

COMPUTER

ARCHITECTURE:

A SYNTHESIS

Prabhas Chongstitvatana

CHULALONGKORN UNIVERSITY

2001 Copyright by Prabhas Chongstitvatana

To my dearest mother I dedicate this book.

i

Preface

Computer architecture is an exciting subject. The rapid development of

technology increases the speed of a processor by 60 % every year continuously

for 20 years. This translates into a factor of more than 1,000 times speed

improvement of computer systems from 1980-2000. This is almost beyond any

imagination of the creators of the technology. In my life time, I have witnessed

the key development of this technology and the important discoveries in this field

so often that it almost becomes a part of every life! It is difficult to find the

advancement of this scale in other fields. The understanding of this development

is important to foresee the future and understand the limitation of the technology.

Teaching computer architecture is extremely rewarding and at the same time can

be exhausting as the subject itself evolved at such a rapid rate. I have been

teaching students at many levels including bachelor degree, master degree and

doctoral degree for a number of years. My experience in teaching the subject is

that students learn best by "doing", playing with the design. In the past,

performing the experiments with computer design is difficult. However, as our

knowledge in computer design grows, we are able to understand and model its

behaviour more accurately and more easily. We are able to develop simple tools

that can simulate approximate behaviour of various parts of computer systems

without too much difficulty. The tools can change the way we learn about

computer architecture. These tools are simulators at different levels. At the

program-level, a program profiler enable us to see how different parts of the

program spend their times. At the instruction-level, the simulator exposes the

execution of machine instructions and the frequency of their use. The lower-

level down to the level of machine organisation can illustrate the inner working

of a processor and let us understand how each component cooperates to achieve

performance under different constraints. All these tools enable us to learn with

great clarity.

This book explains various parts of modern computer systems. Beginning with

the basic organisation and extend it to incorporate performance enhancement

features such as pipeline, multiple functional units and vector units. This book

compiles many ideas of performance enhancement of modern processors, for

example, speculative execution and the revival of the very long instruction word

(VLIW) processors. The explanation at each step is accompanied with design

examples and the executable model for students to experiment with. Students

can try alternative designs and vary constraints to learn about the effect of

different architectural features. The details of these tools are discussed at the end

of this preface.

Already there are many excellent books on computer architecture. I will mention

three books. The first one is the "Computer structure: reading and example" by

Bell and Newell. The second one is "Computer architecture: a quantitative

approach" by Hennessy and Patterson. The third one is "Computer architecture"

by Blaauw and Brooks. I learn a lot from these books and always enjoy reading

them. I strongly recommend students of computer architecture to read them too.

I believe that there are many aspects of the subject of computer architecture. One

aspect is the lesson learned from the past, which can be read from the history of

computers and the development of computer technology. Another aspect is the

present day development, the knowledge that can be learned from the current

processor design. It is very difficult to write a book that can tracked the ever

changing technology (such book will have to be rewritten every 2 years).

However, some knowledge that has been distilled from all these materials is

valuable and long lasting. It is impossible to include all aspects of the subject in

one book. It is the duty of a teacher to select only some topics to be included in

his teaching materials. I have chosen to present the view of computer

architecture as an evolutionary path towards the ever changing needs of society.

I hope students will gain some knowledge reading and experimenting with the

design in this book and enjoy it to the extend that they want to learn more by

themselves.

The content of this book is divided into three parts. Part 1 is the basic processor

design. Part 2 is the performance enhancement architectural features. Part 3

contains the rest of computer systems: memory and magnetic disks, and includes

the discussion of future architecture. Totally there are 12 chapters. The chapters

of Part 1 are as follows.

Chapter 1 describes the basic concepts of computer architecture and the view

that computation is caused by the control of data flow into various functional

units. In this chapter, we define performance and its measurement. An

interesting history about the origin of computers is briefed at the end of chapter.

Chapter 2 discusses the instruction set design which has an important impact on

the performance. The assembly language programming is explained. The end of

the chapter includes the discussion of the reduced instruction set computer

(RISC) which is a revolutionary idea of instruction set design in 1980.

Chapter 3 explains computer arithmetic. Both integer and floating-point

arithmetic are described in details.

Chapter 4 explores the control unit. The elegance of microprogramming is

illustrated. The microprogrammed control unit is viewed as a controller made of

another small computer. This small computer contains its own program which is

an executable code. This program represents the control information and is

called "microprogram". The concept of microprogram is very powerful and it is

the driving force of the evolution of computer design in 1970.

Chapter 5 integrates all fundamentals in Chapter1-4 to design a hypothetical

processor, S1. The detailed design is discussed. Its control unit is implemented

in both hardwired and microprogrammed. The instruction-level simulation of S1

and its microprogramming is explained.

Part 2 consists of 4 chapters.

Chapter 6 studies the most fundamental technique for performance

enhancement, pipelining. For a concrete design, a case study of instruction

pipelining in S1 is discussed.

Chapter 7 discusses many techniques for performance enhancement, for

example, superscalar, VLIW, and speculative execution.

Chapter 8 describes supercomputer class of architecture, vector machines. The

programming of vector machines and the measurement of their performance are

explained.

Chapter 9 describes stack architecture. It was very popular in the past because

of its simplicity and suitability for block-structured languages. A case study of

one stack processor, R1, is illustrated. Its simulation is studied and the result

compared with a register-based architecture.

The rest of the content contains in Part 3.

Chapter 10 studies memory system which is very important and is the most

expensive part in modern computer systems. The recent advances in memory

technology is included in the end of the chapter.

Chapter 11 explores magnetic disks and its performance. The disk array (RAID)

system is discussed. The final chapter,

Chapter 12, looks into the future of computer architecture which one-billion

transister device will be possible. Seven proposals for future architecture are

examined. These proposals range from evolutionary design to revolutionary

design.

An integrated part of this book is the set of tools to explore computer design.

These tools enable students to see the detailed working of the design and to try to

vary constraints and understand their effect. The source code of simulation is

made available so that students can modify it to try out variation of the design

easily. In using this book in a semester-based teaching, I gave out the design

assignment around the middle of the course. The problems generally ask

students to design a processor that includes a particular architectural feature.

Students must work on the simulation of the design and accompany their design

with the detailed measurement of the performance. A number of good work are

selected to be presented to the class. Near the end of the course, students are

assigned to research the additional topics in computer architecture which are not

discussed in the class. A list of research papers from the current literature is

posted. Students choose their topics from this list and summarise their finding in

the written reports. Selected works will be presented to the class by the authors.

The detailed example of these assignments can be found in the appendix.

The tools consist of five programs.

1. Learning the assembly language -- Motorola 6800 instruction set is used as a

learning tool. The tool includes an assembler, A68, which translates a source

program into an executable machine code, and a simulator, SIM68, which

enables the 6800 machine code program to be executed. The SIM68 allows

students to examine instruction by instruction execution and its effect on

registers and flags.

2. Instruction-level simulator of S1 -- Students can write the program for S1 and

see it execution. The source code of the simulator is available. Students can

understand how S1 microarchitecture works. The simulator can be modified

to change the behaviour of the processor such as adding new instructions,

changing instruction format etc.

3. Microprogramming tool for S1 -- The simulation of microprogrammed S1

enables students to try out microprogramming. The tool can be modified to

run different format of microprogram or change its semantic.

4. Pipeline simulation of S1 -- This simulator shows the mechanism of pipeline

and its control (pipeline stall, and interlocking). The tool can be modified to

simulate other parallel operations such as scoreboard and Tomasulo.

5. Cache simulation -- The tool simulates three types of cache: fully

associative, direct-map and set associative. An address trace is used to

compare the performance of different cache configurations and their

parameters such as cache size.

These tools are available through the web site of this course at

http://www.cp.eng.chula.ac.th/faculty/pjw/teaching/ca.htm

Also include in the course pages are the additional materials such as information

on current processors, the links to other sites in computer architecture. These

pages will be updated from time to time to reflect the current event in my

teaching.

Acknowledgements

First and foremost I would like to thank my parents who support me and always

encourage me throughout my years. I thank all my teachers who gave me the

knowledge and created the foundation that help me to grow and become a teacher

myself. I thank Susak Thongthammachart (at Kasetsart University), who always

is my mentor. I thank Boonklee Plangsiri who taught me finite automata, Paisal

Saguanmoo who gave me my first exposure to computer architecture. I would

like to thank all my students who endure my teaching, at the department of

electrical engineering, Kasetsart university, at the department of computer

science, Mahidol university, at the department of computer engineering, King

Mongkut university at Thonburi, and at the department of computer engineering,

Chulalongkorn univerity. I thank all students who commented on my course and

recommended many improvements which are included in this book. I thank all

teaching assistances who bear?? with my tight schedule of the course. I am

grateful for all the effort that students put into the study in all my classes. Their

creativity and their attention become the source of my enjoyment and my

happiness in all my teaching. I thank Somchai Prasitjutrakul and Jaruloj

Chongstitvatana who read the draft of this book and recommended a number of

improvement of the presentation. I thank the department of computer

engineering, Chulalongkorn university that provides me with the best atmosphere

to write and supports me to finish this book. The cover of this book is designed

by Yodthong Rodkaew, the architectures are the work of students in the class

2110495 Real-time interactive programming at the department of computer

engineering in the second semester, year 2000. They are: Vasini

Apiwattanakarn, Chaoyut Bovorvongvai and Nic Thippongprapas. Finally, I

thank my wife and daughter, Som, who support me and tolerate my neglect

during the work on this book, and my little daughter, Nam-tarn, who is the final

catalyst of my project.

P. C.

February, 2001

i

Contents

Part I Basic Processor Design

Chapter 1 Introduction ... 1

Architecture concerns function .. 1

Computer system structure... 2

Computer hardware .. 4

Description of an architecture .. 5

PMS and ISP descriptive systems .. 6

Microarchitecture and behavioural description .. 8

How a processor performs computation .. 10

Computer languages and architecture .. 14

Performance ... 15

Relative performance ... 16

Amdalh's law .. 17

Calculation of CPI .. 18

Brief history of computer ... 19

Time line of the history of computer.. 23

References .. 24

Chapter 2 Instruction Set Architecture 27

Design issues .. 27

Types of operations .. 28

Types of data .. 28

Endianness (byte ordering, bit ordering) ... 28

Instruction formats ... 30

Addressing modes .. 32

Assembly language .. 33

Why assembly language is needed ... 33

Instruction set of MC6800 ... 34

Assembler a68 .. 36

ii

Tools .. 37

IBM System/360 ISA ... 37

Programmer's model .. 37

Addressing mode .. 38

Types of data .. 39

Types of operations .. 39

Stack-based instruction set architecture ... 42

What is a stack machine ... 42

Calculation using stack. ... 42

Example of stack ISA .. 43

Reduced Instruction Set Computer .. 44

References .. 48

Chapter 3 Computer Arithmetic .. 49

Number representation ... 49

Decimal system .. 49

Binary system ... 49

Integer arithmetic ... 52

Addition and subtraction .. 52

Multiplication ... 52

Division .. 54

Floating- Point Numbers .. 56

Range of representable numbers .. 56

IEEE standard 754 ... 57

Floating- Point Arithmetic ... 57

Addition and Subtraction ... 58

Multiplication ... 59

Division .. 59

Precision considerations ... 59

References .. 60

Chapter 4 Control unit .. 63

Hardwired control unit ... 63

Microprogrammed control unit .. 64

How microprogram work ... 65

Realisation of microprogrammed systems ... 67

iii

Equivalence of hardware and software .. 71

Conclusion ... 72

References .. 73

Chapter 5 Processor Design: S1 a simple CPU 75

Instruction format ... 76

Instruction set ... 77

S1 microarchitecture .. 77

Pc state ... 78

Mp state .. 78

S1 microsteps ... 78

How to run the S1 simulator .. 83

Control unit of S1 ... 83

Hardwired S1 ... 83

Microprogrammed control unit for S1 ... 87

Calculating CPI .. 91

S1 microprogram simulator package ... 92

S1 microprogram bit position and coding form ... 92

How to use mgen.c to generate microprogram .. 93

Part II Design for Performance

Chapter 6 Pipeline ... 97

Instruction pipeline .. 97

Speedup .. 98

How a pipeline is implemented .. 98

Stall of pipeline .. 99

Structural hazard .. 99

Data hazard .. 99

Hazard detection .. 101

Control hazard .. 101

Managing pipeline ... 101

Register Forwarding ... 102

iv

Branch prediction ... 104

Branch-target-buffer ... 105

Delay branch .. 105

Advanced Pipeline ... 107

Pipeline of the floating-point unit .. 107

Pipeline of multiple functional units .. 111

S1 pipeline design .. 112

Structure ... 113

ISA ... 114

Microstep in the pipeline stages ... 114

Design considerations .. 115

Shift register effect ... 115

Conflict of use of resources.. 115

How to assign each microstep into a stage ... 116

Performance evaluation .. 116

Summary .. 117

References .. 118

Chapter 7 Instruction Level Parallelism 119

Static scheduling .. 119

Register optimization ... 120

Register renaming .. 120

Loop Unrolling ... 121

Dynamic scheduling in pipeline ... 123

Scoreboard ... 124

Tomasulo .. 129

Superscalar ... 130

Superpipeline ... 133

Very long instruction word .. 134

Trace scheduling .. 135

Speculative Execution .. 136

Pipeline in some real machines .. 141

PowerPC601... 141

Pentium .. 142

References .. 144

v

Chapter 8 Vector machines ... 147

What is a vector machine ... 147

Vector operations ... 148

Memory bandwidth .. 149

S1 with vector units ... 152

DAXPY in S1x .. 153

DAXPY in S1v .. 153

How to program a vector machine ... 154

Vector length .. 154

Vector stride ... 155

Loop - carried dependency ... 156

Improving performance of a vector machine ... 156

Chaining ... 156

Conditional statement .. 157

Vector reduction ... 159

Performance of vector machines .. 159

What determine the start up time and initiation rate 160

A simple model of vector performance .. 161

Final remarks ... 163

References .. 163

Chapter 9 Stack machines ... 165

The use of stacks .. 165

Calling subroutines .. 165

Parameter passing by stack .. 166

Pure stack machines ... 167

Microarchitecture of stack machines ... 168

R1 stack machine ... 170

R1 instruction set ... 170

Operational semantics of R1 instruction set... 171

Example of a program : bubble sort ... 172

Frequency of instruction used .. 173

Improving the speed of execution .. 176

Stack vs register ... 177

Conclusion ... 178

References .. 179

vi

Part III Memory, Disk and Future Architecture

Chapter 10 Memory System Design 181

Memory basics ... 181

Memory hierarchy .. 182

Interleaved memory ... 185

Cache .. 186

Temporal locality ... 186

Cache performance .. 187

Cache organisation ... 189

Fully associative ... 190

Direct map .. 191

Set associative .. 192

Replacement policy .. 192

Write policy.. 193

Address Trace .. 193

Improving cache performance .. 194

Virtual Memory.. 195

Paging .. 196

Address translation ... 197

Page Replacement .. 198

Memory technology ... 200

History .. 200

DRAM operation .. 201

High-speed DRAM development ... 202

DRAM Trend ... 203

References .. 204

Chapter 11 Magnetic Disk ... 207

Disk basics ... 207

Disk access time ... 208

Disk Performance ... 209

vii

Performance parameters ... 209

Increase recording density ... 210

File system  Allocation unit ... 212

RAID .. 212

RAID level 0 .. 213

RAID level 1 .. 213

RAID level 2 .. 213

RAID level 3 .. 215

RAID level 4 .. 215

RAID level 5 .. 215

Performance of RAID .. 215

I/O functions .. 218

DMA function .. 219

Evolution of I/O Channels ... 219

References .. 220

Chapter 12 Future architecture ... 221

Evolution of computer architecture .. 221

Sequential execution .. 221

Overlapped execution (pipeline) .. 222

Superpipeline ... 222

Superscalar ... 223

Summary .. 223

Driving factors ... 224

Multimedia workloads ... 224

Proposals for future architectures .. 225

Advanced superscalar .. 227

Superspeculative .. 229

Trace processors ... 230

Simultaneous multithreading ... 231

Chip multiprocessors (CMP) ... 233

Intelligent RAM ... 235

RAW .. 236

Conclusion ... 238

References .. 238

viii

Appendix A Projects in computer architecture 241

Problem definition.. 241

Project list .. 241

1. Superscalar S1 with 2 ALUs .. 241

2. LIW version of S1 .. 241

3. S1 with Scoreboard .. 242

4. S1 with Tomasulo .. 242

5. S1p with branch prediction .. 242

6. S1p with delay branch .. 242

7. Stack machine ISA ... 242

8. Minimum instruction set CPU ... 243

9. Fastest Matrix Multiplication S1 .. 243

10. Comparing S1 with 2, 3, 4 pipeline stages 243

11. S1 microprogram with 2 formats microprogram 243

12. Using microprogram as instructions directly. 244

13. Add Floating point instructions to S1 .. 244

14. Change S1 to 32 bits word ... 245

15. Change S1 instruction set to 3 registers format 245

Benchmark Programs ... 245

Stanford integer benchmark suite ... 245

How to do the project ... 246

How I evaluate your project ... 247

Appendix B How to do a paper ... 249

Requirements ... 249

Assessment ... 250

Tips how to give a good talk .. 250

1

Chapter 1

Introduction

This chapter lays the basic knowledge of the subject. We give an overview and a

perspective of computer architecture. We look at architecture from the point of

view of a computer designer. We describe the components and the organisation

of computer systems in many levels of abstraction. We study the "description of

an architecture" which specifies a computer system unambiguously. We answer

the question "How can a computation is achieved by an architecture". The

relationship between architecture and computer languages is important and

several issues have been addressed. We discuss the most important aspect of

modern computer design, the performance issue. Finally, a brief history of

computer, which is a very fascinating subject, is discussed.

Architecture concerns function

Architecture concerns "function" of the system. Function determines what the

system is capable of. The how question is answered by an "implementation" of

the system which depends on technology. A computer system consists of many

parts. A part can be divided into subparts and forms a hierarchy. Computer

architecture concerns how to compose these parts to provide a system that has

desired functions under various constraints.

A computer system has a central processing unit (CPU), memory, input/output,

interconnections. A CPU consisted of an arithmetic logic unit (ALU), a datapath,

and a control unit. The memory system consists of a hierarchical structure: cache

memory (high speed memory), main memory, and virtual memory. The

input/output system consists of various peripherals such as a visual display unit

(VDU), a keyboard, input devices, an interface to the network, various kind of

secondary storage, floppy disk, hard disk and so on. The interconnections link

every parts together, they are the internal bus, the external bus, I/O channels, and

ports.

2

A computer designer must explore many possibilities of choosing and integrating

various "components" of a system to satisfy a set of constraints stated in a

requirement. A computer designer must must make decision how to select and

integrate various components such as processor, memory, input/output into a

computer system. Computer architecture is driven by the advancement of

technology. A designer must evaluate an architecture with its technology. The

study of computer architecture is the study of method for selection and

evaluation. Computer architecture is different from its implementation. Various

parts of a computer can be either hardware of software. Hardware and software

are interchangeable depending on technology.

One important aspect of computer design is the instruction set design (or

instruction set architecture, ISA). A classical view of computer architecture is

that the architecture is what the assembly language programmer see, i.e.

computer architecture is the instruction set.

A broader view of computer architecture includes the organization of a computer

system. An implementation can be regarded as two aspects, one is the

organization, and the other is the technology. The organization describes the

functional units inside a processor and their relationship. The technology aspect

determines how it is possible to build a processor.

Computer system structure

A computer system can be seen at many levels of description, from the

applications to the lowest level of electronic circuits. A computer system can be

regarded as "layers". These layers are described at different "level of

abstraction". There are many ways to define the level of abstractions. For

example, a computer system at the lowest level is consisted of the actual

hardware devices: a central processing unit, a memory, input/output devices and

interconnections. These hardware devices can be described at many levels:

functional units, finite state machines, logic gates down to the electronic circuits.

On top of hardware of the system, an operating system gives services to

application programs. The interface between programs and hardware is the

instruction set description. A computer system can also be viewed as having two

aspects: physical and logical. The "physical" system is composed of the actual

physical components. The "logical" system describes the design and the

organization.

3

Applications

Operating system
Instruction set

Functional units
Finite state machine

Logic gates
Electronics

Figure 1.1 the level of description of computer systems

Application level is what a user typically sees a computer system, running his/her

application programs. An application is usually written in a computer language

which used many system functions provided by the operating system. An

operating system is an abstraction layer that separates a user program from the

underlying system dependent hardware and peripherals.

The level of traditional computer architecture begins at instruction set. An

instruction set is what a programmer at the lowest level sees of a processor

(programming in an assembly language). In the past, instruction set design is at

the very heart of a computer design. The concept of the family of computers was

promoted by IBM around 1970. They proposed the concept of one instruction set

with different level of performance (with the price differentiation) for many

models. This concept is possible because of the research effort of IBM in using

"microprogram" as the method to implement a control unit. However as the

present day processor designs converge, their instruction sets become more

similar than different. The effort of the designer had turned to other important

issues in computer design.

Finite state machine description is a mathematical description of the "behaviour"

of the system. It is becoming an important tool for verification of the correct

behaviour of the hardware during designing of a processor. As a processor

becomes more and more complex, a mathematical tool is required in order to

guarantee the correct working behaviour since an exhaustive testing is impossible

and partial testing is expensive (but still indispensable). Presently (year 2000) it

is estimated that more than half of the cost in developing a processor is spent on

verifying that the design works according to its specification.

The lower level of logic gates and electronics describe the logical and actual

circuit of a computer system and belongs to the realm of an electrical engineer.

4

This level of abstraction enables separate layers to be designed and implemented

independently. It also provides a high degree of tolerant to changes. A change in

one layer has limited effect on other layers. This degree of "decoupling" is

important as a computer system is highly changeable and technology dependent.

The changes are very frequent; a new microelectronic fabrication process leads to

a higher speed device, a new version of operating system provides more

functionality, new applications are created. Without separation into layers all

these changes will interact in a complex and uncontrollable way. The level of

abstraction is a key concept in designing and implementing a complex system.

Computer hardware

The technology of computer is based on the advances of microelectronics. To

understand technology one needs to know the fundamental concept of what a

computer is made of. The physical components of a computer in the present are

based on electronic circuits. The circuits can be regarded as logic gates. The

basic elements are logic gates. The complete set of gates is composed of: AND,

OR, NOT gates. This is not the only basis, there are several others, for example

NAND gate (NOR gate) alone constitutes a complete set because it can perform

the same function as AND, OR, NOT gates. Logic gates are used to build larger

"functional units" which are the building blocks of a computer. There are two

types of logic gates, one with memory and one without.

A combinational logic circuit has no memory, output is the function of input

only. To create memory, the output is fed back to input. The resulting circuit is

called sequential logic.

A sequential logic circuit is the logic gate with memory. The basic element is

called flip-flop. There are many types of flip-flop such as RS, JK, T and D-type

flip-flop. Sequential circuit has "states". The output depends on both inputs and

states. Sequential logic requires clocking. There are two types, synchronous and

asynchronous. A synchronous logic circuit has a common clock. It is a rule of

thumb for design engineers to use synchronous logic because it is much simpler

to design and to debug. One drawback of synchronous circuits is that the

maximum speed of the clock is determined by the slowest part of the circuit.

Therefore it is a worst-case design. An asynchronous logic circuit has no central

clock, hence it can be much faster than synchronous circuits. It is also

advantageous when the clock rate is very high and clock skew becomes a

problem. However, asynchronous design is difficult. The output of one stage is

used to drive the next stage. It is difficult to arrange the timing for the circuit to

5

operate properly as the delay of each element affects the timing of the whole

circuit. There are large variation of delay when fabricating each logic element

and this fact often makes asynchronous design impractical or very expensive.

An example of asynchronous design illustrates the point above. The super

computer ILLIAC from the university of Illinois at Urbana-Champaign has

asynchronous design to achieve high clock rate. Each connecting wire has to be

trimmed manually to properly adjusted the delay time of each module. In the era

of VLSI, most design is synchronous because it is much easier to get the design

to work properly. Presently due to the advancement of asynchronous design

methodology and the promise of very high speed (and low power consumption)

the asynchronous design is coming back. It is an active area of research. There

are many standard textbooks on digital logic design which students can explore

the subject in much more details such as the one by Katz [KAT93].

In order for a computer to execute a program, many functional units are

necessary. Functional units are the building blocks of computers. These building

blocks plus the control unit constitute the basic structure of computer. Basic

units to perform arithmetic functions are: adder, multiplier, shifter etc. They

reside in an ALU. A functional unit may be built on smaller units, for example,

in an adder, a half-adder is built out of basic gates and two half-adders combined

into a full-adder. The length of operand affects the speed of adder circuit. The

delay comes from the need to propagate the carry bits. Carry-look-ahead logic,

invented by Charles Babbage [LEE95] who was considered the father of modern

computer, is used to speed up the propagation of the carry bits.

Description of an architecture

Charts and block diagrams can be used to illustrate a "structure" of a computer

system with blocks denote functional units (or components) and lines as

connections or relations between those units. There are many notational systems

such as PMS-ISP [BEL71] instruction set processor, RTL (Register Transfer

Language), even APL like notation for behavioural description by Blaauw and

Brooks [BLA97]. We shall discuss the PMS-ISP notation because it is well-

known and is used in many historical work in computer architecture. We will

give our version of the descriptive system that is composed of structural chart,

instruction set and behavioural description.

6

PMS and ISP descriptive systems

This descriptive system consists of two levels of description. The PMS describes

the total system. The ISP provides the description at the level of the instruction

set.

PMS level of description

Digital computer can be viewed as discrete state systems that have three

characteristics:

 The state is realised by information, stored in memories.

 A computer system consists of a number of subsystems linked together

by flows of information. These components are called memory,

processor etc.

 Each component is associated with operations for changing its own state

or the state of neighbouring components.

There are seven basic component types in PMS: Memory (M), Link (L), Control

(K), Switch (S), Transducer (T), Data-operation (D), and Processor (P). An

operation is a transformation of bits from one specific memory to another, M to

M'.

Computer model in PMS

We will give an example how to use PMS notation to describe a computer

system. A configuration of a computer (C) is

C := Mp  Pc  T  X

where Pc indicates a central processor and Mp a primary memory. T is a

transducer connected to the external environment, represented by X (input/output

devices such as disks, a console and so on).

The description can be refined to reflect the fact that Pc can be decomposed into

a control K and an arithmetic unit or data-operation D and alternatively the

control can be connected to a secondary memory.

Mp  K  T | Ms  X
 |
 D

where "|" expresses alternatives (T "or" Ms, the secondary memory)

7

ISP level of description

The behaviour of a processor is determined by sequence of its operations. This

sequence of operations is determined by a set of bits in Mp, called the program,

and a set of interpretation rules that specify how particular bit configurations

evoke the operations. ISP (Instruction set processor) provides a scheme to

specify any set of operations (instructions) and any rules of interpretation.

An instruction expression has the form:

condition --> action-sequence

The --> is the control action K of evoking an operation. Each action has the

form:

memory-expression <-- data-expression

The <-- is the transmit operation of a link (correspond to the assign operation).

The left-hand side describes the memory location, the right hand side describes

the information pattern.

