of instruction issued. The non-

conventional designs rely on the combination of compiler and hardware to extract 

more parallelism from programs.  

 

To deliver a large number of instructions to the execution units, the first three 

proposals rely on a common technique, the trace cache [ROT96].  The second 

technique that will have impact on the future architecture is the use of hybrid 

branch prediction. The current branch predictor is capable of 97% accuracy but 

the remaining misprediction still incurs a large performance penalty.  A 

multicomponent hybrid predictor such as Multi-Hybrid [EVE96] can achieve 

nearly 100% prediction accuracy. 

 

Trace cache 

The trace cache is an instruction cache.  Its main purpose is to fetch pass a taken 

branch. It stores logically continuous instructions in physically continuous 

storage. A cache line stores a segment of the dynamic instruction trace  up to an 

issue width  across multiple taken branches.  Instruction fetch hardware 

unwinds programs into traces, each of which may have 8-32 instructions as well 

as predicted conditional branches.  The traces are placed in a trace cache and the 

fetch unit subsequently reads traces from the trace cache.  A single entry in the 

trace cache holds an entire trace. The trace cache is access using the starting 

address of the next block of instructions combined with predicted information 

returned by the trace predictor. An entire trace consisting of multiple basic blocks 

is fetched in one cycle.  The fill unit attempts to maximise the size of segments 

by coalescing instructions from multiple cycles.  Figure 12.1 shows the 

organisation of a trace cache.   
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Figure 12.1  the organisation of a trace cache 

 

Figure 12.2 shows the gain of a trace cache versus an instruction cache for three 

largest applications from SPECint95 benchmarks: go, gcc, and vortex.  Assume a 

16-wide issue processor with perfect branch prediction.  The trace cache is more 

effective and the gain increased as the size of cache is increased. 
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Figure 12.2  the effect of trace cache continue to gain when the size is increased  
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Hybrid branch prediction 

The multi-hybrid branch predictor uses multiple separate branch predictors.  Each 

predictor is tuned to different class of branch.  This solves the problem of 

sensitivity versus accuracy.  A large predictor takes more time to react to changes 

in a program.  A small predictor can react quickly but is not very accurate.  The 

Multi-Hybrid [EVE96] uses a set of selection counters for each entry in the 

branch target buffer keeping track of the predictor currently most accurate for 

each branch and then using the prediction from that predictor for that branch.  

Figure 12.3 shows the nearly 100% accuracy of the Multi-Hybrid on SPECint95. 
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Figure 12.3  Misprediction rate of Multi-Hybrid for SPECint95 

 

Advanced superscalar 

An advanced superscalar processor is a scale up of the current design to issue 16-

32 instructions per cycle [PAP97].  The first difficulty is in instruction delivery, 

an advanced superscalar processor uses the trace cache and a hybrid branch 

predictor to deliver sufficient number of instructions to the execution units. 

 

The second difficulty is the memory bandwidth and latency. A 16-wide issue will 

need to execute about eight load/stores per cycle.  Instead of using a large 

monolithic, multiported, first-level cache which will have large cycle time, a 
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number of smaller replicated first-level caches will provide the require ports with 

fast cycle time.  A large second-level cache is also on-chip.   

 

Figure 12.4  an advanced superscalar processor 

 

The execution units comprising 24 to 48 pipelined functional units with large 

reservation stations having the capacity of 2000 or more instructions will be able 

to execute 16-32 instruction per cycle.  Figure 12.5 shows the available ILP of 

SPECint95 benchmarks with an instruction window of 2000 instructions while 

varying issue/execution widths.  Assuming a perfect cache and perfect branch 

prediction. 
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Figure 12.5  the available parallelism with a instruction window of size 2000. 
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Superspeculative 

A superspeculative processor enhances the wide issue superscalar performance 

using speculative at every point in the pipeline [LIP97]. The instruction execution 

has four phases: fetch, decode, execute, and commit.  The architecture employs a 

wide range of speculative technique to improve the throughput of instruction 

flow, register dataflow, and memory dataflow.  

 

To improve the instruction flow, a trace cache is used.  The misprediction is 

reduced using two-phase branch predictor with a local history and a global 

branch history [MCF93].  Multiple branches are predicted in each cycle. 