An ISP example of the DEC PDP8

We give an example how to use ISP notation to describe a part of a classic

computer DEC PDP8. The PDP8 is a very simple machine with a small number

of instructions. It is the machine that started the market of "minicomputer". This

example illustrates the description of a processor state, the primary memory state,

the instruction format, the meaning of one instruction and how the machine

execute an instruction. Comments are in italics.

Processor state Pc

AC<0:11> the accumulator

AC is a 12-bit register. AC is a register in the processor.

Primary memory state Mp

Mp[0:77778]<0:11>

8

A primary memory consists of 2048 words (the size of memory is expressed in

base 8, the convention of this machine). Each word is 12 bits.

PDP8 instruction format can be shown in the diagram:

op ib p page_address
 0..2 3 4 5... 11

The width of an instruction is 12 bits. It is defined in ISP as follows:

Instruction format

op<0:2> := instruction<0:2>
indirect_bit / ib := instruction<3>
page_0_bit / p := instruction<4>
page_address<0:6> := instruction<5:11>

The instruction set

and (:= op = 0) --> (AC <-- AC ^ M[z])

This describes that the opcode of the instruction "and" is 0 and its action is to

AND AC and a memory location z, where z is an effective address.

An instruction is fetched from the memory and then executed. Next, the next

instruction is fetched and so on (ignoring the interrupts):

Instruction interpreter

Run --> (instruction <-- M[PC]; PC <-- PC + 1; next fetch
 Instruction_execution) execute

A state diagram represents the behaviour of the instruction-interpretation process.

The K controls the state transitions according to the information in the

instruction.

Microarchitecture and behavioural description

We are interested mostly in the microarchitecture, which concerns the processor.

Throughout this book, we will describe a computer system using the following

notations:

9

 Structural chart: a diagram of processor organization is used to give a

high level view of a processor.

 Instruction set: a description similar to ISP.

 Behavioural description: a RTL is used to describe the operation of each

instruction step-by-step. It is called "microsteps" in this book.

Structural chart

A structural chart shows the distinct components of a processor and their

connections. For example, the CRAY-1 super computer [RUS78] is composed of

main memory (up to 4 M 64-bit words), scalar registers S (8  64-bit), backed by

a 64-element vector register T, address registers A (8  24-bit), backed by a 64-

element 24-bit vector register B, vector registers V (8  64-bit), vector units,

floating-point units, scalar units, and address units as shown in Fig 1.2.

Figure 1.2 Structure chart of CRAY-1

Instruction set

An instruction set is expressed by the instruction formats and the instruction

names. For example, the instruction set of S1 (hypothetical processor used in this

book) has one format called L-format (for long-format), each field is denoted by

the fieldname:length.

10

S1 L-format : op:3 r:3 ads:10

op:3 r:3 ads:10

 15..13 12..10 9..0 bit position

Two instructions and their opcodes are: (comments in italics)
0 ld M, r M -> r load from memory

1 st r, M r -> M store to memory

Behavioural description

A register transfer language is used to describe the step-by-step operation of each

instruction. The notation of this RTL is as follows:

 Comments start with "//" to the end of line

 Data movement from source to destination is denoted by dest =
source

 The parallel operations of two actions is denoted using ";" such as
e1 ; e2

 The access to a memory location is denoted by M[a]

 The bit field of a register is denoted by register:field such as IR:a

 <name> denotes the label of sequence of operation of the instruction

 op() denotes the ALU operations: add, cmp etc.

Example: S1 behavioural description of the "load" instruction is:

<load>

MAR = IR:ADS
MDR = M[MAR] // memory read

R[IR:R0] = MDR

The address field from the instruction (bit ADS of Instruction Register, IR) is read

into Memory Address Register (MAR). A memory addressed by MAR is read into

Memory Data Register (MDR). The register indexed by IR:R0 is written with the

value of MDR. This sequence of operations takes 3 clocks.

How a processor performs computation

Suppose we want to calculate value of a polynomial function

11

2)(bxaxxf 

The functional units required to do this computation are multiplier and adder.

The desired computation can be performed by directly connect appropriate

number of functional units together (Fig 1.3).

Figure 1.3 a computation graph to evaluate a polynomial

The solution of this computation problem becomes a graph whose nodes are

functional units and arcs are connections of data through these units. The

computation is performed by the flow of data. In this model every units can be

active concurrently. "Programming" in this model becomes specifying the

computation graph.

Another way to compute f(x) is by sequencing the operations (Fig 1.4)

Figure 1.4 a sequential model of computation

The required functional units are memory and a general processing unit. A

memory stored all the necessary values: input x, constant a and b, the temporary

places to keep intermediate values t1, t2, and the final result f(x). The memory

12

can be read and written to. The memory can be read two values at once and feed

the data to a general processing unit, so called Arithmetic Logic Unit (ALU).

The processing unit can perform multiplication and addition. It has internal

storage to store two input values and one output value. In general, ALU can do a

number of computations. Assume its inputs are X, Y, output Z. An ALU performs

Z = f(X,Y) where f = { add, sub, mul, increment, . . .}. The output of the

processing unit (Z) is connected to the write port of the memory. Now the

desired computation can be performed by executing these steps :

 read(x,a)
 compute(mul)
 write(t1)
 read(x,x)
 computer(mul)
 write(t2)
 read(t2,b)
 compute(mul)
 write(t2)
 read(t1,t2)
 compute(add)
 write(result)

Sequential approach to computation enables functional units to be reused as the

computation is performed step-by-step. Intermediate values can be saved in the

memory can be used in the later steps. The general processing unit can perform a

number of different functions such as add, subtract, so that only one unit is

sufficient for most kinds of computation. The trade-off is the speed as the

computation becomes sequential there is no opportunity for concurrent operations

as in the graph model. Sequential machines are highly flexible and use less

resource to implement a computation but are slower than the graph machines.

However both graph model and sequential model are similar in the sense that the

computation is carried out by directing the flow of data through functional units.

The step-by-step instructions of computation in sequential machines become

"program". Burks, Goldstein and Von Neumann [BUR46] are the first to propose

that programs can reside in the same memory as data. This gives rise to a class of

architecture called "Stored program computer" (Fig 1.5).

13

Figure 1.5 Von Neumann architecture

This is the most popular organisation even today. Storing programs and data in

the same memory enables a processor to be able to manipulate programs easily.

The main disadvantage is the limit of memory bandwidth, which affects the

speed of running an application. As the need for more complex applications

which required large amount of computation increases, having only one

connection between a processor and a memory becomes bottleneck. This

phenomenon is called "Von Neumann bottleneck".

Other organisation is possible such as storing programs and data in separate

memories (Fig. 1.6). This configuration increases the memory bandwidth

because the processor has separate connections to program and data.

Figure 1.6 Harvard architecture

This organisation is called "Harvard architecture". It is extensively used in high-

speed processors for signal processing, which is called Digital Signal Processor

(DSP). DSP has many applications. It is used in modems, in sound synthesizer,

in graphic generators etc.

14

Computer languages and architecture

Programming techniques influence the design of computers since the early day of

assembly language programming [HOP97]. Most computers today are

implemented as sequential machines. They are suitable to be programmed in a

class of high level programming language called procedural languages.

Examples of procedural languages are C, Pascal, C++ etc. In these languages, the

computation is viewed as step-by-step manipulation of values of variables stored

in memory.

There are other paradigms of programming. Backus, the father of FORTRAN,

gave a lecture is the occasion of his reception of Turing award, titled "Can

computers be liberated from Von Neumann bottleneck? " [BAC78]. This lecture

advocated a different programming paradigm called "Functional Programming".

In functional paradigm, programming is viewed as the activity of composing

functions. The computation of a function has an important property of

"referencial transparency". This means the result of computing a function

depends only on its arguments and is not changed by where the function resides.

This property is contrasted to procedural programming which compute by "side

effect", i.e. manipulation of variables depends on states. Functional

programming helps to promote the correctness of programs. As this paradigm of

programming view computation as composing functions, it maps nicely to the

graph model of computation. Many proposals being put forward to build

machines which are suitable for this class of programming languages, for

example a graph reduction machine [KOO90].

Different programming paradigms lead to different architectures. LISP, the

language of artificial intelligence community, requires data tags and dynamic

memory reclamation [STE88]. Logic programming paradigm (Prolog

programming language and others) requires architecture capable of inferring facts

and rules and ability to backtrack efficiently, for example the Edinburgh Prolog

virtual machine [PRO]. Japanese proposed and built various types of these

machines in the period of their research on the fifth generation computer [FIF].

Presently, object-orientated programming paradigm is becoming the dominated

paradigm. The object-oriented programming languages (Java, C++, Smalltalk

etc.) require the dynamic allocation and deallocation of objects. They will

benefit from machines whose architecture are suitable to implement them.

15

Performance

This section discusses performance issue. How performance of a computer

system is defined and measured. Standard references are used to interpret

performance figures. Performance can be used in a relative sense, it is the

measurement of one system compares to another system.

The first commercial electronic computer appeared around 1950. The first 25

years the performance improvement came mostly from technology and better

computer architectures. Later, the improvement mostly came from the advent of

microelectronics. The speed increased 18-35% per year. Technology progresses

from vacuum tubes to transistors to integrated circuits. The birth of

microprocessor around 1970 [FAG96] has great impact on performance of

computers. The growth of performance has been highest for microprocessors.

Since 1980 the performance double every two years. For example, around 1980

the first IBM PC appeared. Its CPU was an Intel 8088, a 16-bit CPU with 8

MHz clock. It had 16Kbytes of memory, one floppy disk and no hard disk. The

later model offered 5Mbytes hard disk (so called IBM XT). Today (year 2000) a

PC is equipped with Pentium 32-bit CPU with 500 MHz clock, 64Mbytes of

memory and 10 Gbytes disk. Its performance is around 1000 times of the first

PC.

Performance is measured by running "mixed jobs". Therefore it is not an

absolute figure. It depends on the kind of jobs that are used to measure the

performance. One phenomenon that occurs in the computer technology is that the

performance of a processor has been double every 18 months. This observation

is proposed by Moore [MOO65], who is a pioneer (among a number of other

engineers) of integrated circuit fabrication. He was with Fairchild, one of the

earliest IC manufacturer. That observation is known as Moore's law. The main

reason that makes this law possible is the rapid advance of the IC manufacture

technique: the shrinking of the physical dimension of the electronic circuits. For

the last 30 years semiconductor technology has been roughly quadrupling every

three years. This gives an exponential base of about 1.59 instead of the base 2

proposed in Moore's original paper. A more accurate formula for Moore's law is:

N device on chip = 1.59 (year  1959)

We define performance as:

Performance = how fast a processor complete its job.

16

Performance is measured by its execution time of a suite of programs called

"benchmark programs". The execution time depends on three factors.

execution time = number of instruction used  cycle per instruction  cycle time

These factors depend on various designs:

 number of instruction depends on instruction set design

 cycle per instruction depends on microarchitecture

 cycle time depends on technology

The performance can also be measured by response time and throughput. The

response time is the time between the starting of a user job and the time when the

computer replies. Under multiple jobs, a better measurement is the throughput.

Throughput measures how many jobs can be completed in a unit time. The

response time is called the latency of a system. The throughput is also called the

bandwidth of a system.

Performance = how fast a computer can run

performance = response time (latency)

performance = throughput (bandwidth)

The fastest machine of the year 1997 is the ASCI-Red of the department of

energy, USA. It is composed of 2048 nodes of Pentium Pro with collective

memory of 600 G bytes. Its peak performance is 1.8 Tflops and it has run 630

Gflops on 3400 nodes (running simulation of motion of particles) [KAR98].

Relative performance

To compare the performance of two machines, it is natural to state "X is n%

faster than Y". The ratio of the execution time is used to state how much one

machine is faster than another machine. The performance is the inverse of the

execution time. The following relationships can be derived:

X is n% faster than Y means

execution time Y / execution time X = 1 + n/100

performance = 1/ execution time (or 1/t)

execution time Y / execution time X = performance X / performance Y

17

n = (performance X  performance Y) / performance Y

Amdalh's law

The performance improvement can be measured in term of "speedup". With the

advent of speed enhancement design such as pipeline and parallelism, Amdalh's

law [AMD67] states how much performance improvement can be achieved for a

given task using the enhancement. The speedup is defined as follows.

speedup = Pe / P

speedup = T / Te

where Pe is performance with enhancement use, P is performance without

enhancement use, Te is execution time with enhancement use, T is execution time

without enhancement use.

If enhancement is used only partially, the speedup will be severely limited. Let f

be the fraction that enhancement is used.

new execution time = old execution time ((1  f) + f / speedup)

speedup overall = 1 / ((1  f) + f / speedup)

Therefore the limitation depends on how much the enhancement has been used.

In achieving speedup by parallelization, Amdalh's law predicts that speedup will

be limited by the sequential part of the program. Let see some numerical

example.

Example: A computer has an enhancement with 10 times speedup. That

enhancement is used only 40% of the time. What is the overall speedup?

speedup overall = 1/ ((1  0.4) + 0.4/10) = 1.56

Please note that Amdalh's law applies only with the problem of fixed size. When

problem size can be scaled up to use available resources, Amdalh's law doesn't

applied. This is why the massively parallel machine is still possible.

Example: Comparing CPU A and CPU B, A with "compare then branch"

instruction sequence, B has special combined "compare&branch". A has 25%

18

faster clock. For CPU A, 20% of instruction is "branch" and hench another 20%

is the accompanied "compare". "Branch" takes 2 clocks and all other instructions

take 1 clock. "compare&branch" takes 2 clocks. Both CPUs run the same

program. Which is faster?

CPU time A = num. of instruction A  CPI A  cycletime A

 = n.o.i A  ((.20  2) + (.8  1))  cycletime A

 = 1.2  n.o.i  cycletime A

"compare" are not executed in CPU B so 20% of 80% = 25% of instructions are

now branching taking 2 clocks and the rest 75% take 1 clock.

CPI B = .25  2 + .75  1 = 1.25

CPU time B = .8  n.o.i A  1.25  1.25 cycletime A

 = 1.25 n.o.i A  cycletime A

Therefore A, with shorter cycle time, is faster than B, which executes fewer

instructions.

Now if the designer reworks CPU B and reduces the clock cycle time so that now

A cycle time is only 10% faster. Which CPU is faster now?

CPU time B = .8  n.o.i A  1.25  1.1 cycletime A

 = 1.1 n.o.i A  cycletime A

So now CPU B is faster.

Calculation of CPI

In order to understand the effect of different instruction set, understanding of

assembly language is required. An example of assembly language programming

is illustrated as follows.

Suppose a hypothetical machine has the typical instruction set composed of

{load, store, compare, increment, jump condition}. It has an index register (x)

and a set of general purpose register (r0..r7).

Find max of array[i], i=1..N

 max = array[1]

19

 i = 2

 while i <= N

 if max < array[i] then max = array[i]

 i = i + 1

 end

let the array[i] be accessed by load r0,array,x

max equ ...

array equ ...

 load x, #1

 load r0, array, x

 store r0, max ; max = array[1]

 load x, #2 ; x keeps i

loop cmp x, #N

 jump GT exit ; i <= N

 load r0, max

 load r1, array, x

 cmp r0, r1 ; max < array[i]

 jump GE skip

 store r1, max

skip inc x

 jump loop

exit END

We count the number of instruction being executed to calculate CPI.

let N=3, array[] = 1,2,3

 frequency clock

load 3+4 2

store 1+2 2

cmp 4 1

jump 4 2

inc 3 1

Total 21 instructions, 35 clocks. CPI = 35/21 = 1.67

Brief history of computer

The history of computer is full of interesting episodes. We will to start off with

asking the question "Who made the first computer?" To find out the answer we

20

need to clarify some definition. What kind of machine is considered to be a

"computer"?

In mechanical era, the computing machine is really a mechanical calculator. In

1890, Charles Babbage designed and attempted to build Analytical Engine, which

contained many ideas that are used in modern computers such as Arithmetic

Logic Unit. However, it was never finished as the British government finally

stopped funding for the construction of Babbage's Analytical Engine.

The MARK 1 (also known as the IBM automatic sequence controlled calculator)

developed in 1944 at Harvard University by Howard Aiken with the assistance of

Grace Hopper. It was used, by the US Navy, for gunnery and ballistic

calculations, and kept in operation until 1959. The computer was controlled by

pre-punched paper tape and could carry out addition, subtraction, multiplication,

division and reference to previous results. Numbers were stored and counted

mechanically using 3000 decimal storage wheels. It was electro-mechanical

computer and was slow requiring 3-5 seconds for a multiplication operation. This

machine is a "configurable calculator", in an essence it is an implementation of

Babbage's machine with newer technology.

When does a machine become a computer? We will define a modern computer

as a general purpose programmable machine. The "programmability" is

considered an essential characteristic of a computer. Alan Turing was the genius

who proved that the general purpose computer was possible and simple in 1937

in his seminal paper "On computable numbers" [TUR37]. To have this

programmability a computer must have the "stored program".

The ABC (Atanasoff Berry Computer) was built in 1937-1942 at Iowa State

University by John V. Atanasoff and Clifford Berry [BUR88] [MOL88]. It

introduced the ideas of binary arithmetic, regenerative memory, and logic

circuits. This machine was essentially a powerful configurable calculator.

Mauchly spent many days with Atanasoff in 1940 studying this machine. This

was the first computer to use electronic valves (tubes) to perform arithmetic.

Atanasoff stopped developing this with the advent of war, and never returned to

it. This machine doesn't have the "stored program" ability.

21

Figure 1.7 the ABC diagram [IOW99]

In 1943 Flowers in Bletchley Park built the first Colossus machine, a

programmable computer specially designed to crack the German Enigma military

cypher machines. It is not a "general purpose" and has no "stored program". In

1944 Zuse in Germany started work on a truly general purpose programmable

computer of modern type, known as the Z4. The end of the war interrupted

development. Zuse's earlier machines (Z1-Z3) were elegant and sophisticated in

design, for example using the much more economical binary representation of

numbers, but were basically modernised Babbage machines.

A group of scientists and engineers at the University of Pennsylvania's Moore

School of Electrical Engineering built ENIAC (Electronic Numerical Integrator

and Computer) in 1946 [BUR81]. It was programmed by a plug board, which

wired up the different calculation units in the right configuration, to evaluate a

particular polynomial. Eckert and Mauchly, the designers, at this time patented a

digital computing device, and are often claimed to be the inventors of the first

computer. It was later proven in a 1973 US court battle between Honeywell and

Sperry Rand that while spending five days at Atanastoff's lab, Mauchly observed

the ABC and read its 35-page manual. Later it was proven that Mauchly had used

this information in constructing the ENIAC. Therefore, John Vincent Atanasoff is

now (by some US historians) heralded as the inventor of the first electronic

computer.

22

In 1945 John Von Neumann published the EDVAC report, a review of the design

of the ENIAC, and a proposal for the design of EDVAC. This is widely regarded

as the origin of the idea of the modern computer, containing the crucial idea of

the stored program. A processor fetches instructions from memory. It also read

and write data to and from memory. This is called "Von Neumann" architecture

where data and instruction co-resides in a memory. This idea came from the

proposal of an electronic computer by US Army Ordnance in 1946. Surprisingly,

Von Neumann himself is not the first author of that proposal [BUR46].

However, Von Neumann name is honored because of his contribution to the

development of this type of computer which has now becomes ubiquitous. The

implementation of this design was completed in 1952.

In 1946 The National Physical Laboratory appointed Turing, who had been

developing ideas of implementing his Turing Machine concept of general

purpose computation in electronic form, to a rival British project intended to

outclass EDVAC, known as the ACE. ACE design was at the time the most

advanced and most detailed computer design in existence. Its construction was

completed in 1950 and named the Pilot ACE.

On 21st June 1948 the first stored program ran on the Small-Scale Experimental

Machine (SSEM), nicknamed "Baby", the precursor of the Manchester Mk 1

[LAV80]. So Manchester machine was the first to work.

The first program was written by Tom Kilburn. It was a program to find the

highest proper factor of any number a. This was done by trying every integer b

from a  1 downward until one was found that divided exactly into a. The

necessary divisions were done not by long division but by repeated subtraction of

b (because the "Baby" only had a hardware subtractor).

Trying the program on 218; here around 130,000 numbers were tested, which took

about 2.1 million instructions and involved 3.5 million store accesses. The correct

answer was obtained in a 52 minute run.

By April 1949 the Manchester Mark 1 had been finished and was generally

available for scientific computation in the University. With the integration of a

high speed magnetic drum by the autumn, this was the first machine with a fast

electronic and magnetic two-level store (i.e. the capability for virtual memory).

23

Figure 1.8 the first program [MAN98]

In 1951 the UNIVAC 1 commercial computer was produced in US, based on the

EDVAC design, and made by Eckert and Mauchly, who by this time had sold

their UNIVAC company to Remington Rand. It employed decimal arithmetic.

We will stop our trip to the history of computer here. To find out more, there is a

wonderful journal devoted to all aspects of history of computing, "Annals of the

History of Computing", IEEE Computer Society.

Time line of the history of computer

Mechanical era

1642 Blaise Pascal invented a machine that can add/subtract numbers

1666 Samuel Morland invented a machine that can multiply by repeated addition.

1671 Gottfried Leibniz, an adding and multiplying machine

1820 Charles Babbage, Difference engine

1830 Charles Babbage, Analytical engine (Father of modern computer)

24

Electro-mechanical era (relays)

1880 Herman Hollerith, punch card machine

1924 Thomas J. Watson founded IBM

1930 Beginning of computer age

 Howard H. Aiken, Harvard university (MARK I)

 John V. Anatasoff, Iowa State univ.

 George R. Stibitz, Bell telephone lab.

 Konrad Zuse, Technische Hochschule in Berlin, ZUSE 1

1943 Flowers, Colossus

1946 Eckert & Mauchly, ENIAC

Electronics era

1948 Manchester SSEM

1949 Manchester Mark I

1950 John Von Neumann, EDVAC

1950 Alan Turing, ACE

1951 Forrester (MIT), Whirlwind

1952 Goldstine and Neumann, IAS

Computer industry era

1951 Remington Rand, UNIVAC

1952 IBM 701

References

[AMD67] Amdahl, G., "Validity of the single processor approach to achieving

large scale computing capabilities", AFIPS Conf. Proc., April 1967, pp. 483-

485.

[BAC78] Backus, J. "Can programming be liberated from the von Neumann

style? A functional style and its algebra of programs", Communications of

the ACM, August 1978, 20(8):613-641.

[BEL71] Bell, G. and Newell, A. "Computer structures: readings and examples",

McGraw-Hill, 1971.

[BLA97] Blaauw, G., and Brooks, F., Computer Architecture: Concepts and

Evolution Addison-Wesley Pub Co., 1997.

25

[BUR46] Burks, A. W., Goldstein, H. H. and von Neumann, "Preliminary

discussion of the logical design of an electronic computing instrument", US

Army Ordnance Department Report 1946.

[BUR88] Burks, A., and Burks, A., The First Electronic Computer: The

Atanasoff Story, the University of Michigan Press, Ann Arbor, Michigan,

1988.

[BUR81] Burks, A., and Burks, A., The ENIAC: First General Purpose

Electronic Computer, The University of Michigan Press, Ann Arbor,

Michigan, 1981.

[FAG96] Faggin, F., Hoff, M., Mazor, S., and Shima, M., "The history of 4004",

IEEE Micro, December, 1996, pp.10-20.

[GOL47] Goldstein, H., von Neumann, J., and Burks, A., "Report on the

mathematical and logical aspects of an electronic computing instrument",

Institute of advanced study, 1947.

[HOP97] Hopper, G., Mauchly, J., "Influence of programming techniques on the

design of computers", Proceedings of the IEEE Volume 85, no. 3, March

1997, pp. 470-474. Reprint from Proc. of the IRE, vol. 40, no. 10, October

1953, pp. 1250-1254.

[ILI82] Iliffe, J., Advanced computer design, Prentice-Hall, London, 1982.

[IOW99] Iowa State University, Department of computer science, http://

www.cs.iastate.edu/ jva/ jva-archive.shtml

[KAR98] Karp, H., Lusk, E., and Bailey, D., "1997 Gordon Bell prize winners",

Computer, January, 1998, pp.86-92.

[KAT93] Katz, R., Contemporary Logic Design, Addison-Wesley Pub Co., 1993.

[KOO90] Koopman, P., An Architecture for Combinator Graph Reduction,

Academic Press, 1990.

[KUC78] Kuck, D., "The structure of computers and computations", Vol 1, John

Wiley & Sons, 1978.

[LAV80] Lavington, S., Early British Computers, Manchester University Press,

1980.

[LEE95] Lee, J., Computer Pioneers, IEEE CS Press, Los Alamitos, California,

1995.

[MAN98] Manchester university, computer science department, MARK1, http://

www.computer50.org/ mark1/ firstprog.html

[MOL88] Mollenhoff, C., Atanasoff: Forgotten Father of the Computer, ISU

Press, 1988.

[MOO65] Moore, G., "Cramming mor components onto integrated circuits",

Electronics, April 1965, pp. 483-485.

[RUS78] Russell, R., "The CRAY-1 computer system", CACM 21(1), 63-72.

January 1978.

26

[STE88] Steenkiste, P., Hennessy, J., "Lisp on a reduced-instruction-set

computer: characterization and optimization", Computer, vol. 21, no. 7, July

1988, pp.34-45.

[TUR37] Turing, A., "On Computable Numbers, with an application to the

Entscheidungsproblem", Proc. Lond. Math. Soc. (2) 42 pp 230-265 (1936-7);

correction ibid. 43, pp 544-546 (1937).

[FIF] Japanese Fifth generation computer

[PRO] VM of Edinburgh Prolog

27

Chapter 2

Instruction Set Architecture

The instruction set design is an important part of computer design. An

instruction set is the visible part of a processor where programmers see available

resources of the processor such as functional units, registers, flags and the

operations that can manipulate those resources.

An instruction set abstracts away the technology dependent part of a processor.

For example, the frequency of the master clock, the details of implementation

such as the number of pipeline stage and the size of cache memory. An

instruction set also defines the architecture of a processor, that is, an ISA defines

the function of a processor.

In this chapter we discuss the instruction set design issues. An introduction to

assembly language is illustrated using the Motorola 6800. A study of the IBM

System360 instruction set is elaborated to illustrate one of the most long-lived

ISA. The S/360 ISA defines a family of computers and has a unique position in

the computer history. Another approach to the ISA design, the stack-based ISA

is discussed. Finally, one of the revolutionalised idea in ISA design of the last

decade, the reduced instruction set computer (RISC), is explored.

Design issues

The designer of an instruction set must consider the following issues:

 types of operations

 types of data

 instruction formats

 the number of registers

 the number of addressing modes

28

Types of operations

An instruction set consists of several types of operations. Most of these types

must be present for a general-purpose processor.

1. Arithmetic operations such as add, subtract, increment.

2. Logical operations, such as compare, which return Boolean values or

affect flags.

3. Data transfer such as load from memory, store to memory, moving data

between registers or input/output.

4. Control transfer such as jump, conditional branch, subroutine call and

return. They affect the flow of program execution.

5. Other operations such as disable/enable interrupts and interface to the

operating system.

Types of data

The sequence of bit in the memory represents many types of data: addresses,

numbers, characters, logical values {True, False}. These data types are

interpreted by the instructions. Each instruction requires the correct type of data

to produce a meaningful result. The choice of data type in each ISA is heavily

influenced by the type of workload, such as binary-packed decimal (BCD) for

business applications and floating-point for scientific computing. The difference

in design reflects the difference in the intended use.

Example

The Intel Pentium processor has the following data types: byte, word, double

word, quadword, integer, unsigned integer, BCD, packed BCD, near pointer, bit

field, byte string, floating-point.

The IBM PowerPC processor has the following data types: byte, halfword, word,

doubleword, unsigned byte, unsigned halfword, signed halfword, unsigned word,

signed word, unsigned doubleword, byte string, single float, double float (IEEE

754).

Endianness (byte ordering, bit ordering)

As the memory is arranged in linear order, the order of bit and byte of data must

be specified to have a consistent interpretation. There are two schools of thought:

big-endian and little-endian. The big-endian school lays the data in memory

29

from the most significant to the least significant "digits" and vice versa for the

little-endian. Neither of which has absolute advantage over the other. In the

past, the issue of endianness causes the problem of compatibility when data must

be transferred between two machines with different endianness. Presently, the

implementation of processors has both endianness built-in which allows software

to switch the mode, hence reduces the problem of data translation. The ordering

is considered at two levels: bit ordering and byte ordering.

Bit ordering: The ordering refers to whether the least significant bit is the left

most or right most bit. This is important when a data is shifted out serially as in

the serial communication applications. However, this is not the problem of the

architecture as most processor has the instruction to shift both left most bit and

right most bit out.

Byte ordering: Suppose a 32-bit value is 12345678 (hex), for a big-endian

machine this is represented as 12,34,56,78 (ordering from low address to high

address in memory). For a little-endian machine this is represented as

78,56,34,12.

The different processors adopted different endianness, the examples are as

follows. The machines with little-endian are Intel 80x86, Pentium, VAX. The

machines with big-endian are IBM 370, Motorola 680x0, and most RISC

machines. Some machines are bi-endian, the endianness can be set in the

processor status bit, they are PowerPC, MIPS.

Example To illustrate the difference between two endianness, consider how the

following C structure is mapped in memory.

struct {

 int a; //0x1112_1314 word

 int pad;

 double b; //0x2122_2324_2526_2728 doubleword

 char* c; //0x3132_3334 word

 char d[7]; //'A','B','C','D','E','F','G' byte array

 short e; //0x5152 halfword

 int f; //0x6162_6364 word

} s;

30

Big-endian address mapping (byte address)

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

11 12 13 14 21 22 23 24 25 26 27 28

10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

31 32 33 34 A B C D E F G 51 52

20 21 22 23

61 62 63 64

Little-endian address mapping (byte address)

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

14 13 12 11 28 27 26 25 24 23 22 21

10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

34 33 32 31 A B C D E D G 52 51

20 21 22 23

64 63 62 61

Figure 2.1 example of C data structure and its endian maps [IBM94]

Instruction formats

An instruction operates on its "operands". The number of operands varies for

each instruction, however many instructions have the same number of operands.

The number of operands determines the "format" of an instruction. The

instruction format can be classified into 3, 2, 1, and 0operand instruction.

A 3operand instruction has the form "op A B C", means A = B op C

A 2operand instruction has the form "op A B", means A = A op B

A 1operand instruction has the form "op A", means it operates on A

A 0operand instruction has the form "op", means it has no operand or the

operand is implicit in the stack .

The type of operands can be memory, register or constant values, which will

affect:

1. the length of instructions  number of bits required to encode the

instruction,

2. the speed of operation  the access time of memory and register are

different hence the speed is different for reading and writing operands in

memory or register, and

31

3. the number of instructions required to perform a task  the larger number

of operands in an instruction results in fewer instructions to perform a

task.

The size of encoding is different between memory and register operand. The

number of register in a machine is much smaller than the addressable memory

space hence the encoding of register operand is smaller than that of memory

locations. The combination of the type of operand gives rise to the difference in

category of architecture.

Comparing the register-register format and the memory-memory format. Assume

operational code has 8 bits, operand address has 16 bits and each operand size 32

bits. Let I be the size of executed instructions, D be the size of executed data, M

be the total memory traffic (in bits). The table below shows the size of

instruction for each type of sequence of operations as (I, D, M).

Table 2.1 Comparing register-register and memory-memory instruction formats

(I,D,M)  I the size of instruction, D the size of data, M total memory traffic in bits

operations register-register memory-memory

A = B + C ld rB B
ld rC C
add rA rB rC
st rA A

(104 96 200)

add B C A

(56 96 152)

A=B+C;
B=A+C;
D=D-B

add rA rB rC
add rB rA rC
sub rD rD rB

(60 0 60)

add B C A
add A C B
sub B D D

(168 288 456)

The processor design is strongly tied to the instruction set design. There were

many diverse computer designs and hence many different instruction set designs

in the past. However, as the technology progress, the analysis of the workload 

the actual running programs  which affect the instruction set selection leads to

the convergence of instruction set architecture. The most common type of

instruction set architecture today belong to three classes:

32

 Load-Store architecture

 Register-Memory architecture

 Register-plus-Memory architecture

Load-Store architecture has 3-address format and mostly 32-bit instruction size.

This is the most popular among the current microprocessor design including: HP

PA-RISC, IBM RS/6000, SUN Sparc, MIPS R4000, DEC Alpha etc. All data

to/from memory must load/store through a register first. The execution

(operation) takes operands from registers and the result stored back to a register.

This instruction format simplifies the decoding and implementation. Because

most operations are performed on registers, they are fast. However, as registers

are used extensively the allocation of registers becomes important. Determining

which variables to be resided in registers affects the performance of this class of

machines and register allocation is done by compilers.

Register-Memory architecture has 2-address format and has 16/32/64 bit

instruction size. An instruction can operate both on registers and with one of the

operand in the memory. This is the "classical" ISA and is used by one of the

longest-lived ISA of today IBM S/360 and Intel x86 family of processors.

Register-plus-Memory architecture is the most flexible in the use of operands.

Operands can be registers or memory. This architecture has byte-variable

instruction size. This flexibility comes with a price, the complexity in

implementation. This type of architecture is typified by VAX family of computer

in the era that there was the drive to provide the high level language semantic for

the instruction set, so called "close the gap" between high level language and

machine language. This architecture combines both operands in memory and

registers. It allows flexibility in the use of memory to keep variables and does not

need to have a large number of registers to achieve high level of performance.

Addressing modes

The addressing mode refers to the way an instruction calculates addresses of

operands. The "effective" address can be computed using the value from the

register(s) or the value of some field in the instruction itself. To access an array,

the index is necessary. The index is usually stored in a register. The indirect

address is used to represent "pointer" type and to access a value via a pointer.

Many complicated addressing modes have their use when translating a high level

language construct into machine instructions. Table 2.2 shows some of the most

frequently used addressing found in most processors.

33

Table 2.2 various addressing modes

addressing modes instruction format instruction meaning

register add r4,r3 r4 = r4 + r3

immediate add r4,#3 r4 = r4 + 3

based add r4,100(r1) r4 = r4 + M[100+r1]

register indirect add r4,(r1) r4 = r4 + M[r1]

indexed add r3,(r1+r2) r3 = r3 + M[r1+r2]

direct add r1,(1001) r1 = r1 + M[1001]

memory indirect add r1,@(r3) r1 = r1 + M[M[r3]]

auto-increment add r1,(r2)+ r1 = r1 + M[r2] ; r2 = r2 + d

auto-decrement add r1,(r2) r2 = r2  d; r1 = r1 +M[r2]

scaled add r1,100(r2)[r3] r1 = r1 + M[100+r2+r3*d]

Assembly language

In this section we will learn an assembly language. The assembly language is

"lingua franca" to talk to the underlying hardware. An example of a real

microprocessor assembly language is illustrated in relations with the high level

language.

Why assembly language is needed

It is becoming less and less necessary for a programmer to program in an

assembly language. High-level languages made programs portable and

programming more productive. There are however some situation where an

assembly language is necessary such as when programming at very near

hardware level. A programmer who creates these types of programs: a compiler,

a device driver in an OS, an embedded control program etc. needs to use

assembly language. An assembly language is the language that allows a

programmer to talk about operations on a bare bone hardware. For a computer

architect, an assembly language is the "interface" to the hardware functions.

During this course, we will talk about the innards of computers, their

organization, how each unit works. All these follow from what kind of assembly

language a computer has. It is necessary for a computer architect to be able to

write and read assembly language well. All working units inside a computer

perform according to some sequence of its instruction.

34

To study computer architecture, we need to understand assembly language. This

introduction will concentrate on principles of assembly language

programming. The aim is to enable students to read some subset of assembly

language and understand their operational semantics. We will use a real CPU,

Motorola 6800, as our example. It was designed more than 20 years ago. It has a

simple instruction set and is easy to understand. We use real CPU because it

shows the complexity of the real device. We choose only a subset of instruction

set that is enough to let us program some small programs.

Instruction set of MC6800

The machine model of Motorola 6800 shows the resource in the view of an

assembly language programmer. This microprocessor is composed of two 8-bit

accumulators ACCA and ACCB. It has two 16-bit registers, which can perform

indexing: X and SP. The conditional flags reside in the 8-bit condition code

register. The address space is 64K bytes (address 16-bit).

In general, instructions can be grouped into 5 categories:

1. Arithmetic: ADD, SUB, INC, DEC

2. Logical operation: CMP

3. Data transfer: LDA, STA (load, store)

4. Flow of control: BR, JMP (branch on condition, jump)

5. Others (such as I/O)

These are instructions that manipulate the index register:

LDX load index register

INX increment index register

CPX compare index registers

Addressing modes are:

 Direct mode, sometimes called "Absolute". The operand is the effective

address. LDA A $100 ($ signify hex)

 Immediate mode, the operand is some constant value to be used. LDA A
#3

 Indexed mode, the operand is added to the index register to get an

effective address. LDA A $200, X effective ads = $200 + x

 Relative mode, it is used in jump instructions to get effective address

relative to the current PC.

 Register mode, the named register is the operand. TAB, TBA

35

Programmer model of 6800

A 8 bits

B 8 bits

X 16 bits index register

SP 16 bits stack pointer

CC 8 bits H,I,N,Z,V,C

Memory model of 6800

64K : 00-FF for short, 0000-FFFF long

Example: P = M + N

let P= $100, M =$101, N= $102
 ldaa $101

 adda $102

 staa $100

Example: add 1 to 10

In a high level language

i = 1; sum = i

while i <= 10

 sum = sum + i

 i = i+ 1

in assembly language

let sum =$100, i =101
 ldaa #1

 staa $101

 staa $100

loop: ldaa $101

 cmpa #10

 bgt exit ; while i <= 10

 ldaa $100

 adaa $101

 staa $100 ; sum = sum + i

 inc $101 ; i = i + 1

 jmp loop

exit: ...

36

Example: Find maximum in an array AR[i] i = 1..10

learn how to use index
 .org h'100

 ldx i

 ldaa ar,x

 staa max ; max = ar[0]

loop: ldaa i+1 ; use 8 bit of i

 cmpa #2

 bgt exit ; while i <= N

 ldaa ar,x

 cmpa max ; if max < ar[i]

 ble skip

 staa max ; then max = ar[i]

skip: inx ; i = i+1

 stx i

 jmp loop

exit:

 .org h'10

max: .db 0 ; max

i: .dw 0 ; index must be 16 bit

ar: .db 4,5,6 ; array

 .end

Assembler a68

directive .ORG, .END, .DB define byte, .DW define word

symbolic name NAME:

literal H'100 (hex), 100, #2, #'A'

In an assembler program, the assembly language directive helps to improve the

readability of the assembly language program by providing the use of symbolic

names. The directives are special instructions. They are pseudo instructions

which do not translated into any actual machine instruction. Mostly they provide

the name and the constant value stored in the memory. ORG set PC, EQU define

symbol, DB, DW reserve storage.

To simplify register allocation, variables are kept in memory (using DB, DW or

EQU). Although sometimes it is laborious to move variables between registers

and memory, it is straightforward and easy to understand. Symbolic names can

be used to make a program easier to read. From the last example:

37

 .org 0

max equ $100

AR equ $102

 ldx #1

 ldaa AR,x

 staa max ; max = AR[1]

 ldx #2 ; i = 2

 ...

Tools

An assembler can translate a source file into machine code file (in some file

format, such as Motorola S-format). This machine code file can be loaded into a

simulator and executed. A simulator allows students to execute and monitor the

effect step by step. It shows the value of all registers and can display memory

values. The a68 assembler and the simulator, sim68 are available for download

from the web page of this book.

IBM System/360 ISA

IBM System/360 [AMD64] is one of the longest-lived instruction set to date, the

architecture was introduced in 1964. The goal of this family of computer is to

have compatible instruction set but have a performance range of 50. The task of

designers is a difficult one. It is aimed to perform both scientific and data

processing applications. The scientific applications are dominated by floating

point operations. The data processing applications involve movement of long

strings. Its long live brought light to a now classical problem in instruction set

design: the shortage of addressing space. As applications grow the requirement

for address space increase very quickly. A design that has the address space

adequate at the time of its introduction quickly find itself lacking address space in

just a few years later. To quote from IBM [BEL76]

"There is only one mistake . . . that is difficult to recover from  not

providing enough address bits . . . "

Programmer's model

It is byte addressable, the smallest addressable unit is byte. Addresses are "real"

referring to physical location in the main memory. Its successor System/370

[CAS78] introduced a major advanced concept, "virtual" address, where address

38

does not refer directly to a physical location in the main memory but is mapped

to a physical location by a dynamic addressing translation mechanism.

S360 has 16 32-bit registers, R0 to R15. R2 to R12 are general purpose. R0, R1,

R13, R14, R15 are special purpose and are used in subroutine linkages (Table

2.3). For floating point number operations the registers are paired into four

floating point registers, each 64-bit, numbered : 0, 2, 4, 6.

Table 2.3 S360 special purpose registers

register caller callee

R0 return value from the subroutine return value

R1 send parameters to subroutine receive parameters

R13 register save area save and restore registers

R14 return address return value

R15 the address of subroutine --

Addressing mode

It has five addressing modes: register-register (RR), register-index (RX), register-

storage (RS), storage-index (SI) and storage-storage (SS). The instruction format

for each mode is (field:length in bit) :

RR op:8 R1:4 R2:4

RX op:8 R1:4 X:4 B:4 D:12

RS op:8 R1:4 R3:4 B:4 D:12

SI op:8 I:8 B:4 D:12

SS op:8 L1:4 L2:4 B1:4 D1:12 B2:4 D2:12

RR register to register R[R1] = R[R1] op R[R2]

RX register to indexed storage R[R1] = R[R1] op M[R[X] + R[B] + D]

RS register to storage R[R1] = M[R[B] + D] op R[R3]

SI storage to immediate M[R[B] + D] op I

SS storage to storage M[R[B1] + D1]:L1 op M[R[B2] +

D2]:L2 where L1, L2 are length of operands

39

Types of data

It is byte-addressable. A full word is 32-bit, a double word is 64-bit. The natural

size is 32-bit. For arithmetic data, it has decimal, pack decimal, floating point

numbers with single precision 32-bit and double precision 64-bit. It has strings

and characters, EBCDIC (extended binary coded decimal interchange code),

Types of operations

The S/360 has been built to accommodate many types of basic functions, with

decimal data, binary data and floating-point data and instructions for arithmetic

operations for each type of data. The instruction format for decimal addition is

not the same as that for binary addition, because the decimal addition does not

use registers. Floating-point arithmetic uses its own set of registers, and has

special environments in regard to numbering registers. The S/360 has the

following classification of its instructions.

 Arithmetic instructions

 Conversion instructions

 Data movement instructions

 Logical instructions

 Branch instructions

 Miscellaneous instructions

load/store

L load

LP load positive

LN load negative

LC load complement

LA load address

ST store

branch

B branch

BC branch on condition, on condition code (CC bits) using the following

mnemonics :

BZ branch on zero

BP branch on positive

BM branch on minus

40

BNZ branch on not zero

BNP branch on not positive

BNM branch on not minus

BO branch on overflow

BNO branch on not overflow

The addressing mode can be either RR (the destination address is in a register) or

RX (the destination address is calculate from base + index + displacement)

doing loop

BCT branch on count, this is auto-decrement the operand (RR-type) and

branch when the value is 0.

BXLE branch on index low or equal

BXH branch on index high

calling subroutine

BAL branch and link (RR, RX) the return address is loaded into op1 and

branch to the destination address in op2.

to return from subroutine

B r branch register r which store the return address. This is used in

pair with BAL r

arithmetic/logic

A add

S subtract

M multiply

D divide

C compare

CL compare logical character

logical operations,

the operands can be RX RR SS SI

N and

O or

X xor

TM test under mask

SL shift left arithmetic/logical

41

SR shift right arithmetic/logical

string operations

MVC move characters

CLC compare logical characters

TR translate and test, string search

TRT translate and test table, table look up and character translation

conversion

CV convert from packed decimal to binary

CVD convert from binary to packed decimal

PACK convert from zoned decimal to packed decimal

UNPACK convert from packed decimal to zoned decimal

ED edit, convert packed decimal to zoned for display

EDMK edit and mask, similar to edit but use pattern to insert a currency

symbol such as $

Example of a program to perform W = X + Y - Z. Assume W, X, Y, Z are in the

memory.

PROGRAM

 START 0

 BALR 12,0

 USING *, 12

 L 2, X R2 = M(X)

 A 2, Y R2 = R2 + M(Y)

 S 2, Z R2 = R2 - M(Z)

 ST 2, W M(W) = R2

 BR 14 STOP

X DC F '10' DEFINE CONST FLOAT 10.0

Y DC F '3' DEFINE CONST FLOAT 3.0

Z DC F '4' DEFINE CONST FLOAT 4.0

W DS F RESERVE STORAGE FLOAT

 END

42

Stack-based instruction set architecture

What is a stack machine?

Contrast to an ordinary processor of contemporary design which uses registers, a

stack machine uses stack. A stack is a LIFO (last in first out) storage with two

abstract operations: push and pop. Push puts an item into stack at the top. Pop

retrieves an item at the top of stack.

Calculation using stack.

Because a stack is LIFO, any operation must access data item from the top. Stack

doesn't need "addressing", as it is implicit in the operators, which use stack. Any

expression can be transformed into a postfix order and stack can be used to

evaluate that expression without the need for explicitly locating any variable. For

example,

 B + C - D ==>
 B C + D - (postfix)

 push val B, push val C, add, push val D, sub.
 A = B ==>

 A B =
 push ads A, push val B, store.

add takes top two items from stack add them and push the result back to stack. Similarly sub operators. store takes
one value and one address from stack and store value to address.

Let's compare the above expression to the calculation using registers.

 B + C - D

 load r0, B
 load r1, C

 add r0, r1 ; r0+r1 -> r0
 load r2, D
 sub r0, r2

 A = B

 load r0, ads A
 load r1, val B
 store r1, (r0) ; r1 --> (r0)

43

One can see that the main difference is that registers must be allocated, for

example, r0 is used to store temporary result while in a stack machine the

temporary storage is implicit. ISA based on stack has an advantage over

register-based ISA that it is very compact. As most instructions have implicit

argument, the size of instruction is very short, usually one byte. Only a few

instructions need argument, such as jump, push literal, that required more than

one byte.

Example of stack ISA

We will illustrate an ISA that is based on a stack machine. Let us ignore local

variables to simplify the presentation (therefore reduce the complication of an

activation record). We need load, store, arithmetic operators, call, return and

conventional jump and branch for flow of control.

Notation: TOP is the item on top of stack, NEXT is an item below TOP

(therefore we can talk about 2 operands on stack by TOP, NEXT), M[ads] value

of memory at ads. "pop a" is TOP --> a, "pop2" pops two items off stack.

 lit #a push the immediate value a.

 load pop a, push M[a].

 store NEXT -> M[TOP], pop2.

 add NEXT + TOP -> a, pop2, push a.

 cmp if NEXT > TOP a = 1 else a = 0, pop2, push a.

 call pop a, create new activation record, goto a.

 return delete current activation record, go back pc'.

 jz #a if pop = 0 then goto a.

Please note that except lit #a and jz #a which has #a as argument, all other

instructions have argument(s) implicit in the stack. The state of computation

consists of a stack pointer and a program counter. If we have two stacks one for

computation and one for activation record (called control stack), we need only

to store the program counter (return address) in the activation record and there is

no need to do anything to computation stack on subroutine calls. Calling a

subroutine need just push the current program counter (return address) onto the

control stack. Returning is just pop the control stack and restore the previous

program counter.

44

Reduced Instruction Set Computer

As high-level languages became popular and started to replace assembly

languages the design of instruction set began to take the central stage. The ISA

design of that period (circa 1970) emphasised the support of high-level languages

using instructions that perform complex operations such as move block of

characters and having various addressing modes to accommodate accessing the

data structure of high-level languages. The intention is that with these complex

instructions the "level" of assembly languages will be lifted up to be nearer to the

high-level languages. (The difference between high-level languages and

assembly languages is called "semantic gap" [ILI82]). Thus, simplify the

construction of compiler (which was one of the most complex programs of those

days). The ISA design also emphasised the small size of the executable code.

The reason is that by having a small code size, the program will run faster. One

obvious fact is there will be fewer instructions to be fetched from memory.

However, because of their complexity, the complex instructions require many

cycles to execute. The control unit was more difficult to design and the

technique of "microprogram" became the standard engineering tool to battle this

complexity. The complexity of a control unit can be measured by the size of the

microprogram (the DEC VAX 11/780 has 5140  96 bits of microprogram, it has

one of the most complex ISA [LEV89]). This complexity resulted in the longer

cycle time. The other negative aspect of the complex ISA is that the pipeline

scheduling is not very effective and the cost of stall is very high.

The study of dynamic execution of instructions of the programs written in high-

level languages [PATT82] [LUN77] [HUC83] showed that 1) the most frequently

used instructions are the simple instructions 2) compilers do not use much of the

complex instructions as it is difficult to match the context (conditions) of

statements in the language to specialised instructions, therefore the compiled

code contained mostly simple instructions. Table 2.4 shows the result from

[PATT82].

Arming with these findings, the movement of the new direction is designing

instruction set had begun [PAT82] [PAT85] [STA88]. The ISA design was in the

contrast with the earlier ISA, this new ISA emphasised on 1) making the simple

instructions run fast 2) making the pipeline efficiency the main concern. This

idea led to the effort to make every instruction to run in one cycle. The main

technique is to have load/store instruction set and making use of large number of

registers to store local values and to pass parameters between call/return. The

visible characteristic is that the new ISA has simplified instruction set (this does

45

not mean the number of instruction is reduced), for example, the number of

addressing mode is restricted, the complex instructions which can not be

completed in one cycle are abandoned, some complex operations are achieved by

using a sequence of simple instructions instead.

Table 2.3 Weighted relative dynamic frequency of high-level languages operation

 Dynamic

occurrence

Machine

instruction

weighted

Memory

referenced

weighted
 Pascal C Pascal C Pascal C

ASSIGN 45 38 13 13 14 15
LOOP 5 3 42 32 33 26
CALL 15 12 31 33 44 45
IF 29 43 11 21 7 13
GOTO  3    
OTHER 6 1 3 1 2 1

The other main departure from the previous ISA design is the emphasis on using

compilers to schedule efficient codes. Many techniques in the new ISA requires

sophistication of the compiler such as the use of delay branch requires compilers

to be able to fill in the delay slot. Fortunately, the software technology has been

advanced to the stage that writing this sophisticate compiler becomes possible.

With simplified instruction set, compilation techniques achieve a good deal of

efficiency. It was easier to generate a good code for this simplified ISA than for

a complex ISA. The result from this new thinking is that CPI of processor

approaches 1.0. The control unit is simplified to the point that the hardwired

circuit is practical. The cycle time is reduced.

The complex instruction set was named "Complex Instruction Set Computer"

(CISC) in contrast to the simplified instruction set which was then called

"Reduced Instruction Set Computer" (RISC). The year 1980-1990 becomes the

golden age of the RISC philosophy when the microelectronics industry has

matured and it is possible to produce a high performance processor on a chip.

The RISC design has dominated the market and becomes synonymous with high

performance. Because of the regularity inherent in the RISC design, the

computer-aided design (CAD) tools can be applied easily to the design and test

process, hence it accelerates the time to market of the new processors. However,

the compatibility of the old software keeps the complex instruction set alive,

notable the Intel family of microprocessors, the 80x86 and later the Pentium

family.

46

 Decode complexity Pipelining difficulty

Processor No. of
Inst.
sizes

Max. Inst.
size in
bytes

No. of
addressing
modes

indirect
addressing

load/store
with
combined
arithmetic

Max. no.
of
memory
operands

unaligned
addressing
allowed

MIPS R2000 1 4 1 no no 1 no
SPARC 1 4 2 no no 1 no
HP PA 1 4 10 no no 1 no
IBM RS/6000 1 4 4 no no 1 yes

IBM 3090 4 8 2 no yes 2 yes
Intel 80486 12 12 15 no yes 2 yes
MC68040 11 22 44 yes yes 2 yes
VAX 56 56 22 yes yes 6 yes

Figure 2.2 Characteristics of some processors

47

Figure 2.2 shows characteristics of some processors that illustrate the difference

between CISC and RISC designs. The first four processors: MIRS R2000,

SPARC, HP PA and RS/6000 are RISC. They have one fixed instruction size,

small number of addressing modes, has no indirect addressing, no load/store

combined with arithmetic instructions and has maximum one memory operand.

The other four processors: IBM 3090, Intel 80486, MC68040 and VAX are

CISC. This example is chosen to contrast both schools of thought, however, the

division between them is not black and white. There are many ISA that fall in

between.

The evolution of idea in the ISA design of both generations (CISC and RISC) is

the change according to the technological force. The CISC was successful

because of microprogramming technique as well as RISC was successful because

of the single chip processor technology. The success of both ideas in the past can

be a good example how a particular tradeoff is achieved. The lesson learn can be

applicable to the future ISA design which definitely will be affected by the

technology yet to come (such as DNA computing and nanoelectronics).

The current design uses both ideas in the implementation of a processor [HEN91]

[FLY98] [FLY99]. The control is divided in to two parts 1) the execution of basic

instructions and 2) the execution of the complex instructions. The basic

instructions will be completed in one cycle and multiple issued. The complex

instruction will have very deep pipeline, for example the Intel Pentium has 14

stages pipeline in one model. The complex instructions can also be translated at

run-time into wide internal micro-operations, which simplify the multicycle

pipeline especially for floating-point operations. Flynn said in one of his article

[FLY97] that

"Tradeoffs between computer design cost-performance and programmer

accessible functionality are as current a problem today as they were in 1953."

and concerning the debate whether CISC or RISC is better that

" ... Actual performance differences in instruction set efficiency are slight,

but these differences still stir passions among hardware designers. Within

the past few years, there has been a continuing (and generally unproductive)

debate over the cost-performance benefits of the so-called RISC instruction

sets over earlier instruction sets labeled CISC."

48

No doubt, the instruction set design of the future processor will have another

revolutionary idea as much as RISC has over CISC in the past.

References

[AMD64] Amdahl, G., Blaauw, G., and Brooks, F., "Architecture of the IBM

System/360", IBM Journal of Research and Development, April 1964.

[BEL76] Bell, C., and Strecker, W., "Computer structures: What we have learned

from the PDP-11", Proc. of 3rd annual symposium on computer architecture,

(1976): 1-14.