 

Register dataflow affects the processing of ALU instructions.  The dependence 

prediction can resolve inter-instruction dependency.  This technique predicts the 

dependence between instructions and speculatively allowing instructions that are 

predicted to be data ready to execute in parallel with exact dependency checking. 

The source operand value prediction eliminates true data dependency.  This 

technique uses dynamic-value history, stored per static program instruction, to 

predict future values of that instruction's source operands. 

 

 

 

Figure 12.6  an organisation of a superspeculative processor 
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To improve memory dataflow the average memory latency is minimised using 

load value prediction.  This technique uses per-static-load value history to predict 

future values.   

 

The performance of a superspeculative processor is evaluated using a processor 

with 32-issue, 128-entry reorder buffer, 64K byte 4-way set associative D cache 

and I cache, a perfect second-level cache, and a 128-entry fully associative store 

queue.  Figure 12.7 shows the cumulative gain of the superspeculative IPC 

(instruction per cycle) beyond a superscalar. 

 

The result demonstrates that superspeculative techniques provide impressive 

performance, without them a very wide superscalar does not scaled to improve 

the level of performance. 
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Figure 12.7  additional performance of a superspeculative over a superscalar 

 

Trace processors 

A trace processor [SMI97] breaks programs into dynamic sequences of 

instructions, called traces, and uses multiple processing elements to execute 

multiple traces.  A trace processor can execute ordinary serial programs written 

in a standard language.  A high-level control unit partitions the instruction stream 
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into traces. The processor fetches and executes traces as a unit using a trace 

cache.  Each processing element issues four instruction per cycle, a four-element 

system can achieve a performance of 16 instructions per cycle. (Fig. 12.8) 

 

 

 

Figure 12.8 a trace processor  

 

Simultaneous multithreading 

A simultaneous multithread processor (SMT) [EGG97] exploits all types of 

parallelism.  It consumes both instruction-level (ILP) and thread-level parallelism 

(TLP).  The TLP can come from either multithreaded, parallel programs or 

individual,    programs in a multiprogramming workload.  More instructions are 

extracted from TLP to fill the pipeline. It combines wide issue superscalar 

processors (similar to MIPS R10000) with multithreading.  The processor can 

hold the hardware state (registers, PC and so on) for several threads at once.  It 

can issue multiple instructions form multiple threads in each cycle.   

 

The fetch unit has eight program counters, one for each thread context.  On each 

cycle, it selects two different threads and fetches eight instructions from each 

thread.  This increases the probability of fetching only useful instructions.  It then 

chooses a subset of these instructions for decoding.  This scheme performs 10% 
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better than fetching from one thread alone.  The thread selection uses the 

instruction count feedback technique, which gives highest priority to the threads 

with the fewest instruction in the decode, renaming, and queue pipeline stages. 

 

A SMT processor has an eight instruction fetch/decode width, six integer units, 

four floating-point units, 32-entry integer and floating-point dispatch queues, 

hardware context for eight threads, 100 integer renaming registers, 100 floating-

point renaming registers, and retirement up to 12 instruction per cycle.   

 

 

Figure 12.9  a simultaneous multithread processor 

 

To evaluate the performance, the SMT is compared with a four-processor 

multiprocessor system running parallel workloads.  Each processor in the four-

processor system contains approximately one-fourth of SMT's chip resources.  

The benchmark is the parallel applications from SPEC95 and Splash2 suites.  The 

result is shown in Figure 12.10.   

 

The SMT obtained better speedup than the multiprocessors.  Speedups of the 

multiprocessors were hindered by the fixed partitioning of their hardware 

resources across processors.  Using both instruction-level-parallelism and thread-

level-parallelism, a simultaneous multithread processor uses functional units 

more effectively.  It achieves greater instruction throughput and programs speed 

up on multiprogramming and parallel workloads. 
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Figure 12.10  instruction throughput of SMT and MP4 on parallel workloads. 

 

Chip multiprocessors (CMP) 

A chip multiprocessor (CMP) [HAM97] has a number of duplicated processors 

(4-16) on a chip and run parallel programs.  In addition to loop-level-parallelism 

and  thread-level-parallelism, a CMP  exploits a  third  form  of very  coarse-

grain 
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Figure 12.11 a chip multiprocessor  

parallelism, process-level-parallelism.  The form of parallelism comes from 

independent applications running in independent processes.   