[CAS78] Case, R., and A. Padegs, A., "Architecture of the IBM System/370",

Communication of the ACM, 21(1978): 73-96.

[FLY97] Flynn, M., "Introduction to :Influence of Programming Techniques on

the Design of Computers", Proceedings of the IEEE, Volume 85, no. 3,

March 1997, pp. 467-469.

[FLY98] Flynn, M., "Computer engineering 30 years after the IBM Model 91",

Computer, Volume 31, no. 4, April 1998, pp. 27 -31.

[FLY99] Flynn, M., Hung, P., Rudd, K., "Deep submicron microprocessor design

issues", IEEE Micro, Volume 19, no. 4, July-Aug. 1999, pp. 11-22.

[HEN91] Hennessy, J., Jouppi, N., "Computer technology and architecture: an

evolving interaction", Computer, Volume 24, no.9 , Sept. 1991, pp. 18-29.

[HUC83] Huck, T., Comparative analysis of computer architectures, Stanford

university technical report no. 83-243, May 1983.

[IBM94] International Business Machines, Inc., The PowerPC architecture: A

specification for a new family of RISC processors. San Francisco: CA,

Morgan Kaufmann, 1994.

[ILI82] Iliffe, J., Advanced computer design, Prentice-Hall, London, 1982.

[LEV89] Levy M., and Eckhouse, R., Computer programming and architecture:

the VAX, Bedford, Mass., Digital Press, 1989

[LUN77] Lunde, A., "Empirical evaluation of some features of instruction set

processor architecture", Comm. of the ACM, March 1977.

[PAT82] Patterson, D., and Sequin, C., "A VLSI RISC", Computer, 15, no. 9,

September, 1982, pp. 8-21.

[PAT85] Patterson, D., "Reduced instruction set computers", Comm. of the

ACM, 28, no.1, January 1985.

[STA88] Stallings, W., "Reduced instruction set computer architecture", Proc. of

the IEEE, vol. 76, no. 1, January 1988, pp. 38-55.

49

Chapter 3

Computer Arithmetic

The arithmetic logic unit (ALU) is the part of the processor that performs

calculation both the arithmetic and the logic operations. It composed of

functional units and registers including some status bit for storing the result of

operations such as zero and overflow. The functional units included adder,

multiplier and shifter. As an ALU is realised using logic gates, it relies on the

computer arithmetic algorithms to perform calculation by repetition such as using

multiple add-shifts to do multiplication. This enables complex calculations such

as floating point operations possible on an economical hardware.

Number representation

Decimal system

A = 195710

A = 1  103 + 9  102 + 5  101 + 7  100

A is expressed in a decimal number. The base is 10. This representation has 10

symbols 0, 1, 2, … 9 which constitutes digits.

Binary system

A number is represented as sum of weights that are a power of 2. The base is 2

and there are two symbols 0, 1 called binary digits or bits.

A = 101012

A = 1  24 + 0  23 + 1  22 + 0  21 + 1  20

A = 24 + 22 + 20 = 2110

50

A number can be represented by n-bit in many ways. For an integer, there are

unsigned, sign-magnitude and two's complement representation.

unsigned integer







1

0

2
n

i
i

i aA

An unsigned integer ranges over non negative numbers. For n-bit integer its

range is 0…2n  1.

sign-magnitude

The left most bit is sign, the right most n1 bit is magnitude. It has several

drawbacks. First addition and subtraction require special treatment of sign and

relative magnitudes. Second, the number zero has two representations +0, 0.

two's complement

We have seen how to represent an unsigned integer but how a negative number

can be represent without using sign-magnitude? Suppose we have 3-bit binary

a2a1a0 which can represent 23  8 positive numbers for 000 to 111 (0 to 7). The

fourth bit can be introduced to associate with the negative weight 23. The 4-bit

number can represent 10002 (810) to 01112 (+710). The decimal value is

A = a3  23 + a2  22 + a1  21 + a0  20

The number is negative is A3 = 1. The properties of this representation are

1 Bit A3 gives the sign of the equivalent decimal number, A3 =1 negative,

A3 = 0 positive.

2 There is one zero and it is positive.

3 A positive decimal number is changed to a negative number of the same

absolute value by inverting each bit followed by adding a 1.

51

a3 a2 a1 a0 decimal

1 0 0 0 8
1 0 0 1 7
1 0 1 0 6
1 0 1 1 5
1 1 0 0 4
1 1 0 1 3
1 1 1 0 2
1 1 1 1 1
0 0 0 0 +0
0 0 0 1 +1
0 0 1 0 +2
0 0 1 1 +3
0 1 0 0 +4
0 1 0 1 +5
0 1 1 0 +6
0 1 1 1 +7

Figure 3.1 4-bit two complement numbers

Example Convert 1102 (+610) to a negative number 610.

0010 inverse to 1001, 1001 plus 1 is 10102 = 610

This number is called two's complement of the original number.

The following expression defines the two's complement representation for both

positive and negative numbers. if A is positive, the sign bit (a n-1) is zero. The

range of positive number is 0 … 2 n-2 . The range of negative number is

1 … 2 n-1 .







 
2

0
1

1 22
n

i
i

i
n

n aaA

52

Integer arithmetic

Addition and subtraction

Using two's complement representation, subtraction is performed by adding the

two's complement. For example, 5  3 = 2, (+5) + (3) = 2, (0101) + (1101) =

10010. The left most bit (carry bit) is overflowed. We ignore the overflow and

the result is 0010 = 2. On any addition, the result may be larger than can be held

in the word size being used. This condition is called overflow. When overflow

occurs, the ALU signals the condition codes. The overflow rule is: If two

numbers are added, and they are both positive or both negative, then overflow

occurs if and only if the result has the opposite sign.

Subtraction is achieved using addition. We can demonstrate by the following

example. If B = A, then A + B = A + (A) = 0. For n-bit integer, B is a bitwise

complement of A plus 1, that is A. Let an' be a complement of an .







 
2

0
1

1 22
n

i
i

i
n

n aaA






 
2

0

1 212
n

i
i

i
n

n aaB

022

212

)(212)(

11

2

0

1

2

0

1

























nn

n

i

in

n

i
ii

in
nn aaaaBA

Multiplication

Multiplication is a complex operation. Multiplication firstly generates partial

products, one for each digit in the multiplier, then summed them to produce the

final product. Each successive partial product is shifted one position to the left

relative to the preceding partial product. The multiplication of a binary number 2n

is accomplished by shifting that number to the left by n bits. The multiplication

of two n-bit integers results in a product of up to 2n bits in length.

53

 1 0 1 1  Multiplicand

 1 1 0 1 Multiplier

 1 0 1 1

 0 0 0 0 Partial products

 1 0 1 1

 1 0 1 1

1 0 0 0 1 1 1 1 Product

Figure 3.2 Multiplication of unsigned integers

One of the well-known algorithms for two's complement multiplication is Booth's

algorithm [BOO51]. Let Q, M, A be three n-bit registers, Q stores multiplier, M

multiplicand, the result appears in AQ. A concatenates to Q and when shifting

right, the least significant bit of A will go to the most significant bit of Q. There

is one bit placed to the right of the least significant bit of Q (Q0), designated Q-.

Booth's algorithm is as follows:

A = 0, Q- = 0, M = multiplicand, Q = multiplier
repeat n times
 if (Q0, Q-) = 01 then A = A + M

 = 10 then A = A  M
 arithmetic shift right A, Q, Q- {preserve sign bit}
end

Note the efficiency of the algorithm. Blocks of 1s or 0s are skipped over, with an

average of one addition or subtraction per block.

 0 1 1 1 
 1 1 0 1 (0)

1 1 1 1 1 0 0 1 1-0

0 0 0 0 1 1 1 0-1

1 1 1 0 0 1 1-0

1 1 1 0 1 0 1 1

Figure 3.3 example of Booth's algorithm for (7)  (3) = 21

54

Why Booth's algorithm work?

Observe that the number to partial product sum can be reduce. Consider a

positive multiplier where one contiguous 1s surrounded by 0s. The number of

shift-and-add can be reduced by observing that

2 n + 2 n-1 + . . . 2 n-K = 2 n+1  2 n-K

Example

M* (011110) = M* (2 4 + 2 3 + 2 2 + 2 1) = M * (2 5  2 1)

The product can be generated by one addition and one subtraction of the

multiplicand. Booth's algorithm performs subtraction when first 1 of block is

encountered (1-0) and addition when the end of block is encountered (0-1). This

scheme extends to any number of blocks of 1s in a multiplier and negative

number.

Division

unsigned binary division

The division is based on the long division. It involves repetitive shifting and

addition or subtraction. Dividend is examined bit by bit from left to right until it

is greater than or equal to the divisor, 0s are placed in the quotient, when it is

divisible, 1 is placed in the quotient and the divisor is subtract from the partial

dividend. Additional bits from the dividend are appended to the partial

remainder until the result is greater than or equal to the divisor then the cycle

repeat.

 0 0 0 0 1 1 0 1 Quotient

Divisor 1 0 1 1 / 1 0 0 1 0 0 1 1 Dividend

 1 0 1 1

Partial remainders 0 0 1 1 1 0

 1 0 1 1

 0 0 1 1 1 1

 1 0 1 1

 1 0 0 Remainder

Figure 3.4 Division of unsigned binary integers

55

The algorithm is as follows:

{ unsigned integer divide }
A = 0, M = divisor, Q = dividend
repeat n times

shift left A, Q
A = A - M
if A < 0 then Q0 = 0, A = A + M

else Q0 = 1

end {quotient in Q, remainder in A}

two's complement division

This scheme, with some difficulty, can be extended to negative numbers. The

divisor must be expressed as 2n-bit two's complement number.

{ two's complement integer divide }
M = divisor, A Q = dividend
while there are bits in Q

shift left A Q
if (M and A have the same sign) then A = A - M

 else A = A + M
if (sign of A not change) or (A = 0 AND Q = 0) then Q0 = 1

if (sign of A change) and (A  0 OR Q  0) then Q0 = 0; restore
the previous A

if (divisor and dividend are not same sign) then two's complement Q
end {quotient is in Q, remainder is in A }

 A Q M = 1101

0 0 0 0 0 1 1 1 Initial value

0 0 0 0 1 1 1 0 Shift

1 1 0 1 Add

0 0 0 0 1 1 1 0 Restore

0 0 0 1 1 1 0 0 Shift

1 1 1 0 Add

0 0 0 1 1 1 0 0 Restore

0 0 1 1 1 0 0 0 Shift

0 0 0 0 Add

0 0 0 0 1 0 0 1 Set Q0 = 1

0 0 0 1 0 0 1 0 Shift

1 1 1 0 Add

0 0 0 1 0 0 1 0 Restore

Figure 3.5 example of two's complement division (7) / (3)

56

Floating- Point Numbers

Very large and very small numbers can be represent using scientific notation

which separately store significand and exponent, such as 2.14 * 1012 . This allow

a range of very large and very small numbers to be represented using only a few

digits. In binary numbers, a number is represent in the form:

 Significand  Base  Exponent

This number can be stored in a binary word using three fields: Sign bit,

Significand and Exponent. The base is implicit. The exponent can be stored with

bias, i.e. a bias is subtracted from the field to get the true value. An example of

32-bit floating-point format is 1 bit sign, 8 bits biased exponent and 23 bits

significand. The bias is 128.

 0.11010001  2 10100 = 0 10010100 10100010000000000000000

0.11010001  2 10100 = 1 10010100 10100010000000000000000

 0.11010001  2 10100 = 0 01101100 10100010000000000000000

0.11010001  2 10100 = 1 01101100 10100010000000000000000

Figure 3.6 an example of 32-bit floating-point format

To simplify the operations on floating-point numbers, it is required that they be

normalized in the form:

0.1bbb. . .b  2 E

Therefore the left most bit of significand is always 1 and is "implicit" (no need to

store this bit).

Range of representable numbers

With the above representation the following ranges of numbers are possible:

Negative numbers between (1  2 24)  2 127 and 0.5  2 128

Positive numbers between 0.5  2 128 to (1  2 24)  2 127

Five regions on the number line are not included in these ranges:

 Negative numbers less than (1  2 24)  2 127 , called negative overflow

 Negative numbers greater than 0.5  2 128 , called negative underflow

57

 Zero

 Positive numbers less than 0.5  2 128 , called positive underflow

 Positive numbers greater than (1  2 24)  2 127 , called positive overflow

Remember that the maximum number of different values that can be represented

with 32 bits is still 2 32. The numbers represented in floating-point notation are

not spaced evenly along the number line. The possible values get closer together

near the origin and farther apart as you move away. This is one of the trade-off

of floating-point: Many calculations produce results that are not exact and have to

be rounded to the nearest value that the notation can represent.

IEEE standard 754

The most important floating-point representation is defined in IEEE Standard 754

[IEE85]. The IEEE standard defines both a 32-bit single and a 64-bit double

format. The single format has a sign bit, 8-bit biased exponent, 23-bit

significand. The exponent bias is 127. The double format has a sign bit, 11-bit

biased exponent, 52-bit significand. The exponent bias is 1023. The implied

base is 2. The standard defines two extended formats, single and double, whose

exact format is implementation-dependent. The extended formats are to be used

for intermediate calculations.

There are some bit patterns that are used to represent special numbers such as

zero, plus/minus infinity, NaN (not a number) and denormalized number etc.

numbers bias exponent fraction value

zero 0 0  0

infinity 2047 0  infinity

NaN 2047  0 NaN

denormalized 0 f  0  2 e1022 (0.f)

Figure 3.7 special numbers of IEEE 754 (double precision)

Floating- Point Arithmetic

For addition and subtraction, it is necessary for both operands to have the same

exponent. This may require shifting the radix point to achieve the alignment.

The multiplication and division are more straightforward. When the significand

58

is underflow the rounding operation is required. Likewise when it is overflow the

realignment (normalized) is required.

Let x, y be two floating-point numbers; xs, ys be the significands; xe, ye be the

exponents. Let xe  ye. The floating-point numbers arithmetic operations:

x = xs B xe

y = ys B ye

x + y = (xs B xe  ye + ys) B ye

x  y = (xs B xe  ye  ys) B ye

x  y = (xs  ys) B xe + ye

x / y = (xs / ys) B xe  ye

Addition and Subtraction

There are four basic phases of the algorithm for addition and subtraction:

1. Check for zeros

2. Align the significands

3. Add or subtract the significands

4. Normalized the result

Let msd = most significant digit , S = significand, E = exponent

The addition-subtraction algorithm is as follows:

1. made implicit bit explicit
2. check operand 0
3. align by shifting smaller number to the right (increment its E) until two E

are equal
4. check 0
5. add signed S
6. check 0
7. check S overflow if so shift right
8. check E overflow if so report error
9. normalize result, shift S left until msd is not zero, decrement E, E may

underflow
10. rounded off the result

59

Multiplication

The multiplication and division are simpler than addition and subtraction. The

multiplication algorithm is as follows:

1. check operand 0
2. xe + ye
3. substract bias
4. check E overflow, underflow
5. sign-magnitude multiply S
6. normalized result and rounded (E may underflow)

Division

1. check operand 0

2. xe  ye
3. add bias
4. check E overflow, underflow
5. divide S
6. normalized and rounded result

Precision considerations

Guard bits

For the floating-point operations the significands are loaded into the registers.

The length of the register is almost always greater than the length of significand

plus an implied bit. The register contains an additional bit, called guard bits, the

are used to pad out the right end of the significand with 0s. The purpose is to

prevent the lost of least significant bit when one operand must be shifted right

during floating-point operation. As seen from the following example: a

subtraction without and with guard bits.

Without guard bit

 1.000 . . . 00  2

 0.111 . . . 11  2 

= 0.000 . . . 01  2

= 1.000 . . . 00  222

60

With guard bits

 1.000 . . . 00 0000  2

 0.111 . . . 11 1000  2 

= 0.000 . . . 01 1000  2

= 1.000 . . . 00 0000  223

Rounding

The rounding policy affects the precision of the result. IEEE standard lists four

approaches:

 Round to nearest  to the nearest representable number

 Round toward positive infinity

 Round toward negative infinity

 Round toward 0 (truncated)

Round to the nearest is the default rounding mode in the standard. The rounding

to plus and minus infinity is useful in implementation of interval arithmetic. In

the interval arithmetic an upper bound and lower bound on the correct answer are

kept. If the range between the upper and lower bounds is sufficiently narrow, it

indicates that a sufficiently accurate result is obtained.

Denormalized number

Denormalized numbers are included in IEEE 754 to handle E underflow, the

result is denormalized by right-shifting S and increment E until E is within

representable range. This method is also referred to as "gradual underflow"

[COO81].

References

[BOO51] Booth, A. "A signed binary multiplication technique." Quarterly

Journal of Mechanical and Applied Mathematics, vol. 4, pt. 2, 1951.

[COO81] Coonen, J. "Underflow and Denormalized numbers", IEEE Computer,

March 1981.

[GOL91] Goldberg, D., "What every computer scientist should know about

floating-point arithmetic,", ACM Computing Surveys 23:1, 5-48.

[IEE85] Institute of Electrical and Electronics Engineers. IEEE Standard for

Binary Floating-Point Arithmetic. ANSI/IEEE Std 754-1985, 1985.

61

[KNU81] Knuth, D. The art of computer programming, Volume 2:

seminumerical algorithms, Addison-Wesley, 1981.

[OMO94] Omondi, A. Computer Arithmetic Systems: Algorithms, architecture

and implementations, Prentice-Hall, 1994.

[SWA90] Swartzlander, E., ed., Computer arithmetic, Volumes I and II, IEEE

Computer society press, 1990.

62

63

Chapter 4

Control unit

A processor is composed of datapath and control unit. Datapath of a processor is

the execution unit such as ALU, shifter, registers and their interconnects. Control

unit is considered to be the most complex part of a processor. Its function is to

control various units in the datapath. Control unit realises the behaviour of a

processor as specified by its micro-operations. The performance of control unit

is crucial as it determines the clock cycle of the processor.

Control unit can be implemented by hardwired or by microprogram. A computer

designer strives to optimise three aspects of control unit design:

1. the complexity (hence cost) of the control unit

2. the speed of control unit

3. the engineering cost of the design (time, correctness etc.)

Hardwired control unit

In the past, hardwired control unit is very difficult to design hence its engineering

cost is very high. Presently, the emphasis of computer design is the performance

therefore hardwired design is the choice. Also the CAD tools for logic design

have improved to the point that a complex design can be mostly automated.

Therefore almost all processors of today use hardwired control unit.

Starting with a behavioural description of the control unit, the state diagram of

micro-operations is constructed. Most states are simply driven by clock and only

transition to the next state. Some states branch to different states depend on

conditions such as testing conditional codes or decoding the instruction.

64

a) event : go to next state
b) event : go to state 1 or state 2 depends on conditionals

Figure 4.1 several types of states in a state diagram

From the state diagram, a hardware realization can be constructed almost

automatically by some CAD tools. The in-depth topic of logic design for

sequential circuits and logic minimization can be consulted from many basic

textbooks on the subject such as Katz [KAT93]. The control circuit is

implemented using Programmable Logic Array (PLA). In general, any sequential

circuit (which can implement any state machine) can be constructed from

combinational circuits with feedback. The feedback information is the states. If

the feedback path uses no clock, the circuit is called asynchronous. If the

feedback path uses a latch with clock, the circuit is called synchronous.

Synchronous circuits are used almost exclusively for sequential circuits today as

they are easier to design and can be implemented reliably. Most of the CAD

tools handle synchronous circuits.

Asynchronous circuit has been used for the reason of speed as in many early

computer designs, for example, ILLIAC and many computers in the class called

supercomputer. But it is difficult to implement reliably and it is still much more

difficult to do systematic design of a complex machine using asynchronous

circuits. The combinational part of the control circuit can be regarded as a

memory where its content is the map of the inputs to the outputs (states are

considered to be a part of the outputs). This view of combination circuit as a

memory is called Random Access Memory model (RAM) of computation

machines.

The bound of complexity of control is States  Control inputs  Control outputs

Microprogrammed control unit

Maurice Wilkes invented "microprogram" in 1953 [WIL85]. He realised an idea

that made a control unit easier to design and is more flexible. His idea is that a

65

control unit can be implemented as a memory which contains patterns of the

control bits and part of the flow control for sequencing those

patterns. Microprogram control unit is actually like a miniature computer which

can be "programmed" to sequence the patterns of control bits. Its "program" is

called "microprogram" to distinguish it from an ordinary computer program.

Using microprogram, a control unit can be implemented for a complex

instruction set which is impossible to do by hardwired.

Microprogram approach for control unit has several advantages:

1. One computer model can be microprogrammed to "emulate" other

model.

2. One instruction set can be used throughout different models of hardware.

3. One hardware can realised many instruction sets. Therefore it is possible

to choose the set that is most suitable for an application.

To realise this idea it required a high speed memory which was not possible at

that time. The reason for speed is that as the control unit determines how fast a

sequence of operations can be executed, the bottle neck becomes the speed of

accessing the microprogram which is stored in a special memory. At IBM, a

chief architect of IBM 360 family, Gene Amdahl, has recognised the importance

of microprogram and committed to implement it for IBM 360. The in-house

development for the high speed memory was pursued. IBM had a great success

for her 360 family.

How microprogram work

Like the RAM model, a microprogrammed control unit consists of microPC,

micromemory, output buffer and a sequencing unit (Fig 4.2). A micromemory

(sometimes called microstore) contains bit patterns that are used to control the

datapath. Each word of the micromemory is called "microword". Each word of

the micromemory is separated into several fields used for internal control,

external control, conditional and specifies the next address. Internal control bits

are the signals that control the datapath. External control bits are the signals that

control external units such as memory (read, write), interrupt acknowledge etc.

Conditionals are the bits that are used to determine the flow of microprogram;

loop, branching, next instruction etc. Its input comes from the datapath (usually

from the conditional code register). Next address determines the next microword

to be executed.

66

Figure 4.2 a microprogrammed control unit

A microprogram is executed as follow :

1. a word from microprogram at the location specified by the microPC is

read out, control bits are latched at the output buffer which is connected

to the datapath.

2. if conditional field is specified and the test for conditional is true, the

next address of microprogram will come from the next address field

otherwise the microPC will be incremented (execute the next

microword).

What that has been described is called horizontal microprogram in which there is

a one-to-one relationship between internal/external control bits and the actual

control signal of the datapath (hence it is wide or "horizontal"). The microword

can have other formats. There are several possibilities :

1. single format  one address, as just described above.

2. single format  two addresses, each microword contains two next

addresses field, one for result of test true, the other for result of test false.

3. multiple format, such as, one format for the control bits without the next

address field and another format for "jump on condition" with the address

field. The advantage is that the microword can be shorter than the single

format. The disadvantage is that to "jump" will take one extra clock.

67

Horizontal microprogram allows each control bit to be independent from other

therefore enables maximum simultaneous events and also offers great flexibility.

It is also waste a lot bit.

For each field of microword, there may be a group of bits that are not activated at

the same time therefore they can be "encoded" to use a fewer bit. A decoder is

required to "decode" these bits and to connect them to the datapath. This

approach is called vertical microprogram. There are many possibilities to

compact the micromemory to be as small as possible, sometime trading off speed

for space, for example, two-level microprogram. The first level is "vertical" i.e.

maximally encoded, the microword of the level one is pointed to the "horizontal

word" of the second level. This is rather like the first level is composed entirely

from "subroutine call" and the second level is the subroutine.

control bits next address

a) one-address format

control bits true next false next

b) two-address format

0 control bits

1 next address

c) multiple format

Figure 4.3 several formats of microword

Microprogram becomes obsolete mainly because the present design emphasizes

the performance and microprogram is slower than hardwired. The change in

instruction set design toward a minimum number of clock per instruction

simplifies the instruction set to the point that microprogram is not really

required. Also the design of hardwired control unit can be mostly automated as

opposed to microprogram which must be written and debug. Hence, for the

current instruction set architecture, hardwired control unit offers a lower

engineering cost.

Realisation of microprogrammed systems

This section discusses the equivalence of hardware and software in realising a

sequential system. This concept will be illustrated by a simple example of

68

designing a 4-bit comparator in both hardwired and microprogrammed systems

(this example is due to [MAN92]).

An assembly of logic elements, whether combinational (AND, OR, NOT, NAND

gates, demultiplexors, multiplexor etc) or sequential (flip-flops, registers etc.) is

called a "hardwired logic". By incorporating memories and the content of

memory is the test or assignment elements, the system is called a

"microprogrammed logic system", the content is the "microprogram". A

microprogrammed system can be used to realise a synchronous sequential

system, that is it can be used to implement a control unit.

Example a 4-bit comparator input : A0 A1 B0 B1 Z is { EQ, LT, GT }. One

can write the logic expression of Z as

Z = (A1' B1' A0 B0' + A1 B1' + A1 B1 A0 B0') . GT + (A1' B1' A0' B0' + A1

'B1' A0 B0 + A1 B1 A0' B0' + A1 B1 A0 B0) . EQ + (A1' B1' A0' B0' + A1' B1

+ A1 B1 A0' B0) . LT

where A' is NOT A

The expression can be tabulated in the table below :

number A1 B1 A0 B0 Z

0 0 0 0 0 EQ
1 0 0 0 1 LT
2 0 0 1 0 GT
3 0 0 1 1 EQ
4..7 0 1 X X LT
8..11 1 0 X X GT
12 1 1 0 0 EQ
13 1 1 0 1 LT
14 1 1 1 0 GT
15 1 1 1 1 EQ

This expression can be represented as a diagram of test and assignment primitives

that is traversed sequentially by using synchronous sequential system which each

clock reads an element of the diagram and executes the primitive.

69

Z = compare(A,B)

Figure 4.4 diagram of compare

Each primitive can be described as follows:

Figure 4.5 test element

test

if V is true then goto ads1 else goto ads0

Figure 4.6 assignment element

70

assignment

output OUT and goto next

The above diagram can be translated into "microprogram" as follows :

0 if A1 then 1 else 2

1 if B1 then 3 else 6

2 if B1 then 8 else 3

4 if A0 then 4 else 5

5 if B0 then 7 else 6

6 R = GT goto 0

7 R = EQ goto 0

8 R = LT goto 0

Next, the microprogram encoded to map the primitives to a concrete

representation. The 4 cases of test inputs {A1 B1 A0 B0} are encoded into 2 bits.

The output { EQ LT GT} is encoded into 3 bits using unary code.

input i1 i0

A1 0 0
B1 0 1
A0 1 0
B0 1 1

output z2 z1 z0

GT 1 0 0
EQ 0 1 0
LT 0 0 1

The microword has two types: test, assignment. The address field has 4 bits to

cover the whole microprogram address (0 . . 8)

Figure 4.7 microword format for compare

71

The microprogram then can be written as follows :

ads T i1 i0 ads1, next ads0, z

0000 1 0 0 0001 0010

0001 1 0 1 0011 0110

0010 1 0 1 1000 0011

0011 1 1 0 0100 0101

0100 1 1 1 0111 0110

0101 1 1 1 1000 0111

0110 0 - - 0000 -100

0111 0 - - 0000 -010

1000 0 - - 0000 -001

Figure 4.8 microprogrammed unit to realise the function compare

The microprogrammed unit to realise the function compare is shown in Fig. 4.8.

How many clocks it takes to evaluate compare (A, B)? Observing the diagram

(Fig. 4.4), on the longest path, there are 5 "steps" to traverse the diagram hence it

takes 5 clocks to evaluate this function using the microprogrammed unit above.

Equivalence of hardware and software

The definition of microprogramming is due to Wilkes, who in 1953 suggested a

method for designing the control unit of a processor, based on the use of

72

sequence of microwords  a microprogram  held in a read only memory (ROM).

In this context, microprogramming is generally understood as the technique of

producing interpreters for high-level language.

At that time random access memory (RAM) that was available was much slower

than the processor, leads to CISC (Complex Instruction Set Computer) to achieve

high speed the microprogram of CISC are organised horizontally; the need to

control a complex processing unit requires each microword to consist of a large

number of bits, often over 100.

Firmware, specification of a microprogram, is not an interpretation algorithm but

a logic system. The concept of vertically organised microprogram follows that

each microword is of fewer bits than in horizontally organised microprogram.

The resulting simplicity enables a true optimization of the software to be

achieved. Firmware is the transformation and equivalence between hardware

(logic systems) and software (microprogram). This hardware-software

equivalence is a particular case of the equivalence between space and time

Conclusion

As the history tells us, the microprocessor followed the same trend as earlier

computer designs. Because of the limit of resource (the number of transistor in a

chip), hardwired control was implemented and the instruction set architecture

was toward a simple design. The advantage of simpler design for control unit

and ease of change popularised microprogramming. Microprogram made it

possible to achieve more complex instruction sets. With a much larger micro

memory a machine as elaborate as the VAX [LEV89] is possible. In 1984, DEC

wanted to offer a cheaper machine with the same instruction set as VAX. They

reduced the instructions interpreted by microprogram by trapping some

instructions and performing them in software. They discovered that 20% of

VAX instructions occupied 60% of the microprogram, and yet they are used

(executed) only 0.2% of the time. The simpler subset of VAX ISA, called

MicroVAX-1, implemented 80% of VAX instruction in microprogram, other

20% is trapped to software, has the size of micro-memory reduced from 480K

(VAX) to 64K (MicroVAX-1), and perform 90% of the performance of VAX-

11/780. This is also an evidence toward a new thinking in instruction set design.

The current design sees the revive of the idea of translating between the real

executable code into the internal code which is suitable for controlling the

functional units [GEP00] [KLA00]. The idea of "code translation" is used to

73

retain the ISA compatibility for the existing software to be run on the new

hardware.

References

[GEP00] Geppert, L. and Perry, T., Transmeta's magic show, IEEE

Spectrum, vol 37, no. 5, May 2000, pp.26-33.
[KAT93] Katz, R., Contemporary Logic Design, Addison-Wesley Pub Co., 1993.

[KLA00] Klaiber, A., The technology behing Crusoe processors, White paper,

Transmeta Corp., January 2000, http:// www.transmeta.com/ crusoe/

download/ pdf/ crusoetechwp.pdf.

[LEV89] Levy, H. and Eckhouse, R., Computer programming and

architecture: The VAX, 2nd ed., Digital press, 1989.

[MAN92] Mange, D., Microprogrammed systems: an introduction to

firmware theory, Chapman & Hall, 1992.

[WIL85] Wilkes, M., Memoirs of a computer pioneer, MIT Press, 1985.

74

75

Chapter 5

Processor Design: S1 a simple CPU

To illustrate how a processor can be designed, we will describe the design of a

simple hypothetical CPU called S1. It contains all the important elements of a

real processor. The design is aimed to be as simple as possible so that students

can understand it easily. The architectural description of S1: its organization

(structure), its instruction set (ISA) and its behaviour (microsteps), is small

enough to fit into a few pages. A simulator of S1 at an instruction-level is also

provided. Studying how the simulator work will enable students to modify and

design their own processors.

S1 is a 16-bit processor. The instruction format is 16-bit fixed length. The

address space is 10-bit, i.e. it has 1024 16-bit words. It has 8 general purpose

registers (R0..R7).

Figure 5.1 S1 microarchitecture

76

The register bank has one write port, two read ports (2 operands can be read and

move to ALU in one cycle). The datapath is 16 bits. The ALU can perform

{add, cmp, inc, sub1} and stores the output in a temporary T register. The

instruction register IR stores the instruction to be decoded. IR is also connected

to the control unit CU. The interface units to the memory consisted of a memory

address register (MAR), and a memory data register (MDR). The program

counter, PC, stores the current instruction address and can be incremented by 1

for the next instruction.

Instruction format

There are one long format (L-format) and one short format (S-format) for

instructions. The opcode is 3 bits. This is not enough for all types of operations.

One way to increase the number of opcode is to use "extended opcode". One

opcode in L-format is used to designate the different format which has the

additional field for more opcodes. This second format is the S-format. In S-

format, the operands are registers, therefore there are enough room for more bits

to encode the extended opcode. One opcode (7) denotes the extension of opcode

from L-format to S-format. Another 4 bits is used (xop) to be the extended

opcode. This is adequate for this simple machine and still have some room for an

extension of its instruction set (such as floating-point operations).

The instruction has two formats. A field in an instruction is denoted
name:length.

1 L-format : op r, ads

op:3 r0:3 ads:10

 15..13 12..10 9..0 bit position

2 S-format : 7 xop r1, r2

op:3 xop:4 r1:3 r2:3 u:3

 15..13 12..9 8..6 5..3 2..0 bit position

77

Instruction set

opcode mnenomics meaning

0 ld M, r M -> r load from memory

1 st r, M r -> M store to memory

2 jmp c, ads jump conditional

3 call ads push(PC), goto ads

7 xop

xop

0 mv r1,r2 r1 -> r2 move reg-reg

1 ld (r1),r2 (r1) -> r2 load indirect

2 st r1,(r2) r1 -> (r2) store indirect

3 add r1,r2 r1 + r2 -> r1

4 cmp r1,r2 compare, affect Z,S

5 inc r1 increment r1

6 ret pop(PC)

where r 0..7 , conditional code c 0..6 is: 0 always, 1 Z, 2 NZ, 3 LT,

4 LE, 5 GE, 6 GT, M is the address 0..1023.

The instruction 0..3 use the L-format which has 3-bit opcode (i.e. at most 8

instructions) when the opcode is 7 the instruction use S-format which extend the

operational code for another 4 bits (i.e. has maximum 16 extended instructions).

There are only two addressing modes: register-register and load/store M to access

the memory. There are no immediate or index addressing. (This is left as an

exercise to add more addressing mode to S1). The jump instruction has seven

conditions: always, equal, not equal, less than, less than or equal, greater than or

equal, greater than. The condition is determined by the condition code S sign-bit,

and Z zero-bit.

S1 microarchitecture

We study the operation of a hypothetical CPU in details, at the level of events

happening every clock cycle when the CPU executes an instruction. Our

description is in the form of Register Transfer Language (RTL) which represents

the event of data movement inside a processor. Naturally, the description at this

level of abstraction involves time. Each line of event happens in one unit of time

(clock). We call this description "microstep".

78

The processor has the following registers: IR instruction register, PC program

counter, MAR memory address register, MDR memory data register and general-

purpose registers r0..r7. All registers are 16-bit. Two condition codes are Z zero

bit and S sign bit. The memory has 1024 of 16-bit words.

Pc state

IR<0:15>
PC<0:15>
MAR<0:15>
MDR<0:15>
R[0:7]<0:15>
Z, S zero, sign bit
Run

Mp state

M[0:1023]<0:15>

S1 microsteps

Notation
// comment

dest = source // data move from source to destination

e1 ; e2 // event e1 and e2 occur on the same time

M[a] // memory at the address a

IR:a // bit field specified by a of IR

<name> // label of sequence of operations

op() // ALU function

// running a program

PC = 0

Run --> (<ifetch>

 <execute>)

<ifetch>
MAR = PC

MDR = M[MAR] // mem read
IR = MDR ; PC = PC + 1

79

<execute> := (// instruction decoding
(op = 0) --> <load>

(op = 1) --> <store>

(op = 2) --> <jump>

(op = 3) --> <call>

(op = 7) --> <extend>

)

<extend> := (// extended instruction decoding
(xop = 0) --> <move>

(xop = 1) --> <loadr>

(xop = 2) --> <storer>

(xop = 3) --> <add>

(xop = 4) --> <compare>

(xop = 5) --> <increment>

(xop = 6) --> <return>

)

<load>

MAR = IR:ADS
MDR = M[MAR]
R[IR:R0] = MDR

<store>

MAR = IR:ADS
MDR = R[IR:R0]

M[MAR] = MDR // mem write

<loadr>

MAR = R[IR:R1]
MDR = M[MAR]
R[IR:R2] = MDR

<storer>

MDR = R[IR:R2]
MAR = R[IR:R1]
M[MAR] = MDR

<move>

T = R[IR:R1]
R[IR:R2] = T

<add>

T = add(R[IR:R1], R[IR:R2])
R[IR:R1] = T

80

<compare>

CC = cmp(R[IR:R1], R[IR:R2]) // condition code set

<increment>

T = add1(R[IR:R1])
R[IR:R1] = T

<jump>

if testCC(IR:R0) // testCC() tests the IR:R0 against CC
then PC = IR:ADS

<call>

T = add1(R[7])
R[7] = T

MAR = R[7] // sp+1 then put to stack
MDR = PC
M[MAR] = MDR
PC = IR:ADS

<return>

MAR = R[7]

MDR = M[MAR] // get item then sp 1
PC = MDR
T = sub1(R[7])
R[7] = T

The instruction fetch can be faster by combining the PC + 1 with reading the

instruction from the memory.

<ifetch2>
MAR = PC
IR = MDR = M[MAR]; PC = PC + 1

We made a number of assumptions here. The register bank is two read ports, one

write port, reading and writing must not be on the same clock. Therefore it takes

two clocks to move data between registers. The memory access is completed in

one clock (assuming it has cache hit).

81

The timing of S1 in unit clock. Assume the instruction fetch takes 3 clocks and

the instruction decode take 0 clock.

Table 5.1 S1 timing

instruction clock
ld 6
st 6
jmp taken 5
jmp not-taken 4

call 9
mv r r 5
ld (r) r 6
st r (r) 6
add 5
cmp 4
inc 5
ret 8

Call and return take the longest time in the instruction set. Calling a subroutine

can be made faster by inventing a new instruction that does not keep the return

address in the stack (and hence the memory) but keeping it in a register instead.

Jump and link (JAL) just saves the return address in a specified register and jump

to the subroutine. Jump Register (JR) then does the reverse. It does the job of the

"return" instruction. The register that stored return address must be saved to the

memory (i.e. manage by the programmer) if the call to subroutine is nested. This

will reduce the clock to 5 for "jal" and 4 for "jr". This shows that using

registers can be much faster than using memory.

jal r, ads store PC in r and jump to ads

jr r jump back to (r)

<jal>
R[IR:R1] = PC
PC = IR:ADS

<jr>
PC = R[IR:R1]

Example of an assembly program for S1. Find sum of an array : sum a[0] .. a[N]

In a high level language

82

sum = 0
i = 0
while (i < N)

sum = sum + a[i]
i = i + 1

In S1 assembly language (with the translation to base-10 machine code, each

field in an instruction is encoded as a number)

.ORG 0 // address code
ld ZERO r0 0 0 0 20
st r0 SUM 1 1 0 21
st r0 I 2 1 0 22
ld N r1 3 0 1 23
ld I r3 4 0 3 22

loop cmp r3 r1 5 7 4 3
jmp GE endw 6 2 5 16
ld BASE r2 7 0 2 24
add r2 r3 8 7 3 2 3
ld (r2) r4 9 7 2 2 4
ld SUM r5 10 0 5 21
add r5 r4 11 7 3 5 4
st r5 SUM 12 1 5 21
inc r3 13 7 5 3 0
st r3 I 14 1 3 22

jmp loop 15 2 0 5
endw ld SUM r0 16 0 0 21

call print 17 3 0 1001
call stop 18 3 0 1000

.ORG 20 // data
ZERO 0 20 0
SUM 0 21 0
I 0 22 0
N 100 23 100
BASE 25 24 25
a[0] 25 a[0]

a[1] 26 a[1]
... ...

S1 runs this program in 1110 instruction with 5963 clocks, CPI = 5.37

83

How to run the S1 simulator

The input file is an object file with the name "in.obj". The simulator will start

and load "in.obj" and execute starting from PC=0 until stop with the instruction

call 1000.

An object file has the following format

a ads set PC to ads

i op r ads instruction op

i 7 xop r1 r2 instruction xop

w data set that address to value "data"

t set trace mode on

d start nbyte dump memory n byte

e end of object file

Be careful, the input routine is not robust. A malformed input line can caused

unpredictable result. The input loop is limited to 1000 words (to prevent infinite

loop).

Control unit of S1

This section shows how to implement the control unit of S1 both hardwired and

using microprogram.

Hardwired S1

The state diagram of S1 hardwired control unit (Figure 5.2) simply follows the

microsteps. Each line of microstep is a state (assume decoding is done by a

combinational circuit and it happens at the end of the instruction fetch without

taking extra cycle, this can be achieved using a table lookup in a ROM). The

number of cycle for each instruction will in exactly the same as the timing

calculated from the microsteps (Table 5.1).

Some improvement can be made to the above design. To increase the speed the

number of state for each instruction must be reduced. To reduce the complexity

of the circuit, state should be shared wherever possible.

84

Figure 5.2 State diagram of S1 hardwired control unit

85

Reduce the number of state

 <store>

1. MAR = IR:ADS

2. MDR = R[IR:R0]

3. M[MAR] = MDR

 <storer>

1. MAR = R[IR:R2]

2. MDR = R[IR:R1]

3. M[MAR] = MDR

The above states (1 and 2 of both instructions) cannot be merged as both MAR

and MDR is on the same internal bus, therefore can not be accessed at the same

time. If two internal bus are available then these states can be merged into one

(the register bank already has two read ports) and the number of cycle is reduced.

<store>

1. MAR = IR:ADS; MDR = R[IR:R0]

2. M[MAR] = MDR

 <storer>

1. MAR = R[IR:R2]; MDR = R[IR:R1]

2. M[MAR] = MDR

Share state

 <load>

1. MAR = IR:ADS

2. MDR = M[MAR]

3. R[IR:R0] = MDR

 <loadr>

1. MAR = R[IR:R1]

2. MDR = M[MAR]

3. R[IR:R2] = MDR

The states 3 of both instructions can be shared if R0 == R2. We can do that by

changing the opcode format to use fixed field encoding. Moving the field R2 to

the same field as R0, bit 1210, and move the field xop to the back (Fig. 5.3).

86

Charing two states reduces the number of states, which reduces the complexity of

the circuits.

L-format

op:3 r0:3 ads:10

 15..13 12..10 9..0 bit position

S-format

op:3 r2:3 r1:3 xop:4 u:3

15..13 12..10 9..7 6..3 2..0 bit position

Figure 5.3 states of <load> and <loadr> after sharing

 <add>

1. T = add(R[IR:R1], R[IR:R2])

2. R[IR:R1] = T

 <increment>

1. T = add1(R[IR:R1])

2. R[IR:R1] = T

Another example of sharing states, for "add" and "inc", the states 2 of both

instructions can be shared.

87

Microprogrammed control unit for S1

We use a single format microword. The fields are as follows :

Dest, Src : specify destination and source for internal bus.

SelR : selecting registers in register file.

Mctl : memory control for read/write.

ALU : specify function of ALU and latch the result to T register.

Misc : other control signal such as PC + 1.

Cond : for testing condition for jump to other microword.

Goto : next address.

Dest = { MAR, IR, R, MDR, T, PC }

Src = { MAR, IR, R, MDR, PC, IR:ADS }

SelR = { IR:R0, IR:R1, IR:R2, IR:R12 }

ALU = { PASS1, ADD, SUB, ADD1 }

Mctl = { RD, WR }

Misc = { PC+1 }

Cond = { MRDY, Decode, U, testCC }

Dest Src SelR ALU Mclt Misc Cond Goto

Figure 5.4 The format of a microword

Where MRDY is the memory ready signal (ignore in the simulator, assume no

wait), Decode is a combination circuit that set microPC correctly to the

appropriate address of the microprogram for the opcode, U is unconditional,

testCC checks conditional code against the condition in the opcode (IR:R0) if the

condition is false then jump to ifetch. Totally there are 29 microwords to

implement the instruction set of S1. (Table 5.2)

The memory read/write step has "wait for memory ready" state. Because the use

of cache memory, one can assume 0 clock waiting for memory ready when cache

hits and more than 10 clocks for a miss penalty.

Let us go through the execution of one instruction. The instruction fetch starts

with

0: MAR = PC

88

Table 5.2 S1 microprogram

Loc Label Dest Src SelR ALU Mctl Misc Cond Goto note
0 ifetch MAR PC

1 w0 RD MRDY w0

2 IR MDR PC+1 Decode

3 load MAR IR:ADS

4 w1 RD MRDY w1

5 R MDR IR:R0 U ifetch

6 store MAR IR:ADS

7 MDR R IR:R0

8 w2 WR MRDY w2

9 U ifetch

10 loadr MAR R IR:R1

11 w3 RD MRDY w3

12 R MDR IR:R2 U ifetch

13 storer MAR R IR:R2

14 MDR R IR:R1

15 w4 WR MRDY w4

16 U ifetch

17 mov IR:R12 PASS1

18 R T IR:R2 U ifetch

19 add IR:R12 ADD

20 T T IR:R1 U ifetch

21 cmp IR:R12 SUB U ifetch set CC

22 inc IR:R12 ADD1

23 R T IR:R1 U ifetch

24 jmp testCC ifetch cc false

25 PC IR:ADS U ifetch jump

26 jal R PC IR:R0

27 PC IR:ADS U ifetch

28 jr PC R IR:R1 U ifetch

Dest and Src of the internal bus MAR and PC, then wait for memory to fill in

MDR.

1: MDR = M[MAR]

Memory read (reading the current instruction), after memory cycle has

completed,

2: IR = MDR ; PC = PC + 1

move the instruction to IR, increment PC, then branch to each instruction

depends on IR:OP and IR:XOP (we will elaborate on this instruction decoding

89

mechanism later). Suppose the instruction is "load", the microprogram go to

location 2 (load) and the following sequence occurs

3: MAR = IR:ADS

then waiting for memory then

4: MDR = M[MAR]

5: R[IR:R0] = MDR

The register is selected by IR:R0 and Dest and Src of internal bus are R and

MDR. After completion, the microprogram branches back to instruction fetch

(specified by the next address field).

For ALU instruction, for example, "add" the following sequence occurs after the

instruction fetch, go to location 19 :

19: T = ADD(R[IR:R1], R[IR:R2])

the registers are selected and read: IR:R1, IR:R2; to ALU and ALU function

ADD is activated. The result from ALU is latched to T register. Then the result is

written to back to register selected by IR:R1 and the microprogram branches back

to the instruction fetch.

20: R[IR:R1] = T

Totally the microprogram is 29 words. Each microword is in fact composed of

the control bits that control the signals in the datapath. We will assign the bits to

each field of microword as follows :

bit 0..4 Dest : 5 bits for write to R, PC, IR, MAR, MDR.

bit 5..10 Src : 6 bits for read from R, PC, IR, MAR, MDR, T.

bit 11..14 SelR : 4 bits for selecting IR:R0, IR:R1, IR:R2, IR:R1,R2

bit 15..18 ALU : 4 bits for ALU function : PASS1, ADD, SUB, ADD 1.

bit 19..20 Mclt : 2 bits for Mread, Mwrite

bit 21 Misc : 1 bit for PC + 1.

bit 22..25 Cond : 4 bits for jump control : Uncond, Mrdy, testCC, Decode.

bit 26..30 Goto : 5 bits, micro store has 29 addresses therefore 5 bits to

address each of them.

So for the unencoded microword, the microword for S1 is 31-bit long. The

instruction decoding, to branch to each microprogram sequence for each

instruction, can be achieved by using IR:OP concatenate with IR:XOP (3 bits and

4 bits) to point to a jump table which contain the location of microword in the

microprogram.

90

Figure 5.5 Scheme for decoding opcode in ifetch

The timing of microprogrammed S1 can be calculated by counting the number of

microsteps required for each instruction. Fetching an instruction takes 3 steps

(location 0, 1, 2). Assuming the instruction decoding happens at the same time as

jumping to the proper location in the micromemory (takes zero cycle). For

example, ld instruction takes 3+3 = 6 steps (execute at the location 3, 4, 5) and

st instruction takes 3+4 = 7 steps (execute at the location 6, 7, 8, 9). The timing

is shown in Table 5.3.

Table 5.3 Timing for microprogrammed S1

instruction clock
ld 6
st 7
jmp uncond 5
jmp taken 5
jmp not-taken 4
jal 5

mv 5
ld (r) r 6

st r (r) 7

add 5
inc 5
cmp 4
jr 4

IR

microPC

JUMP Table

IR:XOP IR:OP

91

To reduce the width of the microword, each field can be encoded as follows :

Dest : 5 signals, 3 bits.

Src : 6 signals, 3 bits.

SelR : 4 signals, 3 bits (including NONE)

ALU : 4 signals, 3 bits.

Mctl : 2 bits

Misc : 1 bit.

Cond : 4 signals, 3 bits

Goto : only 6 distinct locations to jump to : ifetch, w0, w1, w2, w3, w4  hence

3 bits.

Totally the encoded or vertical microprogram for S1 is 21-bit long.

Dest:5 Src:6 SelR:4 ALU:4 Mclt:2 Misc:1 Cond:4 Goto:5

a) unencoded microword (31 bits)

Dest:3 Src:3 SelR:3 ALU:3 Mclt:2 Misc:1 Cond:4 Goto:3

b) encoded microword (21 bits)

Figure 5.6 Comparing unencoded and encoded microword for S1

Calculating CPI

We will now illustrate how to calculate the CPI of both hardwired S1 and

microprogrammed S1. Using the program benchmark GCC (a C compiler) we

record the following instruction mix:

Table 5.4 GCC benchmark instruction mix

load 21%

store 12%

ALU 37%

set 6%

jump (uncond) 2%

jump taken 12%

jump not-taken 10%

92

CPI for S1 with hardwired control unit will be 5.23

(6  .21 + 6  .12 + 5  .37 + 5  .06 + 5  .02 + 5  .12 + 4  .10)

CPI for S1 with microprogram control unit will be 5.35

(6  .21 + 7  .12 + 5  .37 + 5  .06 + 5  .02 + 5  .12 + 4  .10)

Microprogram takes the time longer for "store", therefore its CPI is slightly

higher. For the simulation run of "sum.asm" program CPI hardwired = 5.37, and

CPI microprogram = 5.46

S1 microprogram simulator package

The package included the simulator of the S1 microprogrammed control unit and

the microprogram generator, which takes the readable specification of

microprogram and generates bit pattern for the micromemory. It is compiled and

tested under Borland Turbo C compiler version 2.0. All the tools and simulators

can be found on the web page of this book. The list of files is:

s1m.h, s1m.c, supportm.c simulator files

mpgm.txt microprogram file used by s1m.c

in.obj test machine code

mgen.c, hash.c microprogram generator

mspec.txt input microprogram in human readable text

s1mx.txt explain S1 instruction set and microprogram

format.

To generate a microprogram, run mgen.exe, it takes input from mspec.txt and

outputs a microprogram in the form that s1m.exe can read. (see mpgm.txt)

S1 microprogram bit position and coding form

bit field signal

0 dest r
1 pc
2 ir
3 mar
4 mdr
5 src r
6 pc

93

7 ir
8 mar
9 mdr
10 t
11 selr ir:r0
12 ir:r1
13 ir:r2
14 ir:r1,r2
15 alu pass1
16 add
17 sub
18 add1
19 mctl rd
20 wr
21 misc pc+1
22 cond u
23 mrdy
24 testcc
25 decode
26 goto 5 bits 26..30

How to use mgen.c to generate microprogram

Mgen takes input from microprogram specification which is a readable text that a

human programmer wrote. Mgen is a simple macro processor that substitutes

symbolic names with numeric values (set microprogram bits).

The output is in the form :

nn
aaaa xxxxxxxxxxxxxxxxxxx
....

where nn is the number of microword, aaaa is address and xxxxx... is the

microprogram bit. xxx... begins at the column 5.

Input to mgen is in a simple form as follows :

.w N // width of microword N bits

.a B E // bit position of Goto field, B start, E

end

.s // start symbolic name section

94

name bit // "name" is the signal at "bit" position
...

.m // start microprogram section

:label name name ... /label ; // each microword
 ...

.e // end of microprogram spec.

Within the microprogram section the label begin with ":" and the "name" is the

name of signal (to be translated in to a number). The symbol /label destinates

the label in Goto field. Each microword (a line of microprogram) must ends with

";".

Example The microprogram for S1 from the file "mspec.txt" is illustrated

(comment shows here for explanation, no comments are allowed in mspec.txt).

.w 31 // width 31 bits

.a 26 30 // Goto start at bit 26 end at 30

.s // symbol section

dr 0 // dest R bit 0

dpc 1 // dest PC bit 1
...

sub 17 // alu sub bit 17
add1 18

mrd 19 // memory read bit 19
mwr 20

pc+1 21

u 22 // Cond uncond bit 22
mrdy 23

testcc 24

decode 25

.m // microprogram section

:ifetch dmar spc ; // <ifetch> MAR = PC

:w0 mrd mrdy /w0 ; // MDR = M[MAR]; MREAD MRDY w0

dir smdr pc+1 decode ; // IR = MDR; PC = PC + 1 DECODE

:load dmar sir:ads ; // <load> MAR = IR:ADS
:w1 mrd mrdy /w1 ;

dr smdr ir:r0 u /ifetch ;

...

.e // end

This is the output (from mpgm.txt)

95

29
0 0001001000000000000000000000000
1 0000000000000000000100010000001
2 0010000001000000000001000100000
3 0001000100000000000000000000000
4 0000000000000000000100010000100
5 1000000001010000000000100000000
6 0001000100000000000000000000000
....
27 0100000100000000000000100000000
28 0100010000001000000000100000000

S1m microprogram simulator reads this microprogram (mpgm.txt) to instantiate

its micromemory. S1m runs the same machine code program as S1, such as the

program sum in "in.obj" which performs sum(a[0]..a[n]). The "in.obj" executed

1109 instructions 6054 clocks with CPI = 5.46

96

97

Chapter 6

Pipeline

The principle of pipeline is to overlap the operation of various functional units

therefore reduce their idle time. Pipeline is one of the very first technique to

increase the performance invented since the early days of computer. This chapter

explores the technique of pipeline operations. The emphasise is on the

instruction pipeline. Many techniques to improve the performance of pipeline are

introduced. One concrete design based on S1 machine is illustrated.

Instruction pipeline

Consider one important cycle in the working of a processor, executing an

instruction. Assume the cycle is broken into 5 stages:

1. instruction fetch IF

2. instruction decode ID

3. operand fetch OF

4. execute EX

5. write back WB

To illustrate the overlapping of operations let see some simple example. A

processor executes three instructions i1, i2, i3. Each instruction takes 5 steps:

12345,12345,12345

The horizontal axis is time, if each stage takes 1 unit time (it is not necessary that

each stage takes equal time but for simplicity we assume a fixed cycle pipeline

stage) total time is 15 units. If we arrange three instructions such that they can be

overlapped:

i1: 12345
i2: 12345
i3: 12345

98

The total time is just 7 units. At any time, each stage works on different

instructions. The pipeline after 3 clocks can be viewed like this:

1 2 3 4 5
i3 i2 i1 - -

Speedup

In an ideal case, the pipeline always be fully used (the number of instruction is

large) hence the speedup is

execution time without pipe / execution time with pipe

execution time with pipe = execution time without pipe/ no. of stage in pipe

speedup = no. of stage in pipe

How a pipeline is implemented

Each stage composed of a functional unit follows by a latch. All latches are

synchronised.