 

Because of the interconnect delay, the layout of a billion-transistor chip will 

significantly affect the processor architecture.  A CPU will be built out of several 

small, high-speed logic blocks connected by longer, slower wire that are used 

infrequently.  A CMP processor composed of 8 small 2-issue superscalar 

processors with 16 16K byte caches.  Eight cores are independent.  The small 

cache and tight connection allows single cycle access.   

 

To maximise CMP performance, programmers must find thread-level-

parallelism.  The CMP has been evaluated against a single 2-issue processor 

running SPEC95 and multiprograms.  The multiprogram is an integer 

multiprogramming workload.  All of them are computation intensive and run as a 

separate process.  This benchmark has a large amount of process-level-

parallelism.  The result is reported in Figure 12.12. 
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Figure 12.12  CMP performance relative to a superscalar 

 

Among many alternatives, a multiprocessor on a chip will be easiest to 

implement.  A CMP processor offers superior performance using relatively 

simple hardware.  On code that can be parallelised into multiple threads, the 

CMP core will perform as well as or better than more complicated wide issue 

superscalar on cycle-per-cycle basis. 
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Intelligent RAM 

The intelligent RAM [PAT97] merges a high-performance processor and DRAM 

main memory on a single chip to lower memory latency, increase memory 

bandwidth, and improve energy efficiency.  The processor and memory speed 

gap has been widening steadily as processor performance increasing at the rate of 

60% per year while memory latency in improving at only 7% per year.  Large 

amount of chip area is devoted to cache memory to bridge this gap.  For example, 

caches occupy almost half of the die area in Alpha 21164. IRAM approach uses 

on-chip resources for DRAM. 

 

This on-chip memory can be treated as main memory.  It supports high 

bandwidth and low latency using a wide interface.  Using on-chip main memory 

also reduces the number of pins for memory interface off-chip. An architecture 

that is a natural match to IRAM is vector processors. The combination of vector 

units with a scalar processor creates a general-purpose architecture.  Vector units 

have many applications including scientific calculation, multimedia, and 

databases.  Because of the simplicity of their circuits, vector units can operate at 

higher clock speed and also provide higher energy efficiency.   

 

 

Figure 12.13  organisation of an IRAM vector processor 

 

Assume the feature size of 0.13 um and a die area of 400 mm2, a full size DRAM 

die with a quarter of area dedicated to logic.  A vector IRAM processor includes 
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the following: the vector unit consisted of 64-bit floating-point add, multiply, and 

divide; integer operations; load/store; and multimedia operations, running at 

1GHz, 32 64-element vector registers, and sixteen 1024-bit-wide memory ports.  

The peak performance is 16 GFLOPS at 64-bit per operation.  The on-chip 

memory has a capacity of 96 Mbytes, assuming a pipelined synchronous DRAM 

interface with 20-ns latency and a 4-ns cycle time, the bandwidth will be 

adequate for 192 Gbytes/sec to feed vector units. 

 

Merging a microprocessor and DRAM on a chip has the following advantages: a 

reduction in latency by a factor of 5 to 10, an increase in bandwidth by a factor of 

50 to 100, an advantage in energy efficiency of a factor of 2 to 4.   

 

RAW 

RAW is a highly parallel architecture consists of hundreds of simple processors 

connected through a reconfigurable logic [WAI97].  It eliminates the traditional 

instruction set interface and exposed the simple replicated architecture directly to 

the compiler.  This allows the compiler to customise the hardware to each 

application. 

 

A RAW processor is a set of interconnected tiles, each of which contains 

instruction and data memory, an ALU, registers, configurable logic, and a 

programmable switch for routing the message between tiles.  It allows 

communication with short latencies, similar to register access.  Each tile can use 

configurable logic to construct operations suited to a particular application.  

Static RAM distributed across tiles eliminates the memory bandwidth bottleneck 

and provides short latency.   