T = time for logic to computer
W = time for latch

Figure 6.1 basic pipeline clock

As we have seen, the number of stage determines the speedup. What is the limit

of the number of stage? When a task is divided into several stages which enable

overlap operations total time for executing tasks can be shorten but the delay

(caused by the setting time of latch) of each stage remains constant. This delay

99

time is the limit of speedup. Therefore the latch circuits must be very fast.

Amdahl's law can explain this limit.

Stall of pipeline

If there are enough instructions to start execution every cycle and they continue

until completion without interruption, the pipeline will be fully used and the

speedup attains theoretical maximum. However, a pipeline is not always filled.

When the flow of pipeline is interrupted, all stages before interruption are

stopped (locked). This is called the pipeline stall. The rest of the pipeline can

continue to function. There are three causes of stall:

1. structural hazard

2. data hazard

3. control hazard

Structural hazard

It is caused by conflicting or lacking of resources, such as when two stages of a

pipeline accessing the same functional unit. Because the required resource is busy

the pipeline must be stalled. (more about this in the section pipeline floating-

point unit)

Data hazard

It is caused by dependency of data in a sequence of instructions as illustrated by

this example.

i1: R1 = R2 + R3
i2: R4 = R1 + R5

The dependency of data is on R1. R1 in i1 must be updated before R1 in i2 is

read. Because of overlapping operation, R1 in i1 is updated at WB stage but R1

in i2 is read in OF stage. The time diagram below shows when this situation

occurs. x denotes the stage where hazard occurs.

 x
i1: 1 2 3 4 5
 x
i2: 1 2 3 4 5

100

Hence the pipeline must be stalled (i2 wait) until R1 is updated (in i1). There are

four possibilities of data hazard:

1. Read After Read (RAR)

2. Read After Write (RAW)

3. Write After Read (WAR)

4. Write After Write (WAW)

The above situation is called Read After Write (RAW) hazard.

 Write After Read (WAR)

This is the situation where the operand will be updated by the next instruction

while it is being read in the current instruction. To avoid the incorrect result, the

reading operation of the current instruction must be done before the writing

operation of the next instruction. The example below shows the dependency on

R2.

i1: R1 = R2 + R3
i2: R2 = R4 + R5

However, in this pipeline design the WB stage comes later than the OF, there is

no WAR hazard as shown is the time diagram below. x denotes when R2 is read,

y denotes when R2 is written.

 x
i1: 1 2 3 4 5
 y

i2: 1 2 3 4 5

Write after Write (WAW)

i1: R1 = R2 + R3
i2: R1 = R4 + R5

If R1 in i2 is updated before R1 in i1, the result will be in the wrong order. This

hazard is presented in pipelines that have write in more than one pipe stage (or

allow an instruction to proceed even when a previous instruction is stalled, as in

the superscalar design, which is called out-of-order execution).

There is no hazard for Read After Read dependency (without writing to the

register, there is no data hazard).

101

Hazard detection

The hazard can be detected when two instructions want to use the same

resources. Suppose instruction i is about to be issued and a previous instruction j

is in the instruction pipeline. A RAW hazard exists on register p if i reads p

(Rregs i) and p will be written by j (Wregs j). This hazard can be detected using

a record of pending writes for all instructions in the pipe and compare with

operand registers of the current instruction. When an instruction is issued,

reserve its result register. On the completion of the operation, remove its write

reservation.

A WAW hazard exists on the register p if p is-in Wregs i and Wregs j.

A WAR hazard exists on the register p if p is-in Wregs i and Rregs j.

Control hazard

It is caused by the transfer of control (jump). When the transfer occurs, the

instruction that has already been fetched and decoded may not be the correct

instruction as the destination address may be unknown at the time of the next

instruction fetch. The pipeline must be flushed and start fetching the designated

instruction. The example below shows there is stall, wasted three instructions

that are already in the pipeline. The wasted instructions are in bolded face, x

denotes when the destination of jump is known and i* is the designated

instruction.

 x
i1: 1 2 3 4 5
i2: 1 2 3
i3: 1 2
i4: 1
i*: 1 2 3 4 5

Managing pipeline

A stall causes the pipeline performance to degrade. To improve the performance,

the stall must be reduced or avoid. The pipeline speedup with stall can be

calculated from the following relations:

102

ideal CPI = CPI without pipeline / pipeline depth

CPI with pipeline = ideal CPI + stall

pipeline speedup = ideal CPI  Pipeline depth / (ideal CPI + stall)

There are several techniques to reduce the stall. For data hazard, the register

forwarding is very effective. For control hazard, the branch-prediction, branch

target buffer and delay branch are the techniques that are widely used.

Register Forwarding

To reduce stall caused by data hazard, use register forwarding (or bypass) to

handle RAW. The bypass unit makes use of the temporary result by forwarding

it to the next instruction. This eliminates the stall because the next instruction

can access the value without waiting to get it from the register bank.

Figure 6.2 the ALU with register forwarding

103

 y x
i1: 1 2 3 4 5
 z

i2: 1 2 3 4 5

At stage 5 (WB) of i1 (x), the i1 will write it result back to the register file, while

the i2 wants to read its operand at stage 3 OF (z). This caused RAW. Using the

bypass unit (see Figure 6.2), the result of i1, which is already available at stage 4

(y) can be used by the next instruction, i2. The bypass unit checks if the result is

in the buffer then select to use that result instead of reading from register file. To

make it possible for i1 to write and i2 to read at the same cycle, the cycle is

divided into 2 parts: the front and the back (see the next diagram). Each occurs at

half cycle. The result must be produced by the front half and used by the back

half. The i1 EX stage produces a result at the front half of clock cycle (y at 4F)

and i2 OF stage reads its operand at the back half (x at 3B)

 y

i1: 4F 4B
 x
i2: 3F 3B

The next question is how deep the buffer in the bypass unit should be. Consider

a sequence of instructions where R1 has data hazard.

i1: R1 = R2 + R3
i2: R4 = R1 - R5
i3: R6 = R1 + R7
i4: R8 = R1 - R9

 y x
i1: 1 2 3 4 5
 x
i2: 1 2 3 4 5
 x
i3: 1 2 3 4 5
i4: 1 2 3 4 5

With a bypass unit, i1 only affect i2. There is also hazard between i1 and i3, to

forward the result from i1 to i3 required a buffer of depth two. There is no hazard

between i1 and i4.

There are several methods to reduce stalls caused by control hazard: prefetch

both next and target addresses, use branch prediction, and use delay branch.

104

Branch prediction

We can predict the current branch (taken/not_taken) one way and back up if the

decision is turn out to be wrong, for example, predicting that the branch is always

taken. It takes 1 clock per branch instruction if the prediction is right and 2

clocks if the prediction is wrong. The chance of being right is 50%. However,

the static scheme always becomes very ineffective in some case. We can use the

history of the previous branch to predict the current branch to allow the

prediction to be more dynamic. Using 1 bit of history will increase the chance of

being right to 90%. The prediction must be made at the decode stage of the

current instruction (x) as the next instruction must be fetched.

 x

branch i1: 1 2 3 4 5

 i2: 1 2 3 4 5

The simplest scheme is the branch history table. The BHT contains the history

bit (taken/not_taken) and is indexed by the lower bits of the current program

counter. With one bit of history the rule to decide is simply if the previous

branch is taken then fetch from this branch target. With this scheme the

prediction will be wrong twice, one when enter the loop and the other when leave

the loop. To improve the accuracy of the prediction, the state of history bit can be

increased. Using 2 bits history with four states, the rule can be if wrong

prediction twice then change prediction to the other way. Figure 6.3 shows one

possible arrangement for the prediction states with 2 bits.

Figure 6.3 Two-bit branch prediction

105

Branch-target-buffer

The prediction by BHT is not very accurate, as the information stored in BHT is

limited. The indexing by the lower bits of PC can be improved. To improve the

accuracy of prediction more information about the address of the jump

instruction and the address of the destination of jump is required. This

information plus the history bit(s) are stored in "branch-target buffer" (BTB). We

need to know what address to fetch by the end of IF. That is, we need to know

what next PC should be (even the newly fetch instruction is not yet decoded, so

we don't even know if that instruction is a branch or not). Therefore we are

predicting the next instruction address and will send it out (next instruction fetch)

before decoding the instruction. If the instruction is a branch and we know what

the next PC is, we can have zero stall on branch. The main idea is to use a cache

memory to store PC of instruction fetched and its predicted next PC and history

bit. The steps are shown in the figure below.

Figure 6.4 Steps in handling branch prediction

Delay branch

Another way to reduce the stall cycle caused by the branch is to change the

semantic of the jump instruction. By doing the actual jump in the next cycle

(delayed), there will be one free time slot after the jump instruction. The

principle of this method is to use the stall cycle to do useful work by moving

106

some instruction to be executed in the stall cycle. The jump instruction is

"delayed" i.e. caused the actual jump by some amount of clock (equal to stall

cycle). Some instruction can be scheduled to be executed in that "delay slot". The

instruction can be taken from the above, from the target, and from the fall

through.

from above

The delay slot is filled by the instruction "above" the branch instruction (the

symbol < > denotes the delay slot).

i1 jmp i2
jmp i2 ==> <i1>
< > i2
i2

from target

The delay slot is filled by the instruction at the destination. The following

example shows the jump backward (usually at the end of loop). The target

address (instruction i1) is moved to the delay slot and the jump destination is

changed to i2.

i1 i1

i2 i2

... ...

jmp i1 ==> jmp i2

< > <i1>

i3 i3

from fall through

The delay slot is filled with the instruction from the target address, similar to

"from target" but the direction of branch is forward. The jump address is

changed to the next instruction after the target (i.e. fall through).

i1 i1
jmp i2 jmp i3

< > ==> <i2>

i2 i3

i3

There are several considerations which choice of instruction scheduling is

suitable. Using from target, branch taken should be of high probability. Using

107

from fall through, branch not taken is of high probability. The instruction in delay

slot must be "safe", that is, when the prediction is wrong, executing this

instruction should not change the machine state until the outcome of branch is

definitely known (and hence knowing whether this instruction must be executed

or not). One delay slot can be filled with useful instruction about 50% of the

time. The rest can be filled with NOP. It takes 0 clock when an instruction can

be found to be filled in the delay slot (this situation is true 50% of the time).

However, if more instructions per cycle are issued, the delay slot becomes less

useful.

Advanced Pipeline

In our previous discussion, each stage in the pipeline is executed in one cycle.

For simple operations such as integer arithmetic this is possible. However, there

are several operations especially floating-point arithmetic that takes many cycles

to complete. To allow for such operations the depth of the pipeline can be

increased. This is possible when all operations have the same number of stages.

This may not be possible. It is more economical instead to design a pipeline to

have multi-cycle in the execution stage, however the control for such pipeline

will be complicated.

Pipeline of the floating-point unit

For floating-point operations the pipeline will required to operate in multiple

cycle. We will examine a simplify cases of floating-point multiplication and

addition and illustrate how a functional unit for such operation is design and

control.

Assume the inputs are two normalized floating-point numbers, A and B. A

floating-point multiplication carries out the following steps:

1. Add two exponents

2. Multiply two significands. This may takes several cycles to perform

partial products and sum them.

3. Normalized the product

4. Rounding

The pipeline for the FP multiplier is shows in Fig 6.5.

108

Accumulate

Add exponents

Add exponents

Form partial product

Round

Normalise

Renormalise

Figure 6.5 the FP multiplier pipeline

Similary for a floating-point addition, the following steps are performed:

1. subtract exponents and swap operands if necessary

2. shift the significand of B to the right

3. add significands

4. renormalized

5. round

The pipeline for a FP adder is shown in Fig 6.6. The FP multiplier and FP adder

have several common operations. They can be combined to form a single

function unit as shown in Fig. 6.7.

The control of this functional unit is complex because the collision exists if a new

operation is admitted into the pipeline while one or more operations are in

progress. Davidson [DAV91] developed "reservation table" that gives the timing

information of the flow of data through the functional unit. The reservation table

109

Partial shift

Find leading 1

Partial shift

Add significands

Subtract exponents

Round

Renormalise

Figure 6.6 the pipeline of a FP adder

is derived directly from the pipeline design. It is used to decide when to launch an

operation into the pipeline. Only one operation can use any unit at any time

otherwise it is said to have collision.

Figure 6.7 a pipelined floating-point combined adder/multiplier unit

110

Assume the multiplication of significands takes 2 cycles to form partial products

and 2 more cycles to add the partial products. The reservation tables for FP

multiplier and FP adder are shown in Fig. 6.8.

 1 2 3 4 5 6 7

exp add x

mul x x

sig add x x

renorm x x

round x

shift A

lead 1

shift B

a) FP multiplier

 1 2 3 4 5 6 7 8 9

exp add x

mul

sig add x

renorm x

round x

shift A x x

lead 1 x

shift B x x

b) FP adder

Figure 6.8 the reservation table for a) FP multiplier b) FP adder

If we launched two multiplications, one after another, the reservation table will

look like Fig.6.9. x is the first multiplication and y is the second. When x and y

occupy the same unit at the same time the collision occurs. Fig 6.9 shows that we

cannot launch another multiplication one cycle after the first multiplication. The

collision information is represented in a binary vector called "collision vector".

Position i contains a bit that indicates whether a new operation can be launched i

cycles after the first operation has been initiated. The collision vector for

launching two multiplication in succession is 110000. It indicates that a new

multiplication must be launched at least after two cycles after the first

multiplication. For two FP addition, the collision vector is 10000000. We can

111

also determine the collision of a multiplication then addition and vice versa. For

more advanced treatment of the pipeline control see Kogge [KOG81].

 1 2 3 4 5 6 7

exp add x y

mul x xy

sig add x xy y

renorm x y x

round x y

shift A

lead 1

shift B

Figure 6.9 the collision of two multiplications x and y

Pipeline of multiple functional units

Figure 6.10 an example of multi step pipeline

Assume there are multiple functional units: FP adder, FP multiplier, FP divider,

integer unit etc. and two separate register sets: FP and integer. This simplifies the

pipeline control as it reduces hazard detection such as overlapping FP and Integer

operations, except for load/store FP and movement between FP/Integer registers.

Integer unit handles load/store to both register sets. Assume EX stage is repeated

many times to do these operations. No other instruction using functional unit may

issue until the previous instruction leaves EX. If an instruction cannot proceed to

112

the EX stage, the entire pipeline behind that instruction will be stalled (to avoid

this stall, we need the capability to do out-of-order issue, the topic of next

chapter). The following steps are required to issue a new floating-point

instruction:

1. Check for structural hazard

2. Check for data hazard

3. Check for forwarding

Because all FP instructions require different execution time, this caused three

complications:

1. contention for register access at WB stage,

2. WAR and WAW hazards and

3. interrupts. (we ignore interrupt).

FP load and FP operation can content for FP register on writes. This can be dealt

with using priority scheme at the WB stage. The highest priority instruction can

get access to register and all other instructions are stalled. A simple heuristic is to

give the longest latency instruction the highest priority. If all instructions read

their registers at the same time there will be no WAR hazards. WAW hazards

occur because the results can be written in different order. The instructions can be

completed in a different order from the order in which they are issued.

Example

DIVF F0 F2 F4
SUBF F0 F8 F10

Assume DIVF takes longer than SUBF to complete. The SUBF will complete

first and writes its result before the DIVF. This hazard must be detected and

ensure that the result of executing instructions is correct.

S1 pipeline design

To illustrate the design of a pipelined CPU, S1 will be modified to be a pipelined

machine. There are many factors that have to be considered: the number of stage

of pipeline, the function of each stage of pipeline, and the behaviour of each

instruction in the pipeline.

S1-pipe has 5 stages: Fetch, Decode, Execute, Mem, Writeback.

113

The fetch stage (F) reads the instruction from the memory. The decode stage (D)

dispatches the instruction for appropriate sequences of operations. Every

instructions have the same F,D stages. The execute state (X) performs operations.

For ALU instructions, the ALU operations are done in this stage. For load/store

instructions, the MAR and MDR are prepared. The memory stage (M) reads or

writes the memory. The writeback stage (W) writes the result to the register.

Structure

Assume registers have 2 read ports and one write port. Every clock cycle, one

instruction is fetched from the memory while other instruction may accesses the

memory in M stage, therefore the memory must have 2 read ports and one write

port (usually, the cache memory has this property). There are a number of

additional registers that are used to store the information between the stages of

pipeline (the state of pipeline): LMDR, SMDR, PCm, PCw, IRx, IRm, IRw and

T1. The internal buses become 2 separate buses, R read bus and R write bus to

allow concurrent operations to access registers and memory.

Figure 6.11 the structure of S1 pipeline

114

ISA

The number of stage of a pipe cannot be smaller than the longest instruction. For

a 5-stage pipelined machine, at most an instruction must be completed in 5

clocks. The instructions that are too long (ret, push, pop) will be difficult if not

impossible to pipeline therefore they are eliminated. To handle the subroutine

call, the "jump and link register" and "jump register" are used. These two

instructions can be completed within 5 clocks. Besides these two new

instructions, all other instructions must retain their original semantics in the

pipelined version (pipeline does not change the meaning of an instruction).

Microstep in the pipeline stages

Fstage : Mdr=M[Pc]; Pc=Pc+1
Dstage : Ir=Mdr

inst Xstage Mstage Wstage

load Mar=IRx:ads Lmdr=M[Mar] R[IRw:r]=Lmdr

store Mar=IRx:ads ;

Smdr=R[IRx:r]

M[Mar]=Smdr

loadr Mar=R[IRx:r1] Lmdr=M[Mar] R[IRw:r2]=Lmdr

storer Mar=R[IRx:r2] ;

Smdr=R[IRx:r1]

M[Mar]=Smdr -

jmp if CC

PC=IRx:ads

- -

jal PCm=PC ;

PC=IRx:ads

PCw=PCm R[IRw:r1]=PCw

jr if CC

PC=R[IRx:r1]

- -

mov T=R[IRx:r1] T1=T R[IRw:r2]=T1

add T=R[IRx:r1]+

R[IRx:r2]

T1=T R[IRw:r1]=T1

inc T=R[IRx:r1]+1 T1=T R[IRw:r1]=T1

cmp cmp(R[IRx:r1],

R[IRx:r2])

- -

115

Design considerations

1. shift register effect

2. conflict of use of resources in different stages

Shift register effect

When some data must be used in the later stage, it must be moved along the pipe

and hence there must be intermediate registers (latches). The data moves along

the pipe using the same principle as a shift register.

Example If we want to transfer the value of A from stage 1 to B in stage 3, we

use an intermediate register, stage 1 to stage 2 and stage 2 to stage 3.

stage1 stage2 stage3
T = A, T1 = T, B = T1

The intermediate register is T1. The pair T = A, T1 = T execute at the same time.

T is read (at stage 2) before it is written into (at stage 1).

Conflict of use of resources

All stages execute at the same time, hence the pipe cannot have one resource

being used in two different stages. For example, MDR will be used to fetch the

next instruction at Fstage all the time therefore MDR can not be used in any other

stages.

Another example, LOAD instruction uses MDR = M[MAR] at Mstage and

STORE uses MDR = R[IR:R1] at Xstage. MDR is used in two different stages

(Mstage and Xstage). Moreover MDR is already been used in Fstage. Therefore,

two new registers are assigned to avoid this conflict: Lmdr (load mdr), Smdr

(store mdr). There are some situation which still has conflict such as an example

below.

 Xstage Mstage
storer MAR = ... M[MAR] = ...

MAR is on the left hand side (being written into), therefore there is a conflict in

writing and reading MAR at the same time, but for a memory chip, we assume

116

the address can be change during the write memory cycle as long as it was hold

for a certain time. PC is also having a conflict. At Fstage, PC = PC+1 but for JMP

instruction PC = IR:ads. This situation can be remedied by using a multiplexor

circuit for writing into PC and PC = IR:ads when the jump is taken (because it

jumps and hence not using the next instruction in sequence). Fig. 6.12 shows the

next address circuit according to this scheme.

 Fstage Xstage
jmp PC=PC+1 PC=IRx:ads

Figure 6.12 the next address circuit

How to assign each microstep into a stage?

The assignment is done according to the guideline that a resource can not appear

in two different stages. Let us see the example from S1 pipeline. At Xstage, most

operations have the form A = R[..], i.e. reading register file. At Wstage,

operations have the form R[..] = A, i.e. writing register file. If we move R[IR:R1]

= PCw from Wstage to Xstage there will be conflict on writing a register with

R[..] = A of other instruction.

Performance evaluation

Running the sum array benchmark (sum a[0]..a[n] where n = 100) and using the

following timing for S1 (Table 6.1).

117

Table 6.1 the timing of S1 (count ifetch as 2 clocks)

instruction clock
load 5

store 5

jmp 3

jal 3

mov 4

loadr 5

storer 5

add 4

cmp 3

inc 4

The experiment is carried out to compare s1 and S1-pipe (S1-P) and S1-pipe with

register forwarding (S1-PF) and S1-pipe with forwarding and delay branch (S1-

PFD). The result is shown in Table 6.2.

Table 6.2 comparison of S1 and pipelined S1

CPU inst clock stall stall % CPI speedup P:PF PF:PFD

S1 1110 4642   4.18   

S1-P 1112 3136 2024 64.5 2.82 0.48  

S1-PF 1112 1304 202 15.4 1.18 2.54 1.39 

S1-PFD 1112 1114 2 0.18 1.002 3.17 1.81 0.18

S1-P is faster than S1 48% and S1-PF is faster than S1 254%. S1-PF is faster than

S1-P 139%. The maximum gain is obtained using forwarding. It reduced stall

cycle from 64.5% to 15.4%. By using delay branch this can be reduced further

but the gain is not as much as using forwarding.

Summary

The pipeline overlaps the operations and reduces the idle time in functional units.

This chapter illustrates only one kind of pipelining, the instruction execution

pipeline. There are others such as pipeline in accessing memory, pipeline in

118

cache memory controller [TCH98], pipeline in virtual address calculation. The

stall in pipeline caused serious performance degradation. Several techniques to

reduce the stall have been demonstrated such as register forwarding and branch

prediction. There are many other techniques, several of which will be studied in

the next chapter. The reduction of stall caused by branch is still a very much

active area of research, for example see [USS97].

References

[DAV71] Davidson, E., "The design and control of pipelined function

generators." Proc. of the 1971 Int. Conf. on Systems, Networks, and

Computers, Oaxtepec, Mexico, 1971.

[KOG81] Kogge, P., The architecture of pipelined computers, McGraw-Hill,

1981.

[TCH98] Taechashong, P. and Chongstitvatana, P., "A VLSI design of a

load/store unit for a RISC microprocessor", Proc. of The Second Annual

National Symposium on Computational Science and Engineering, Bangkok,

March 25-27, 1998, pp. 244-248.

[STO93] Stone, H., High performance Computer architecture, McGraw-Hill,

1993.

[USS97] Uht, A K., Sindagi, V., Somanathan, S., "Branch Effect Reduction

Techniques", IEEE COMPUTER, Vol. 30, No. 5: MAY 1997, pp. 71-81.

119

Chapter 7

Instruction Level Parallelism

The use of simple pipeline for instruction execution and a more complex pipeline

for floating-point operations is a way to increase "instruction level parallelism"

since the instructions can be evaluated in parallel. In this chapter we will learn

more about other techniques to increase performance through instruction level

parallelism. The technique that is based on software (a compiler) which

rearranges instructions to reduce the number of stall is called static scheduling as

the scheduling is done at compile-time. The technique that uses hardware to

issue many instructions concurrently is called dynamic scheduling as the

scheduling is done at run-time. We examine three static scheduling techniques:

register optimization, register renaming and loop unrolling. We study five

architectural features to improve instruction level parallelism: scoreboard,

Tomasulo, superscalar, superpipeline, and very-long-instruction-word (VLIW).

Static scheduling

If a compiler knows about architectural features of the target machine, the

compiler can analyse a source program and generate sequences of instructions

that minimise the number of stall. The technique based on software is powerful

as there are plenty of resources available to perform complex analysis. The

limitation is that there are many events that are not knowable at compile-time

hence it is impossible to schedule many run-time dependent sequences of

instructions. Register optimization is used to minimise the stall caused by load

and store operations. Register renaming replaces the registers in conflict to

eliminate hazards. Loop unrolling is used to schedule instructions across basic

blocks. A basic block is defined as a straight-line code sequence with no

branches in except to the entry and no branches out except at the exit.

120

Register optimization

To reduce the number of stalls caused by load and store operations, the compiler

keeps the operands for as many computations as possible in register rather than in

memory. The approach is as follows. Each program quantity to be kept in a

register is assigned a virtual register. The compiler then maps this unlimited

number of virtual registers in to a fixed number of real registers. Virtual registers

whose usages are not overlap can share the same real register. If there are more

quantities than the number of real registers, some quantities are assigned to

memory locations. The optimization task is to decide which quantities are to be

assigned to registers at any given point in a program. This problem is known as

graph coloring. The algorithm to solve graph coloring, which is NP-complete,

can be used to allocate registers [CHA82].

Register renaming

This technique assigns idle registers to serve in place of program specified

registers in order to avoid conflicts that could stall pipeline. For example, the

sequence of instructions:

i1: R3 = R3  R5

i2: R4 = R3 + 1

i3: R3 = R5 + 1

i4: R7 = R3  R4

There are the following data hazards : i1-i2 RAW , i1-i3 WAW, i2-i3 WAR, i3-i4

RAW. By replacing the registers in conflict with different registers the conflict

of resources can be avoid. The following example shows how renaming is used.

i1: R3b = R3a  R5a

i2: R4b = R3b + 1

i3: R3c = R5a + 1

i4: R7b = R3c  R4b

The renaming can be achieved by a compiler or by using hardware. The

hardware approach will be discussed in the section Tomasulo.

121

Loop Unrolling

The simplest way to increase instruction parallelism is to exploit the iterative

nature of the loop. The technique work by unrolling the loop either by the

compiler or by the hardware. Here we examine the loop unrolling by software.

To avoid a pipeline stall, a dependent instruction must be separated from the

source instruction by a distance in clock cycles equal to the pipeline latency of

that source instruction.

Let us use an example to illustrate how a compiler unrolls loops to improve the

instruction level parallelism. The example is a program to multiply two matrices.

This is a typical triple loop for matrix multiplication. Assume integer numbers.

The matrices have size N  N.