 

One billion-transistor die could carry 128 tiles, each has 16 K bytes instruction 

memory, 16 K bytes switch instruction memory, 32 K bytes first-level data 

memory.  The memory is SRAM type and backed by 128 K bytes DRAM.  Each 

tile has 2 M transistors for a pipelined processor (a R2000 equivalent CPU), 

floating-point units and configurable logic.  Interconnect consumes 30% of chip 

area. 
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Figure 12.14 organisation of a RAW processor  

 

Software implements operations such as register renaming, instruction 

scheduling, and dependency checking.  Compilers can schedule single word data 

transfer and exploit ILP.  A RAW architecture implements wide-word arithmetic, 

and multiple-bit or byte-level operations in each tile. Software can select the data 

path width. The processor can perform bit-level applications such as logic 

simulators and byte-level applications such as graphics with high degree of 

parallelism.   

 

The compilation process maps programs to RAW hardware.  It composed of 

partitioning, placement, routing, scheduling and configuration selection.  

Partitioning aims to find fine-grain ILP.  Placement maps threads to physical 

tiles.  Routing and scheduling allocate physical network resources and produce a 

program for each tile switch.  Configuration selection replaces each compound 

operation by a call to an appropriate custom instruction.  Compiler invokes a 

logic synthesis tool to translate a custom operation into the configurable logic. 

 

A prototype using FPGA technology running at 25 MHz.  It uses static schedule 

and hardwired control.  Table xy compares the prototype with all software 

executing of a 2.82 SPECint95 SparcStation 20/71.  The compilation step of the 

RAW prototype is very expensive requiring several hours on 10 workstations.  

The prototype achieves 10-1000 speedup over the commercial processor.   
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Table 12.1  Hardware prototype 25 MHz (Xilinx 4013) compares to 
software executing on 2.82 SPECint95 SparcStation (Sparc 20/71) 

  

 Benchmark  data width (bits)  no. of elements  speed up over sw 

 binary heap 32 15 1.26 

 bubble sort  32 64 7 

 DES encryption 64 4 7 

 integer FFT  3 4 9 

 Jacobi 16x16 8 256 230 

 Jacobi 32 x 64 8 2048 1562 

 Conway's life 64 x 16 1 1024 597 

 Conway's life 64 x 64  1 4096 1758 

 integer matrix multiply 16 16 90 

 merge sort 32 14 2.6 

 n queens 1 16 3.96 

 single-source shortest path 16 16 10 

 multiplicative shortest path 16 16 14 

 transitive closure 1 512 398 

 

Conclusion 

The rate of progress is very fast. It is interesting to explore the trends that will 

affect future architectures and the space of these architectures.  Future processors 

will have large on-chip memory.  The level-two cache will be the norm.  Large 

amount of on-chip transistors allows virtually anything to be implemented.  The 

limiting factor will likely be the imagination of the architect. 

 

References 

[DIE97] Diefendorff, K., and Dubey, P., "How multimedia workloads will 

change processor design", Computer, September 1997, pp. 43-45. 

[EGG97] Eggers, E., Emer, J., Levy, H., Lo, J., Stamm, R., Tullsen, D., 

"Simultaneous Multithreading: a platform for next-generation processors," 

IEEE Micro Sept./Oct. 1997, pp.12-19. 

[EVE96] Evers, M., Chang, P., and Patt, Y., "Using hybrid branch predictors to 

improve prediction accuracy in the presence of context switches," Proc. 23rd 

Ann. Int. Sym. Computer Architecture, ACM Press, NY., 1996, pp.3-11. 



239 

[HAM97] Hammond, L., Nayfeh, B., Olukotun, K., "A single chip 

multiprocessor," Computer, September, 1997, pp.79-85. 

[LIP97] Lipasti, M., and Shen, J., "Superspeculative microarchitecture for 

beyond AD 2000," Computer, September, 1997, pp.59-66. 

[MCF93] McFarling, S., "Combining branch predictor, Tech. Rep. TN-36, 

Digital Equipment Corp., Maynard, Mass., 1993, http:// www. research. 

digital. com/ wrl/ home.html 

[PAT97] Patterson, D., Anderson, T., Cardwell, N., Fromm, R., Keeton, K., 

Kozyrakis, C., Thomas, R., and Yelick, K., "A case for intelligent RAM," 

IEEE Micro, Mar./Apr., 1997, pp.34-44.  

[PAP97] Patt, Y., Patel, S., Evers, M., Friendly, D., and Stark, J., "One billion 

transistors, one uniprocessor, one chip," Computer, September, 1997, pp.51-

57. 

[ROT96] Rotenberg, E., Bennett, S., and Smith, J., "Trace cache:  a low latency 

approach to high bandwidth instruction fetching," Proc. 29th Ann. 

ACM/IEEE Int. Sym. on Microarchitecture, IEEE CS Press, 1996, pp.24-34. 

[SMI97] Smith, J., and Vajapeyam, S., "Trace processors: moving to fourth-

generation microarchitectures," Computer, September, 1997, pp.68-74. 

[WAI97] Waingold, E., Taylor, M., Srikrishna, D., Sarkar, V., Lee, W., Lee, V., 

Kim, J., Frank, M., Finch, P, Barua, R., Babb, J., Amarasinghe, S., and 

Agarwal, A., "Baring it all to software: RAW machines", Computer, 

September, 1997, pp. 86-93. 



240 

 



241 

Appendix A 

Projects in computer architecture 

 

 

Problem definition 

The objective is to design or modify a machine and run one or two benchmark 

programs on its simulator and report its performance (CPI). Basically what you 

have to do is to "design" a machine, i.e. its instruction set and its behaviour 

(microstep).  You must modify or write a simulator and run some benchmark 

programs chosen from the Stanford integer benchmark suite. If you cannot make 

the simulation to work you can submit your design and simulate it by hand.  

 

There are 15 problems ranging from creative to mechanistic process. The reward 

will be proportional to the "quality" of the solution and the "difficulty" of the 

chosen problem.  

 

Project list 

1. Superscalar S1 with 2 ALUs  

Add extra ALU to S1. You can use non-pipe or pipe version. Invent a way to 

issue two instructions at the same time when possible.  

 

2. LIW version of S1  

Redesign S1 to have LIW capability. You have to determine what kind of 

additional functional units you want to add to improve the performance (depend 

on your benchmark programs).  
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3. S1 with Scoreboard  

Assume S1 has multifunctional units : FPmult1, FPmult2, FPadd, FPdiv, Integer. 

Simulate Scoreboard running this program :  
LF F6,34(R2)  
LF F2,45(R3)  
MULTF F0,F2,F4  
SUBF F8,F6,F2  
DIVF F10,F0,F6  
ADDF F6,F8,F2  

 

4. S1 with Tomasulo 

Assume S1 has FP adder, FP multiplier, with 3 and 2 reservation stations, Load 

buffer, Store buffer with 6 and 3 entries. Simulate S1 with Tomasulo running this 

program:  
LF F6,34(R2)  
LF F2,45(R3)  
MULTF F0,F2,F4  
SUBF F8,F6,F2  
DIVF F10,F0,F6  
ADDF F6,F8,F2  

 

5. S1p with branch prediction  

Add branch prediction capability to S1 pipe. You have to decide the method to do 

branch prediction, branch-target buffer.  

 

6. S1p with delay branch  

Add delay branch capability to S1 pipe. Examine your benchmark programs. 

How many delay slot can be usefully filled?  

 

7. Stack machine ISA  

Design a stack machine, its instruction set must be stack oriented (no register!). 

Have a look at my research paper which I designed a stack machine  

http://www.cp.eng.chula.ac.th/faculty/pjw/r1/R1.htm  

http://www.cp.eng.chula.ac.th/faculty/pjw/r1/R1.htm
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at the section "intermediate code specification". You can also have a look at Java 

chip called PicoJava at http:// www.cp.eng.chula.ac.th/ faculty/ pjw/ teaching/ ca/ 

JavaVM/ picojava.pdf  

 

8. Minimum instruction set CPU  

Design a processor with minimum number of instructions. It must be able to run 

at least a benchmark program completely (that is, it must have enough instruction 

to implement a benchmark program). You should not worry too much about the 

ISA being absolute minimum, however you should try to make its ISA as small 

as you can.  

 

9. Fastest Matrix Multiplication S1  

Modify S1 such that it can run Matmul.c fastest. There are many ways to do this, 

you can modify the instruction set (add some special instruction) or add 

functional units or modify organization (such as two pipelines).  