1 for(i=0; i<N; i++)

2 for(j=0; j<N; j++) {

3 c[i][j] = 0;

4 for(k=0; k<N; k++)

5 c[i][j] += a[i][k] * b[k][j];

6 }

Assume we have a 32-bit version of S1. The S1-32 has the element size equal

one word (word addressable where a word is 32 bits). S1-32 instructions have

the 3-operand format where op r1 r2 r3 means r1 = r2 op r3. Its

addressing mode includes register index with displacement in the format

disp(base + index). The load/store instructions have 1 clock stall and all

other instructions take 1 clock to complete. Assume each element is 32 bits and

the matrix is stored in row-major, i.e. the arrangement in the memory is as

follows: a11, a12, a13, … a1n, a21, a22, ... , an1, ..., ann. The following assembly

program will multiply two matrices C = A  B.

clk

1 loop: ld1 aik 0(Rba + Rik)

2 stall

3 ld2 bkj 0(Rbb + Rkj)

4 stall

5 mul3 Rt aik bkj

6 add4 cij cij Rt

7 add5 Rik Rik 1

8 add6 Rkj Rkj N

9 cmp7 Rik Rend

10 jnz8 loop

11 st9 0(Rbc + Rij) cij

122

Explanation of variables:

register aik, bkj hold the current value of a and b.

register Rba, Rbb, Rbc hold the base address of the matrices A,B,C

register Rik, Rkj, Rij hold the index to the aik, bkj, cij

register Rt is temporary, Rend holds the address of the last element of the matrix

A.

Each instruction has suffix to help understanding the rearranging of the

instructions. This program takes 10 clocks to computer one element (not

counting the last store). Load instructions stall one clock each (ld1, ld2).

Schedule loop to reduce stall

Instead of wasting the stall cycle because of ld instruction, we can issue other

instruction to perform a useful work. We rearrange the program (code

scheduling) to fill the stall cycle as follows :

1 loop: ld1 aik 0(Rba + Rik)

2 add5 Rik Rik 1

3 ld2 bkj 0(Rbb + Rkj)

4 add6 Rkj Rkj N

5 mul3 Rt aik bkj

6 add4 cij cij Rt

7 cmp7 Rik Rend

8 jnz8 loop

9 st9 0(Rbc + Rij) cij

Now the program computes one element in 8 clocks.

Loop unrolling can eliminate branch

To reduce the overhead of control flow stall (increment pointers and jump) the

loop can be unrolled. The following example unrolls the loop once, using the

offset in ld/st instruction to index the variables . Therefore two instructions per

loop are eliminated (add5, add6).

1 loop: ld1 aik 0(Rba + Rik)

2 stall

3 ld2 bkj 0(Rbb + Rkj)

4 stall

123

5 mul3 Rt aik bkj

6 add4 cij cij Rt

7 ld10 aik 1(Rba + Rik)

8 add5 Rik Rik 1

9 ld11 bkj 1(Rbb + Rkj)

10 add6 Rkj Rkj N

11 mul12 Rt aik bkj

12 add13 cij cij Rt

13 cmp7 Rik Rend

14 jnz8 loop

15 st9 0(Rbc + Rij) cij

This program takes 14/2 = 7 clocks per element.

In our example, unrolling loops improve the speed from 10 clocks per element to

8 clocks to 7 clocks but increase the size of program substantially. To exploit

instruction level parallelism it is important to determine which instructions can be

executed in parallel (assuming pipeline has sufficient resources). If two

instructions are dependent they are not parallel. Instructions that can be

reordered are parallel and vice versa. The loop level parallelism is analysed at

the source code. The analysis involves determining what dependencies exist

among the operands in the loop across the iterations of the loop.

Dynamic scheduling in pipeline

In the previous chapter, the pipeline fetches and issues an instruction unless there

is a data dependence between an instruction already in the pipeline and the

fetched instruction. When data hazard occurs the pipeline is stalled. This is

called static scheduling. The stall caused by data hazard can be reduced by

forwarding the result using a bypass unit. This section introduces more hardware

scheme to reduce the stalls, this is called dynamic scheduling as it can detect the

dependencies at the run-time.

All the previous pipeline technique that we described use in-order instruction

issue. If an instruction is stalled in the pipeline, no later instructions can proceed.

When there are multiple functional units, these units could be idle. For example,

DIVF F0 F2 F4
ADDF F10 F0 F8
SUBF F8 F8 F14

The SUBF cannot be issue because the dependence of ADDF on DIVF (RAW on

F0). Yet, the SUBF does not depend on any instruction in the pipeline. If an

124

instruction can be executed out-of-order this stall can be eliminated. We can

check data hazards in the ID stage. In order to let an instruction start its execution

as soon as its operands is available, the instruction issuing process must be

separated from the hazard checking. The pipeline will do out-of-order execution

which implies out-of-order completion. For the simple pipeline in the last

chapter, data hazards and structural hazards are checked during the instruction

decode stage. To allow out-of-order execution the issue process must be split

into two parts: 1) checking and waiting until no structural hazard 2) and then

read operands. The distinction must be made between the beginning of

execution of an instruction and the completion. Between these two time, an

instruction is in execution. Using multiple functional units and pipelines,

multiple instructions can be in execution at the same time. We introduce three

techniques to do dynamic scheduling: scoreboard, Tomasulo and superscalar.

Scoreboard

Scoreboard is a hardware technique that enables instructions to be out-of-order

executed when there are sufficient resources and no data dependencies. It is

named after the CDC6600 scoreboard [THO70] (first delivered in 1964 and was

considered by many to be the first supercomputer). The goal of a scoreboard is to

maintain an execution rate of one instruction per clock cycle by executing an

instruction as early as possible. This can be achieve only when there are no

structural hazard, i.e. there are sufficient number of resources. The scoreboard is

responsible for instruction issue and execution. It does all hazard detection.

Every instruction goes through the scoreboard which keeps all information

necessary to detect all hazards. The scoreboard determines when an instruction

can read its operands and begin execution. The scoreboard controls when an

instruction can write its result into the destination register. All hazard detection

and resolution is centralised in the scoreboard.

To illustrate the working of scoreboard we will use S1 with scoreboard (S1s).

Assume S1s has 2 FP multipliers, one FP divide, one FP add and one integer unit.

The integer unit handles all load/store, memory references, branches and integer

operations. Each instruction goes through 4 steps, which replaces the pipeline

stages, as follows:

1. Issue, when there is no structural hazard the instruction is issued.

Scoreboard updates its internal data structure. It guarantees that there is

no WAW.

125

2. Read operands, the scoreboard monitors source operands. If

2.1 no active instruction is going to write to it.

2.2 no active functional unit is writing to the register containing the

operands.

Then when the source operands are available, the scoreboard tells the

functional unit to read its operands and begin execution. RAW is

resolved and instructions may be executed out-of-order.

3. Execution, a functional unit begins execution. It notifies the scoreboard

when the result is ready.

4. Write result, when the functional unit has completed execution, the

scoreboard checks or WAR hazards. An instruction is not allowed to

write its results when

4.1 there is an instruction that has not read its operands.

4.2 one of the operands is the same register as the result of the

completing instruction.

4.3 the other operand was the result of an earlier instruction.

The scoreboard controls the execution of an instruction by communicating with

the functional units.

Example, a scoreboard of S1s controls the execution of the following sequence

of instructions:

LF F6 34(R2)
LF F2 45(R3)
MULTF F0 F2 F4
SUBF F8 F6 F2
DIVF F10 F0 F6
ADDF F6 F8 F2

The scoreboard has three parts:

1. Instruction status

2. Functional unit status, each FU has the following fields

2.1 Busy

2.2 Op, instruction to be performed

2.3 Dest , destination register

2.4 Src1, Src2, source registers

2.5 P1, P2, number of units producing Src1, Src2

2.6 R1, R2, ready flags for Src1, Src2; they are reset when new values

are read so the scoreboard knows that the source operand has been

read.

3. Register result status, which FU will write register.

126

Assuming the execution of the floating-point functional units are: add is 2 clocks,

multiply is 10 clocks and divide is 40 clocks. Each instruction that has issued, has

an entry in the instruction status table. Once the instruction issues, the record of

its operands is kept in the functional unit status table. See the figure 7.1, the

instruction status says that

1) the first LF has completed

2) the second LF has completed but has not yet written its result.

3) the MULTF, SUBF and DIVF have issued but are stalled, waiting for

their operands.

The functional unit status says that

1) the first multiplier unit is waiting for the integer unit. (RAW on F2).

2) the add unit is waiting for the integer unit. (RAW on F2).

3) the divide unit is waiting for the first multiplier unit. (RAW on F0).

4) the ADDF is stalled due to structural hazard (FU Add is in used by

SUBF).

Figure 7.1 The scoreboard after issuing the first five instructions.

127

Now assume the MULF and DIVF are proceeded and ready to write results. There

are RAW on

1) the second LF to MULTF and SUBF (on F2)

2) MULTF to DIVF (on F0)

3) SUBF to ADDF (on F8)

There is a WAR between DIVF and ADDF on F6. There is a structural hazard on

FU add for ADDF. The DIVF has not yet read its operands. The ADDF has read its

operands and is in execution, it was waiting for SUBF (structural hazard). The

ADDF cannot write its results because of WAR on F6.

Figure 7.2 The scoreboard when MULTF and DIVF are ready to write results.

128

Bookkeeping

The scoreboard records operand specifier information, such as register numbers.

For example, it records the source registers when an instruction is issued. Here is

the summary of bookkeeping for each step in instruction execution.

Instruction issue

Check functional unit is not busy (functional units status) and dest is not waiting

for the result (register result status)

 check busy field in FU = yes

 check op field in FU = opcode

 fill FU : Dest Src1 Src2

 fill P1 P2 with the register result of Src1 Src2

 check R1 R2 = not P1, not P2

 write the name of FU to register result

Read operands

Wait for R1 R2 until ready, read operands

 set R1, R2 = No

 P1, P2 = 0

Execution complete

Wait until functional unit done

Write result

Check WAR hazard

 when other instruction has this instruction Dest as Src1 or Src2

for all f : Src1(f), Src2(f) != Dest(FU) AND

 when other instruction has written the register R1, R2

R1 = Yes or R2 = Yes

Wait until no harzard , set ready flag

for all f :

 if P1(f) = FU then R1(f) = Yes

 if P2(f) = FU then R2(f) = Yes

 reset register result

 reset busy field of FU

129

The next section describes a technique called register renaming that eliminates

name dependencies so as to avoid WAR and WAW hazards.

Tomasulo

Another dynamic scheduling technique similar to scoreboard is Tomasulo. This

technique was invented by Robert Tomasulo in 1967 [TOM67] for the IBM

360/91 floating-point unit [AND67]. The key concept is the renaming of registers

to avoid WAR and WAW hazards. This function is provided by the reservation

stations. A reservation station fetches and buffers an operand as soon as it is

available, pending instructions designate the reservation station that will provide

their input. When successive writes to a register appear, only the last one is

actually used to update the register. As instructions are issued, the register name

for pending operands are renamed to the names of the reservation station. This is

the main difference between scoreboard and Tomasulo's algorithm. There can be

more reservation stations than real registers, the technique can eliminate hazards

that could not be eliminated by a compiler.

Two other differences between scoreboard and Tomasulo are: first, hazard

detection and execution control are distributed by each reservation station (in

scoreboard it is centralised), second, results are passed directly to functional

units rather than through registers. A common result bus allows all units waiting

for an operand to be loaded simultaneously, this is called the common data bus

(CDB) (Fig.7.3).

The steps to execute an instruction:

1. Issue, Get an instruction from the queue, issue it if there is an empty

reservation station, send the operands to the reservation station if they are

in the registers. If the operand is a load or store, it can issue if there is an

available buffer. If there is no empty reservation station or an empty

buffer, then there is a structural hazard. This step also performs the

renaming registers.

2. Execute, if operands are not yet available, monitor CDB waiting for the

registers. When an operand is available, it is placed into the

corresponding reservation station. When both operands are available,

execute the operation. This step checks RAW hazards.

3. Write result, When the result is available, write it on CDB and from

there into the registers and any reservation stations waiting for this result.

130

Figure 7.3 A CPU with two floating point functional units each with two
reservation stations, and one load one store buffer

Although these steps are similar to those in the scoreboard there are three

important differences. First, there is no checking for WAW and WAR hazards 

they are eliminated by register renaming. Second, the CDB is used to broadcast

the result instead of waiting for the registers. Third, the loads and stores are

treated as functional units.

The next two sections examine how to improve the instruction level parallelism

further by issuing multiple instructions in one clock cycle.

Superscalar

The term superscalar describes a computer implementation that improves

performance by concurrent execution of scalar instructions (more than one

131

instruction per cycle) [JOH90]. Scalar processor is a processor that execute one

instruction at a time. A superscalar processor allows concurrent execution of

instructions in the same pipeline stage. A superscalar processor is a machine that

is designed to improve the performance of the execution of scalar instructions as

opposed to vector processors that operate on vectors.

The hazard affects a superscalar processor more than in a scalar processor as it

prevents a greater amount of resources from being used. For example, when there

is no instruction that is not dependent the processor will not execute any new

instruction, this is called "zero-issue" cycle. During this cycle, the wide pipeline

that can execute more than one instruction at a time is wasted.

The instruction parallelism of a program is a measure of the average number of

instructions that a processor might be able to execute at the same time (given an

unlimited resource). Machine parallelism of a processor is a measure of the

ability of the processor to take advantage of the instruction-level parallelism.

Machine parallelism is determined by the number of instructions that can be

fetched and executed at the same time by the mechanisms that the processor uses

to find independent instructions. To achieve performance, both machine

parallelism and instruction parallelism are required [JOU89].

Instruction-issue refers to the process of initiating instruction execution in the

processor's functional units. Instruction-issue policy affects performance because

it determines the processor's "lookahead" capability; that is, the ability of the

processor to examine instructions beyond the current point of execution in hopes

of finding independent instructions to execute. There are three possible policies:

in-order issue with in-order completion, in-order issue with out-of-order

completion, and out-of-order issue with out-of-order completion. We examine

each policy in turn using an example of a superscalar processor.

Assume a superscalar processor capable of fetching and decoding two

instructions at a time, having three separate functional units and two writeback

stages. There are six instructions being executed. The following constraints

occur:

 i1 requires two cycles to execute

 i3 and i4 conflict for the same functional unit.

 i5 depends on the value produced by i4.

 i5 and i6 conflict for a functional unit.

132

In-order issue with in-order completion

The simplest policy is to issue instructions in exact program order and to write

results in the same order. The figure 7.4 shows two instructions being in

execution at once. The results are written back in the same order. The

instruction issuing stalls where there is a conflict for a functional unit.

 Decode Execution Writeback clock

i1 i2 1

i3 i4 i1 i2 2

i3 i4 i1 3

 i4 i3 i1 i2 4

i5 i6 i4 5

 i6 i5 i3 i4 6

 i6 7

 i5 i6 8

Figure 7.4 a superscalar with in-order issue and in-order completion

In-order issue with out-of-order completion

With out-of-order completion, the number of instructions allowed to be in

execution in the functional units is up to the total number of pipeline stages in all

functional units. Instruction issuing is not stalled when a functional unit takes

more than one cycle to compute a result. Therefore instructions may be complete

out of order. The figure 7.5 shows i1 is completed out of order. Total time of

this sequence is reduced to seven cycles.

 Decode Execution Writeback clock

i1 i2 1

i3 i4 i1 i2 2

i3 i4 i1 i2 3

 i4 i3 i1 i3 4

i5 i6 i4 i4 5

 i6 i5 i5 6

 i6 i6 7

Figure 7.5 a superscalar with in-order issue and out-of-order completion

133

Out-of-order completion yields higher performance than in-order completion, but

requires more hardware than in-order completion. Dependency logic is more

complex with out-of-order completion, because this logic checks data

dependencies between decoded instructions and all instructions in all pipeline

stages. Out-of-order completion improves the performance of long latency

operations such as loads or floating-point operations.

Out-of-order issue with out-of-order completion

With in-order issue, the processor stops decoding whenever a decoded instruction

creates conflict or dependency on the instruction in the pipeline. To be able to

look ahead beyond the instruction with conflict or dependency, the processor

must isolate the decoder from the execution stage, so that it continues to decode

instruction regardless of whether they can be executed immediately. This is

accomplished by a buffer between the decode and execute stages, called an

instruction window. Instructions are issued from the window without regarding

their program order but it is required that the program must behaves correctly.

 Decode Window Execution Writeback clock

i1 i2 1

i3 i4 i1,i2 i1 i2 2

i3 i4 i3,i4 i1 i3 i2 3

 i4 i4,i5,i6 i6 i4 i1 i3 4

i5 i6 i5 i5 i4 i6 5

 i6 i5 6

Figure 7.6 a superscalar with out-of-order issue and out-of-order completion

The instruction window is not an addition pipeline stage. It is a buffer that keeps

information about instructions to be issued. The figure 7.6 shows that the

processor discovers an independent instruction i6 and issues it out-of-order with

i4. The total time is reduced to six cycles.

Superpipeline

In a fully-pipeline operation, one result will be produced every clock cycle.

Therefore the cycle-per-instruction is one. To divide pipeline into more stages

will result in a superpipeline. In a superpipelined processor, the stages are

divided into substages [JOU89a]. The substages are clocked at a higher

134

frequency than the major stages. The processor can initiate an operation at each

substage. This effectively reduces the processor cycle time. A superpipeline

processor takes longer to generate all results than the superscalar processor for a

given set of operations. On the other hand, some simple operations in the

superscalar processor take a full cycle whereas the superpipelined processor can

complete these operations sooner. For example, the superpipelined processor

knows the result of the branch instruction sooner than the superscalar processor,

thus reduces the impact of the control hazard. The superpipelining is appropriate

when the cost of duplicating resources is high and the ability to control clock

skew is good (as it is susceptible to clock skew). It is also appropriate for

implementing a very high speed technology. Superpipelining presents no new

design problems over pipelined processors.

Very long instruction word

A superscalar processor uses dynamic scheduling, e.g. the hardware controls the

issue of instruction dynamically. For static scheduling, the very long instruction

word (VLIW) architecture [FIS83] depends on a compiler to schedule concurrent

instructions and rearranging them into a long instruction word [ELL87], typically

120-200 bits. A single instruction specifies more than one concurrent operation.

A VLIW processor can be visualised as a processor without instructions, just a

processor that directly controls the functional units from its bit-pattern similar to

the level of microprogram. A compiler performs scheduling of parallel

execution. Since hardware can have multiple functional units we can schedule as

many of them to execute concurrently. The limitation is on instruction

parallelism. A basic block is defined to contain a sequence of code without

branching, i.e. a straight line code. The number of instruction in a basic block is

average about 10 lines of assembly. The number of instruction in a basic block

must be enough to sustain parallel execution of functional units. One simple

technique to increase the number of instruction in a basic block is loop unrolling.

More advance technique required inter-block analysis, so called "trace

scheduling". Trace scheduling is done by analysing the sequence of instruction

executed. Trace scheduling will be discussed in the next section.

Suppose a VLIW processor has one load/store unit, two integer units and one

branch unit. Assume the load/store unit can issue the next instruction before the

first instruction is completed. The load/store delay is 1 cycle. Figure 7.7 shows

scheduling of the code for matrix multiply on the VLIW processor.

135

clk load-store integer1 integer2 branch

1 ld1 a ik 0(R ba + R ik)

2 ld2 b kj 0(R bb + R kj)

3 ld10 a2 ik 1(R ba + R ik)

4 ld11 b2 kj 1(R bb + R kj) mul3 R t a ik b kj

5 add4 c ij c ij R t add5 R ik R ik 1

6 cmp7 R3 R ik R end mul12 R2 t a2 ik b2 kj

7 add6 R kj R kj N add13 c ij c ij R2 t jnz8 R3

8 st9 0(R bc + R ij) c ij

Figure 7.7 scheduling the matrix multiply code in a VLIW processor

To avoid data hazard, the operands a ik, b kj at the instruction ld10, ld11, mul12 are

renamed to a2 ik, b2 kj . This program takes 7/2 = 4.5 clocks per element assuming

no branch delay. Compare this result to the 7 clocks per element achieved by the

software loop unrolling.

Note on the use of flags

We did not use flags for conditional branch as the flags are "global" and in the

concurrent issue of instructions it is very difficult predict the effect on flags. The

instruction that sets flags and the instruction that tests the flag may not be easy to

recognise when instruction scheduling "rearrange" the order of execution. One

way to solve this problem is to make the setting and testing "local" by using a

register to store the result, for example, the instruction "cmp r1 r2 r3"

compares r2 and r3 and stores the result {1, 0, 1} in r1 if r2 < r3, r2 = r3, r2 > r3

respectively. The conditional branch instruction takes the condition from a

register, for example, "jnz r1 ads" means jump if r1 is not zero. This will

avoid the conflict of using global flags by concurrent instructions and facilitate

the instruction scheduling.

Trace scheduling

Trace scheduling extends loop unrolling with a technique for finding parallelism

across conditional branches. It is consisted of two steps: trace selection and trace

compaction. Trace selection finds the sequence, called "trace", to be put together.

Loop unrolling is used to generate a long trace. Trace compaction packages the

trace into a small number of wide instructions. There are two consideration when

perform trace scheduling: 1) data dependency, 2) branch points. Data dependency

forces partial order on operations and branch points impose constraint on moving

code across the branches. Assume the following code:

136

1 a[i] = ...
2 if cond
3 then b[i] = ...
4 else d ...
5 c[i] = ...

Trace selection selects the sequence 1,2,3,5 as the probability of the branch to be

taken is higher. The branch point 4 is called branch "out" of the trace and the

branch from 4 to 5 is called branch "into" the trace.

Trace compaction tries to move 3 and 5 to the point before the branch 3, so that

these operations can be packed into a wide instruction. In moving 3, the code in 4

will be affected if it used b[], since moving 3 will change the value of b[].

Therefore, to move 3, 4 must not read 3. To move 5, c[] must be moved over 4,

as 4 flow "into" the trace. This can be done by copy 5 but the check must be done

similar to b[] to make sure the code can be moved. If 5 can be moved and the

branch "out" is taken, 5 will be performed twice. This incurs penalty.

Loop unrolling, and trace scheduling aim at increasing the amount of instruction

level parallelism that can be exploited by a processor issuing more than one

instruction on every clock cycle.

Speculative Execution

Another technique to schedule instructions across branch is to execute the

instructions "speculatively", i.e. the instructions are issued and executed but may

not be "committed" to write their results. The results is committed, i.e. written

back to registers, after the outcome of the condition in the branch is known.

Speculative execution can improve the performance given that the resources are

adequate. See the following example:

if cond == true

then a = b + 1

else a = c + 1

In normal execution
test cond

jump if false :2

a = b + 1

jump :3

:2 a = c + 1

:3 continue

137

In speculative execution
test cond

a = b + 1 || a = c + 1

continue

Both instructions; a = b + 1, a = c + 1, are executed speculatively if

enough resources are available (functional units) but only one of them will be

"committed" to write their results. The other result will be ignored depends on the

result of the conditional test.

One mechanism that is used in performing speculation is "predicate". Each

instruction is tagged with a predicate field. This predicate depends on the

conditional test and determines whether the current instruction will be committed

or not. For the instructions that are issued concurrently, their predicates will be

mutually exclusive, only one of them can be true. From the previous example:

Using predicate
test cond => p1, p2

p1: a = b + 1 || p2: a = c + 1

continue

p1, p2 are the predicates which depend on the result of the conditional test.

They are mutually exclusive, only one of them can be true. The instructions a =

b + 1, a = c + 1 are tagged with p1 and p2 respectively. a = b + 1 and

b = c + 1 are executed concurrently but only one of them will write their

results depends on whether p1 is true of p2 is true. Only one of the result will be

written back to the register.

For load/store instructions, if execute speculatively may result in an exception.

For example, load before the address of operand is known to be valid or a cache

miss occurs. To allow load/store instruction to be executed speculatively, their

execution are separated into two phases. The first phase load/store is executed

without delivering the exception and the second phase when the result is needed

the exception is delivered. See the following example:

if cond == true then a = b[i]

138

In normal execution
test cond

jump if false :2

a = b[i]

:2 continue

a = b[i] can be executed speculatively before the condition is known. This can

be accomplished by "hoising" the a = b[i] up before the test. This will hide the

latency of memory access because the instruction is issued much earlier than the

result is needed.

In speculative execution
load.s r = b[i]

test cond => p1

p1: check.s a = r

load.s gets b[i] without deliver an exception. An exception that will occur in

case i is invalid or b[i] causes a cache miss is suppressed. When the result of

load is needed check.s a = r is executed and this instruction will delivered

the exception (if pending). If the exception occurs the processor will call a trap to

operating system to bring in a new page in the virtual memory or a line of cache

is refreshed.

Example The following example shows how speculative can improve the

performance of a hard to schedule "pointer chasing" code. An associative list is a

data structure that stores "key" and "value". To get a value of a key, the list has to

be traversed and the key field compared until the required "key" is found or the

end of list is encountered (Fig. 7.8).

(("house" 1000) ("car" 200) ("table" 30))

The program to the value of a key is as follows.

1 for (fp = lenv; fp != NIL ; fp = cdr(fp))

2 for (ep = car(fp) ; ep != NIL ; ep = cdr(ep))

3 if (sym == car(car(ep)))

4 return (cdr(car(ep)))

139

car 200

table 30

house 1000

Figure 7.8 the example data structure in dot pair.

The control flow of the above program is as follows.

line 1 :1 fp = cdr(fp)

line 2 :2 if (sym == car(car(ep))) goto :3

line 3 if ep != NIL goto :2

line 4 if fp != NIL goto :1

line 5 exit

line 6 :3 return

The loop of interest is the inner loop (line 3). Induction variable ep is

dereferenced twice and compared to the value sym. The two loads x = car(ep)

and y = car(x) are in the loop's critical path. Speculation is used to start the

loads as soon as possible. A compiler can schedule the loads as soon as ep is

known, but before the processor determines whether it is a valid pointer.

Suppose a hypothetical machine has five functional units, all the units can

execute any instruction. Only two units have access to the first-level data cache

which has the one clock latency. This allows two units to issue load and store

instructions.

clock unit 1 unit 2 unit 3

1 ld ep1

2 ep1 == NIL => p1 ld.s car(ep1) p1: br nxt_fp

3 check.s ld x = car(car(ep1))

4 sym == x => p2 p2: br return br nxt_ep

Figure 7.9 Schedule of the first iteration

140

The ld.s in cycle 2 is speculative if(sym == car(car(ep)), this is before

the processor determines whether or not ep1 is a valid pointer. It is known at the

cycle 3 when the check corresponding to ld.s car(ep1) can be executed.

Once the processor loads car(ep1) in cycle two, it can load car(car(ep1))

in cycle three. In cycle four, the processor can check sym == x. This schedule

shows that one loop iteration can be executed in four cycles without any stall.

To use the resource more efficiently, the loop can be unrolled. The inner loop is

unrolled twice.

clk unit1 unit2 unit3 unit4 unit5

0 ld ep1

1 ld.s car(ep1) ep == NIL => p1 ld.s ep2 =
cdr(ep1)

p1: br nxt_fp

2 check.s ld car(car(ep1)) ld.s car(ep2) ep2 == NIL =>
p3

3 cmp == sym =>
p2

ld.s car(car(ep2)) p2: br return p3: br nxt_fp

4 check.s ld nxt_ep1
cdr(ep2)

cmp == sym =>
p4

p4: br return br nxt_ep

Figure 7.10 Schedule of the two iterations

The loop's second iteration provides an example of the use of control speculation.