 

10. Comparing S1 with 2, 3, 4 pipeline stages  

Design S1 with 2, 3, 4 stages pipeline. Compare its performance with S1p which 

has 5 stages pipe. Please note that in this case one stage of the pipeline will take 

several clocks to be completed.  

 

11. S1 microprogram with 2 formats microprogram  

Modify S1m to use 2 formats microprogram to shorten the width of a 

microprogram word. After observing that ALU functions, Memory control, are 

never activated at the same time as Bus transfer (Dest, Src, SelR), the following 

formats are suggested :  

Format 1  Bus transfer  

First bit is 0 , Dest : 5, Src : 6, SelR : 3, Cond : 4, Goto : 5 , total = 24 bits  

Format 2  ALU and Memory control  

First bit is 1, Sel2R : 1, ALU : 4, Mctl : 2, PC+1 : 1, undef : 6, Cond : 4, Goto 

: 5, total  = 24 bits  
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This format reduces the width from 31 bits to 24 bits without performance 

penalty. Sel2R is a control bit to select 2 registers for ALU input. All the rest are 

similar to S1m.  

 

Write a new microprogram using this narrower microprogram word. Write 

simulator to run it. Run a benchmark program under this new simulator. 

Remember that the machine code (object code) doesn't change at all running 

under this new simulator or the original S1.  

(Read Stalling's text book for an example of two-format microprogram)  

 

12. Using microprogram as instructions directly.  

Consider that there is no "instruction set", no program counter (but microprogram 

counter), no instruction fetch in the normal sense. Your machine and "program" 

is the microprogram itself. You have to add some fields into microprogram 

word such as : R0, R1, R2, ADS which hold the appropriate values. Can you 

pipeline this machine? (pipeline execution of the microprogram).  

 

13. Add Floating point instructions to S1  

Add the following FP instruction to S1 : fadd, fmult, fdiv. The FP number 

in your design is a 32 bits word and a set of FP register (32 bits) is needed. In 

writing the simulator you don't have to do IEEE Floating point arithmetic 

yourself. You can use data type in C to do it for you, i.e. you can multiply, 

divide, add the floating point number in C.  

 

Benchmark programs (choose one)  

1. running the program to find square root.  

Using NewtonRaphson, or so called "successive approximation" method. 

Let x be a guess square root of a then  

x n+1 = 0.5 ( xn + a/xn ) 

Iterate this 7 times and the precision will always be better than 24 bits.  

2. evaluate sin x  

sin x = x - x3/3! + x5/5! - x7/7! + ... 

using only four terms (not very accurate), where x is expressed in radians and 

maximum is pi/2. 
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14. Change S1 to 32 bits word  

Design new ISA, instruction set, instruction formats. This machine is essentially 

S1 with 32 bits instruction and data. You should add some new instructions to 

make your machine run the benchmark program faster. Write its simulator and 

run benchmark  

 

15. Change S1 instruction set to 3 registers format  

You must change ALL S1 instructions that are appropriate and add the 

"immediate" value to some instruction.   These are the example of immediate 

instructions :  

 

Immediate mode : addi, cmpi, inci, storeri.  

addi r1,N    r1 = r1 + N 

 

Index mode : loadx, storex  

loadrx (r1),r2,offset  (r1)+ offset -> r2  
storex r1,(r2),offset  r1 -> (r2) + offset 

 

Write microstep, modify simulator and run benchmark programs.  

 

Benchmark Programs 

The benchmark suite is Stanford Integer benchmark. They are a collection of 

small interger programs supposed to test CPU integer performance. These 

programs are suitable for students' excercise and are NOT realistic by today 

standard: qsort.c, queen.c, sieve.c, hanoi.c, matmul.c, bubble.c, perm.c.  

 

Stanford integer benchmark suite  

bubble sort 100..1 to 1..100 global a[100], N=100  

hanoi  5 disks from 1 to 3, global num[4], D = 5  

matmul  mul 10 x 10 matrix, global a[100], b[100], c[100] a = b  c  

perm  permute N, global val[4], id, N = 4  

qsort  quick sort 100..1 to 1..100, global a[100], N = 100  

queen  soln of all 8-queen, global Q,Z,D, col[8], d45[15], d135[15], 

queen[8], soln, run find(0)  
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sieve  find prime less than N, global p[1000], N = 1000, original N = 10000 

but is too large for 16-bit applications.  

 

How to do the project 

1. You have to design an instruction set with enough instruction to execute 

some benchmark program (no I/O).  

2. You have to design "microarchitecture", i.e. the internal structure of a CPU 

and write its "microstep".  

3. A set of benchmark program (Stanford integer benchmark) written in C is 

provided. To run a benchmark program you have to convert it to an assembly 

level program (in the instruction set of your own design). You don't have to 

run the whole program. You must choose some portion of programs to 

measure your design. The most important portion that determine the runtime 

of a program is its "innest loop". The benchmark should be taken from 

several parts of high level program and should be at least 10-20 lines of 

assembly code in total. Choose the benchmark that will illustrate the 

capability of your design.  

4. To validate (check that the design is correct) and evaluate (measure how fast 

your processor is) the design, you can either :  

4.1. Write (modify) a simulator and run the benchmark programs to count 

the number of clocks required to complete the tasks (you will earn extra 

bonus for doing the simulation) or  

4.2. Estimate the number of clocks by hand. You need to make sure that you 

count the right thing.  

5. You must hand in a report containing the following sections :  

5.1. Motivation behind your design (why you did it that way).  

5.2. Instruction set details : opcode, opcode format, number of clock required 

by each instruction.  

5.3. Microarchitecture and its microstep.  

5.4. Your benchmark program ( in your assembly language) and why you 

choose this particular part of the program. Programs should be well 

commented so that I can read and understand what it does.  

5.5. How you validate and evaluate your design.  

5.6. Performance of your design (Cycle Per Instruction)  

5.7. Conclusion, what you learn from this project. 
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How I evaluate your project 

I will look for the "quality" of your work including:  

 

 the innovative idea and/or well thought out solution  

 the correct understanding of the concept that you applied  

 the completeness of your work, correctness of the result  

 

Any question regarding the project, please contact me promptly.  
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Appendix B 

How to do a paper 

 

 

In this assignment, students learn how to acquire additional knowledge from the 

current academic literature.  The list of recommended articles are posted and 

students choose to do one of them.  These articles come from the current research 

work in the conference proceedings or the journals.  They contain the advanced 

information not appear in a normal textbook.  Students are expected to read and 

summarise, then present it to the class and finally submit written reports. 

 

Requirements 

You have to submit  

1. You report summarising the paper. You can write in either English or 

Thai. Please write in your own words. I will not accept the style of "cut 

and paste" from the original paper. I will look for the following point :  

 Can you get the main point of the paper (hint: main point always 

state in the abstract). If you can, do you explain it correctly? This is 

asking you "what" about the paper.  

 Can you get the motivation behind the paper. This is asking you 

"why" this paper.  

 Can you explain "how" they experiment/propose their idea.  

2. You must attach a copy of the original paper with your report. I need it to 

check your writing/ understanding of the paper.  

 

Everyone has to prepare a 8-minute presentation. I will choose around 8 papers 

for presentation on spot. Please prepare to present your summary using around 4-

5 transparencies.  
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Assessment 

I will judge the paper along these aspects :  

 Correct understanding of the concept in the paper.  

 Quality of your writing : completeness, easy to understand, clarity of the 

issue etc.  

 Quality of your report. (but don't spend too much time in making the 

report looks "superb", it is the "content" that is important).  

 

Don't just translate English to Thai. Write in your own words! Make the central 

issue clear. Don't write 40 pages to explain 6 pages of the original English.  

 

Tips how to give a good talk 

 Presenting what you understand. Your friends will be more likely to 

appreciate a talk that they understand which mean the presenter must 

understand the subject first.  

 Don't just summarize the paper. It will not be convincing. You need to 

present some evidence for what you are claiming, such as, the processor 

X is very good because it is very fast, now, show me the benchmark 

result for this processor. Therefore, present some hard fact that included 

in the full paper.  

 Talk about what you think about that paper. This is your opinion. The 

audience like to hear opinion and give them something to discuss.  

 Prepare your slide. A big, easy to see, clear layout, slide will relieve the 

eyes strain of your friends. Remember they all have to sit through 8 

papers!  

 