In cycle one, the processor loads the next value of ep2 speculatively  that is,

before it determines if the first iteration's induction variable is valid. The two

loads depend on ep2 as well as the speculative loads of car(ep2) in cycle two

and of car(car(ep2)) in cycle three. The program branches out in cycle three

if the ep2 == NIL, so all the instructions using ep2 before that point are

speculative. If any speculative load in a chain triggers an exception, the last load

will deliver an exception to check.s. The processor can execute two loads in

parallel in cycle one and two. Two iterations of loop can be executed in 4 cycles

(the first ld ep1 is considered to be in the outer loop). Without control

speculation, the static schedule of this code would take six cycles for two

iterations of this loop. The loads dereferrencing the variable ep1 can be started

before ep1 has been checked against NIL, similarly for ep2.

141

Pipeline in some real machines

PowerPC601

Figure 7.11 PowerPC601 pipeline

PowerPC 601 has many functional units which have different pipeline:

 Dispatch unit holds instruction buffer

 Branch processing unit handles all branch instructions

 Floating-point unit

 Integer unit

142

Branch inst. Fetch Dispatch

Decode
Execute
Predict

Integer inst. Fetch Dispatch
Decode

Execute Writeback

Load-Store Fetch Dispatch
Decode

Ads Gen Cache Writeback

FP inst. Fetch Dispatch Decode Execute1 Execute2 Writeback

PowerPC601 can issue branch and floating-point instructions out of order.

Branch processing employs fixed rule to reduce stall cycle as follows.

1. Scan the dispatch buffer (8 deep) for branch instructions. Target address

are generated.

2. Determine the outcome of conditional branches :

a. will be taken: for unconditional and for known condition code and

indicate branching

b. will not be taken: for unconditional and for known condition code

and indicate no branching

c. outcome cannot yet be determine: for backward branch guess taken,

for forward branch guess not taken.

The designer did not use branch history for the reason that it will achieve

minimum payoff.

Pentium

The Pentium has 5 stages pipeline , two integer units

1. Prefetch

2. Decode stage 1 (instruction pairing)

3. Decode stage 2 (address generation)

4. Execute

5. Writeback

143

Figure 7.12 Pentium pipeline

Instruction Pairing rule

The instructions that can be issued together must meet the following constraints:

1. both instructions are simple

2. no RAW, WAW

3. no displacement and immediate operand

The simple instructions are instructions that are in the following groups: mov,
alu r r, shift, inc, dec, pop, lea, jump, call, jump

conditional near . Pentium processor uses dynamic branch prediction

scheme. A branch target buffer (BTB) stores branch destination address

associated with the current branch instruction. Once the instruction is executed

the history is updated. The BTB is 4-way set associative cache with 256 lines.

Each entry uses the address of branch instruction as a tag. The value field

contains the branch destination address for the last time this branch was taken

and a two-bit history field.

144

Further reading

The "pointer chasing" example comes from [DUL98]. For a more detailed

description of Intel IA64 use of speculative see [DUL98]. For the impact of

compiler technology see [HWU95]. For the use of compredicate in branch

prediction see [MAH94]. The historical aspect of VLIW begins from ELI-512

[FIS83].

References

[ACO87] Agerwala, T. and Cocke, J., "High performance reduced instruction set

processors," IBM Tech. Rep. , March, 1987.

[AND67] Anderson, D., Sparacio, F., and Tomasulo, R., "The IBM System/360

model 91: Machine philosophy and instruction handling", IBM Jour. of

Research and Development 11(1):25-33, 1967.

[CHA82] Chaitin, G., "Register allocation and spilling via graph coloring", Proc.

of SIGPLAN symposium on compiler construction, 1982.

[DUL98] Dulong, C., "The IA64 Architecture at work", IEEE Computer, July

1998, pp. 24-32.

[ELL87] Ellis, J., Bulldog: a compiler for VLIW architecture, Cambridge, MA,

MIT Press, 1987.

[FIS81] Fisher, J., "Trace scheduling: a technique for global microcode

compaction", IEEE Trans. on computers, Vol C-30 (July 1981), pp. 478-490.

[FIS83] Fisher, J., "Very long instruction word architectures and the ELI-512",

Proc. of the 10th annual symposium on computer architectures, 1983,

pp.140-150.

[HWU95] Hwu, W., Hank, R., Gallagher, D., Mahlke, S., Lavery, D., Haab, G.,

Gyllenhaal, J., and August, D., "Compiler technology for future

microprocessors", Proc. of the IEEE vol.83, no.12, December 1995, pp.1625-

1640.

[JOH90] Johnson, M., Superscalar microprocessor design, Prentice-hall, 1990.

[JOU89] Jouppi, N., "The distribution of instruction-level and machine

parallelism and its effects on performance", IEEE Trans. on computers,

38(12) (December 1989):1645-1658.

[JOU89a] Jouppi, N, and Wall, D., "Available instruction-level parallelism for

superscalar and superpipelined machine", Proc. of 3rd Int. Conf. on

Architecutural Support for Programming Languages and Operating Systems,

1989, pp.272-282.

145

[MAH94] Mahlke, S. et al, "Characterizing the impact of predicated execution on

branch prediction", Proc. Annual Int. Symp. on Microarchitecture 27, IEEE

CS press, 1994, pp.217-227.

[THO70] Thornton, J., Design of a computer: the Control Data 6600, Glenview,

IL: Scott Foreman, 1970.

[TOM67] Tomasulo, R., "An efficient algorithm for exploiting multiple

arithmetic units", IBM Jour. of Research and Development 11(5), 1967.

146

147

Chapter 8

Vector machines

This chapter discusses one of the most important class of computer architecture,

vector machines. A vector machine is a high performance machine suitable for

vector computation that is prevalent in numerical problems. It has two key

qualities of efficiency and wide applicability. Most vector machines have a

pipelined structure and support a streaming mode of data flow through a pipeline.

They also support fully parallel operations of multiple pipelines. This chapter

describes the general architecture of vector processors and the algorithm to match

the architecture to the problems to obtain efficient processing over large classes

of computations.

What is a vector machine

What more can be done beside pipelining and multiple issues of instructions to

increase a processor performance? There are two factors in performance

limitation:

1. Clock cycle time  the clock cycle time can be decreased by making the

pipelines deeper but very deep pipelining can eventually slow down a

processor. A superscalar design needs complex control unit to detect data

hazard and to solve control hazard. This also limits the clock cycle time.

2. Instruction fetch and decode rate  this prevents fetching and issuing of

more than a few instructions per clock cycle.

The cycle time is also limited by the cycle time of the control unit. Scheduling

the pipeline and superscalar machines needs complex control units to detect data

hazards and to reduce control hazards. It is just as difficult to schedule a pipeline

that in n times deeper as it is to schedule a machine that issues n instructions per

clock cycle.

148

Vector processors provide high-level operations that work on vectors  linear

array of numbers. Vector operations have several important properties that solve

most of the problems above:

1. The computation of each result is independent of the computation of

previous results, allowing a very deep pipeline without generating any

data hazards. Essentially, the absence of data hazards was determined by

the compiler or programmer.

2. A single vector instruction is equivalent to executing an entire loop.

Thus, the instruction bandwidth requirement is reduced.

3. Because an entire loop is replaced by a vector instruction whose behavior

is predetermined, control hazards that would normally arise from the

loop branch are nonexistent.

For these reasons, vector operations can be made faster than a sequence of scalar

operations on the same number of data items, and designers are motivated to

include vector units if the applications domain can use them frequently.

The primary components of a vector processor are: vector registers each must

have two read ports and one write port, vector functional units that can start a

new operation on every clock cycle, vector load/store unit that words can be

moved between the vector registers and memory with a bandwidth of one word

per clock cycle after an initial latency, a set of scalar registers provide data as

input to the vector register functional units, as well as compute addresses to pass

to the vector load/store unit.

(vector reg-reg CRAY, vector mem-mem CDC)

Vector operations

The basic idea of vector processors is to combine two vectors, element by

element, to produce output vector. If A, B, C are vectors with n elements, a

vector processor can perform as one instruction, C = A + B, which is interpreted

as

for i = 1 to n
 c(i) = a(i) + b(i)

149

Figure 8.1 CRAY-1 vector computer

Most vector machines have a pipeline structure. Multiple pipelines may also be

provided to increase performance. The price performance ratio of vector

computers can be one to two order of magnitude increased throughput for vector

computations when compared to serial computers of equal cost. But it is limited

to the problems that fit the architecture, i.e. the problems that can be structured as

a sequence of vector operations.

Memory bandwidth

Vector machines need large memory bandwidth to sustain the high data rate

required to feed pipelined functional units. In the above example, the memory

system must supply one element of A and B on every clock cycle. The ALU

produces one output during each clock cycle. The difficulty is in designing a

memory system to sustain a continuous flow of data from memory to ALU and

the return flow of results from ALU to memory. Therefore for the C = A + B, the

memory system must has at least three times the bandwidth of a conventional

memory system. We can ignore the bandwidth for instruction fetches as a single

vector operation can initiate a long vector operation. Therefore the bandwidth

required for instruction fetches is negligible as compared to the bandwidth of

instruction fetches in a conventional machine.

150

Two major approaches in designing memory system for vector machines:

1. Using independent memory modules in main memory to support

concurrent access to independent data. Interleaving memory increases

the memory bandwidth by parallely access every memory banks.

2. Using intermediate high-speed memory.

Interleaving memory increases memory bandwidth by parallel accessing every

memory banks. Distribution of data in multi memory modules is important for

the performance. Access to the same memory module will cause load/store stall.

The figure shows eight memory modules. They provide a system with eight

times the bandwidth of a single module. Each of three data streams has an

independent path to the memory system so that each stream can be active

simultaneously, provided that one module serves only one path at a time.

M0---|
M1---| stream A
M2---|----------->|
M3---| stream B |-- Pipeline Adder --|
M4---|----------->| |
M5---| stream C |
M6---|<--------------------------------|
M7---|

Figure 8.2 Eight 3-port memory modules sustain two reads one write at every
clock.

We will illustrate the use of interleaving memory to implement vector arithmetic,

C = A + B. Assume a memory cycle takes two clock cycles. The bandwidth

required to service the pipeline adder is at least six times the bandwidth of a

single memory module. The vectors A, B, and C are laid out in the memory so

that they start in modules M0, M2, and M4 respectively (Fig 8.3). Their

successive elements lie in successive memories.

M0 a0 b6 c4
M1 a1 b7 c5
M2 a2 b0 c6
M3 a3 b1 c7
M4 a4 b2 c0
M5 a5 b3 c1
M6 a6 b4 c2
M7 a7 b5 c3

Figure 8.3 physical layout of three vectors in the memory

151

pipe4 0 1 2 3 4 5 6 7
pipe3 0 1 2 3 4 5 6 7
pipe2 0 1 2 3 4 5 6 7
pipe1 0 1 2 3 4 5 6 7
M7 RB5 RB5 RA7 RA7 W3 W3
M6 RB4 RB4 RA6 RA6 W2 W2
M5 RB3 RB3 RA5 RA5 W1 W1
M4 RB2 RB2 RA4 RA4 W0 W0
M3 RB1 RB1 RA3 RA3
M2 RB0 RB0 RA2 RA2 W6
M1 RA1 RA1 RB7 RB7 W5 W5
M0 RA0 RA0 RB6 RB6 W4 W4
clock 0 1 2 3 4 5 6 7 8 9 10 11 12

Figure 8.4 timing diagram for vector addition in pipeline(4 stages)
R = read, W = write, A,B input vectors

The figure 8.4 shows the vector addition in a vector processor with eight memory

modules and 4-stage pipelined arithmetic unit. The timing diagram shows the

flow of data through eight memory modules. The memory latency is 2 clocks

both reading and writing. Reading A0 of module M0 at clock 0 will enable the

data to be available at the pipeline unit at clock 2. Writing the result W0 to the

module M4 at clock 6 will finish at clock 8.

Two vectors are allocated to modules so that no conflicts occur. At clock 0, M0

and M2 initiate READs to the first elements of vectors A and B. These elements

appear at the pipeline inputs at clock 2, and the corresponding output appears at

the end of clock 5. At clock 1, M1 and M3 initiate READs to the second

elements of the input vectors. At clock 5, the first output emerges from the ALU

pipeline, the next clock, clock 6, M5 and M6 are busy reading A5 and A6. M5

delivers A5 at the beginning of clock 7 and M6 delivers A6 at the beginning of

clock 8. At clock 6, M4 initiates WRITE to put away C0, M0 initiates READ of

B6. Note how the arrangement of timing enables all operations to proceed

without a collision. In reality, the pipeline is never as well behaved as ideal

examples are.

At the peak rate of data access, at the clock no. 7, there are two memory modules

still free. This indicates that there is surplus memory bandwidth. The number of

memory module can be reduced to 6 modules to eliminate this surplus. Now,

observe that at the clock 7 all memory bandwidth is used (Fig. 8.5).

152

pipe4 0 1 2 3 4 5 6 7
pipe3 0 1 2 3 4 5 6 7
pipe2 0 1 2 3 4 5 6 7
pipe1 0 1 2 3 4 5 6 7
M5 RB3 RB3 RA5 RA5 W1 W1
M4 RB2 RB2 RA4 RA4 W0 W0 W6
M3 RB1 RB1 RA3 RA3 RB7 RB7 W5 W5
M2 RB0 RB0 RA2 RA2 RB6 RB6 W4 W4
M1 RA1 RA1 RB5 RB5 RA7 RA7 W3 W3
M0 RA0 RA0 RB4 RB4 RA6 RA6 W2 W2
clock 0 1 2 3 4 5 6 7 8 9 10 11 12

Figure 8.5 timing diagram for vector addition with 6 memory modules
R = read, W = write, A,B input vectors

S1 with vector units

To illustrate the performance of a vector processor over a conventional processor,

we examine a concrete example. For a vector processor, we extend S1

architecture to include vector facilities. The machine is called S1v. The S1v is a

32-bit processor, it includes a vector load/store unit, 8 vector registers, and usual

vector functional units: FP add, FP mul, FP div, plus an integer unit and a logical

unit. The vector load/store unit provides vector registers with one input on every

clock cycle. Each vector register contains 64 elements. The vector instructions

have 3-operand format.

For a conventional processor, we extend the simple S1 to include floating-point

facilities. The extended S1 has f0.. f7 as 32-bit floating-point registers, it also

has immediate addressing mode and a reasonable instruction set to perform

floating-point arithmetic. This machine is called S1x.

Take typical vector problem,

Y = a * X + Y

where Y, X, are vectors a is scalar This expression is called SAXPY or DAXPY

(single-precision or double-precision A*X Plus Y) loop that forms the inner loop

of the Linpack benchmark. Linpack is a collection of linear algebra routines; the

Gaussian elimination portion of Linpack is the segment used as benchmark.

SAXPY represents a small piece of the SV elimination code, though it takes most

of the time in the benchmark.

153

Assume that the number of elements, or length, of a vector register matches the

length of the vector operation we are interested in. Starting addresss of X and Y

are in rx, ry.

DAXPY in S1x

notation for the assembly code: op dest, source

ld f0, a
mov r4, rx
add r4,#512 ; last address to load

loop: ld f2,(rx) ; load X(i)
fmul f2,f0 ; a * X(i)
ld f4,(ry) ; load Y(i)
fadd f4,f2 ; a * X(i) + Y(i)
st (ry),f4 ; store into Y(i)
add rx,#8 ; increment index to X
add ry,#8 ; increment index to Y
cmp r4,rx ; compute bound
jnz loop ; check if done

DAXPY in S1v

ld f0,a ; load scalar a
vld v1,rx ; load vector X
vmul v2,f0,v1 ; vector-scalar mul v2=f0*v1
vld v3,ry ; load vector Y
vadd v4,v2,v3 ; vector add v4 = v2 + v3
vst v4,ry ; store the result

Comparing the two code segments it is easy to see that the vector machine

greatly reduces the dynamic instruction bandwidth, S1v executing only 6

instructions versus almost 600 for S1x to compute 64 element vectors. Another

important difference is the frequency of pipeline interlocks. In S1x every fadd

must wait for fmul and every store must wait for the fadd. On the vector

machine, each vector instruction operates on all the vector elements

independently. Thus, pipeline stalls are required only once per vector operation,

rather than once per vector element. In the example, the pipeline stall on S1x will

be about 64 times higher than on S1v.

Example calculation of the clock used and the number of instruction fetched and

executed for both machines, assume every instruction take 1 clock to execute.

154

The time taken to calculate DAXPY for 64 elements :

S1x : 3 + (9  64) = 579 clocks

S1v : 1 + (5  64) = 321 clocks

The number of instruction fetched and executed :

S1x : 579 instructions

S1v : 6 instructions

The execution time of S1v can be greatly reduced by using the technique called

"chaining". Instead of waiting for a vector instruction to complete, the instruction

in the vector operation of the next instruction can be started as soon as the first

element of the previous instruction finished. For this example, assume all vector

instructions can be chained, it will take 1 + 5 + 64 = 70 clocks to complete.

How to program a vector machine

To use the vector unit, the program must be "vectorised", i.e. transform the loop

into vector operations. If VL is vector length of the machine

for i = 1 to VL

 c(i) = a(i) + b(i)

can be transformed into one vector operation

vadd v0 v1 v2

where v0 holds c, v1 holds a, v2 holds b

There are several consideration for programming vector machines such as vector

length and vector stride because the data length does not necessary match the

vector length of the machine.

Vector length

When the data lenght is not equal to vector length of a machine, the loop can be

transformed into loop of vector operations, each of maximum length plus one

loop for the rest of element. This is called "strip-mine". Let VLR be the vector

length register that holds the number of element in a vector operation, MVL be

the maximum length of vector unit (VLR  MVL). The following program can

be strip-mined

for i = 1 to n
 y(i) = a * x(i) + y(i)

155

to
low = 1
VL = (n mod MVL)
for j = 0 to (n / MVL)
 for i = low to low + VL -1
 y(i) = a * x(i) + y(i)
 low = low + VL
 VL = MVL

The inner loop (for i = ..) can be vectorised with length VL. VL is equal to

(n mod MVL) the first round through the loop, and becomes MVL for the rest.

The last line, VL = MVL, sets VL to the maximum vector length for the second

round the loop and the rest. The variable low points to the beginning of the data

block.

low

i = 0 1 2 . . . n/MVL

MVL
n mod MVL

MVL

Figure 8.6 strip mining a vector

Vector stride

A vector stride is the distance separate elements that are to be merge into a single

vector. If the vector stride is not equal to one, it can caused slow down in the

memory access. A vector register is used to load non-unit stride vector and

subsequently access to the vector register will have adjacent vector elements.

The following program does matrix multiply.

for i = 1 to 100
 for j = 1 to 100
 a(i,j) = 0.0
 for k = 1 to 100
 a(i,j) = a(i,j) + b(i,k) * c(k,j)

156

This program can be vectorised to multiply each row of b by each column of c.

The inner loop is strip-mined with k. How adjacent elements in b and c are

addressed?

Example A 100  100 matrix, for row major order b(i,j) is adjacent to b(i,j+1)

(1,1) (1,2) ... (1,100) (2,1) (2,2) ... (2,100) ... (100,100)

and column major order b(i,j) is adjacent to b(i+1,j)

(1,1) (2,1) ... (100,1) (1,2) (2,2) ... (100,2) ... (100,100)

For row major order c has a stride of 100, b has a stride of one.

Once a vector is loaded into a vector register it had logically adjacent elements.

This enables the machine to handle the non-unit stride such as c above. Vector

load for non unit stride is complicate and can caused memory bank conflict.

Loop - carried dependency

Not all the loops can be vectorised. The following program is not vectorisable

1 for i = 1 to 100
2 a(i+1) = a(i) + b(i)
3 b(i+1) = b(i) + a(i+1)

This is because in the loop the computation used the value of an earlier iteration.

a(i+1) = a(i). Also line 3 has RAW on line 2 for a(i+1)

Improving performance of a vector machine

This section describes the techniques to improve the performance of a vector

machine. The first technique, "chaining", improves the speed of running a

sequence of vector operations. Other technique introduces transformation to

change loops into vector operations.

Chaining

It is invented by Seymour Cray and introduced in CRAY-1. When vector

operations are running in sequence, the first result once completed is immediately

make available to the next operation. Chaining allows vector operations to run in

157

parallel. A sustained rate of more than one operations per clock can be achieved

even when the operations are dependent. Consider a vector sequence

vmul v1 v2 v3
vadd v4 v1 v5

Figure 8.7 Timings for a sequence of dependent vector operations

After the first result of v2  v3 appears, the vector addition vadd can start

immediately without waiting for the last result from vmul. This allows two

vector instructions to proceed concurrently and finish sooner.

Conditional statement

For real programs the level of vectorisation is not very high. The ability to

vectorise is influenced by the algorithms used and how the programs were

written. It also depends on the ability of the compiler. To get best performance

from a vector machine, a significant modification or a rewrite of a program is

needed.

When there are conditionals inside loops or the matrix is sparsed, programs can

not be vectorised using the techniques we discussed so far. The sparse matrix is

stored in some compacted form which elements are accessed indirectly. The

following loop can not be vectorised.

for i = 1 to 64
 if (a(i) != 0) then a(i) = a(i) - b(i)

The inner loop can be vectorised if we can selectively run it for the element

which a(i) != 0. This can be achieved using a vector mask. The vector mask

can be loaded from the vector test instruction and any vector operation will

unchained 7 64 6 64

vmul vadd

total = 141

vmul

chained 7 64

vadd

6 64
total = 77

158

operate on the element whose the corresponding entry in the vector mask is 1.

The above loop can be vectorised using vector mask as follows: ra, rb are the

starting address of a, b.

lv v1 ra ; load vector a into v1
lv v2 rb ; load vector b
ld f0 #0 ; f0 = 0
vsnes f0 v1 ; set VM to 1 if v1(i) != 0
vsub v1 v1 v2 ; subtract under vector mask
cvm ; set vector mask to all 1
sv ra v1 ; store the result to a

This loop contains sparse matrix

for i =1 to n
 a(k(i)) = a(k(i)) + c(m(i))

The sum of sparse vector on array a and c using index vector k and m to

designate the non zero elements of a and c (a and c must have the same number

of non zero elements -- n).

For a sparse matrix, the supporting operation is called "scatter-gather". A gather

operation takes an index vector and fetches the vector whose elements are at the

addresses given by base_address + offsets in the index vector. After completing

the computation, the vector can be store in expanded form using a scatter store

with the same index vector. Suppose we have the instruction lvi (load vector

indexed) and svi (store vector indexed), ra, rc, rk and rm contain the

starting address of vector a, c, k, m. The inner loop of the above program can

be vectorised as follows.

lv vk rk ; load k
lvi va (ra + vk) ; load a (k(i))
lv vm rm ; load m
lvi vc (rc + vm) ; load c (m(i))
vadd va va vc ; add
svi (ra + vk) va ; store a(k(i))

The load indexed vector instruction is a generalisation of the load indexed scalar

by using a vector register as an index register.

159

Vector reduction

Reduction is a loop that reduces an array to a single value by repeated application

of an operation. For example a dot product:

dot = 0.0
for i = 1 to 64
 dot = dot + a(i) * b(i)

This loop has a loop-carried dependency on dot and cannot be vectorised. If we

split the loop to separate out the vectorisable part:

for i = 1 to 64
 dot(i) = a(i) * b(i)
for i = 2 to 64
 dot(1) = dot(1) + dot(i)

The variable dot has been expanded into a vector, this is called "scalar

expansion".

Another technique is called "recursive doubling". A loop with recurrence is

transformed using adding sequences of progressively shorter vectors -- two 32-

element vectors and then two 16-element vectors, and so on. It is faster than

doing all operations in scalar mode. An example of doing the second loop above

with recursive doubling :

len = 32
for j = 1 to 6
 for i = 1 to len
 dot(i) = dot(i) + dot(i + len)
 len = len / 2

When the loop is done the sum is in dot(1).

Performance of vector machines

The time to complete a vector operation depends on

1. vector start up time

2. initiation rate

160

Vector start up time is the pipeline latency. It depends on the depth of the

pipeline of that functional unit. Initiation rate is the time per result once a vector

operation is running, usually one result per clock for a fully pipeline functional

unit. The time to complete a vector operation on vector of length n is

start up time + n  initiation rate

Example Start up time for a vector multiply is 10 clocks. Initiation rate is one per

clock. What is the number of clock per result for a 64 element vector ?

clock per result = total time / vector length

= (start up time + 64  initiation rate) / 64

= 1.16 clock per result

What determine the start up time and initiation rate

Let consider register to register operation (therefore ignore memory latency)

start up time = depth of FU pipe, or the time to get the first result

initiation rate = rate that a FU can accept operands, for fully pipe, one per clock.

Pipeline depth is determined by type of operation and clock cycle time.

Example Cray -1 has the following vector unit characteristic:

start up time

FP add 6

FP mul 7

FP div 20

FP load 12

stall 4 clocks on RAW

Sustained rate is the time per element for a set of vector operations.

Example what is the sustained rate for the following sequence of instruction.

Assume a vector of length 64 ?

vmul v1 v2 v3
vadd v4 v5 v6

161

We can chart the time line :

 start at complete at
vmul 0 7+64 = 71
vadd 1 1+6+64 = 71

Because of independent vector operations, both instruction run concurrently most

of the time. Sustained rate is one element per clock, this sequence executes 128

FLOPS in 71 clocks = 1.8 FLOPS per clock.

A simple model of vector performance

The equation for execution time of a vector loop with n elements, Tn. [HEN96]

Tn = Tbase +  n / MVL   (Tloop + Tstart) + n  Telement

Tn total running time

Telement time to process one element

Tloop overhead for scalar code to strip-mine

Tstart vector start up time

Tbase overhead to compute starting address and set up vector control, occur

once for one vector operation.

There are start-up overhead Tstart and the overhead of executing the strip-mined

loop Tloop. The strip-mining overhead arises from the need to reinitiate the vector

sequence and set the VL. The values Tstart , Tloop and Telement are compiler and

processor dependent.

Example For CRAY-1 Tbase 10 clocks, Tloop 15 clocks. What is the total running

time for DAXPY using CRAY-1 with 64 element vectors?

DAXPY start at complete at
lv v1 rx 0 12 + 64 = 76
vmul v2 s1 v1 12 + 1 = 13 13 + 7 + 64 = 84
lv v3 ry 76 + 1 = 77 7 7 + 12 + 64 = 153
vadd v4 v2 v3 77 + 1 + 12 = 90 90 + 6 + 64 = 163
sv ry v4 160 + 1 + 4 = 165 165 + 12 + 64 = 241

Tstart = 241  64  Telement = 241  192 = 49

162

calculate the other way from the pipeline latency

12 + 7 + 12 + 6 + 12 = 49

Using MVL = 64, Tloop = 15, Tbase = 10, Telement = 3

Tn = 10 +  n/64   (15+ 49) + 3 n = 4 n + 64

The sustained rate is over 4 clock cycles per iteration.

The peak performance is the performance without the start-up overhead. The

peak performance is higher than the sustained performance. We can calculate the

peak performance of a vector machine by

R* =
n

lim (operation per iteration  clock rate / clock cycle per iteration)

R* is MFLOPS rate on infinite vector length

Peak performance = number of FLOPS per iteration * clock rate / Telement

Rn = number of FLOPS per iteration * clock rate / Tn

Example The peak performance of CRAY-1 200MHz on DAXPY is

R* =
n

lim (operation per iteration  clock rate / clock cycle per iteration)

The numerator is independent of n

R* = (operation per iteration  clock rate) /
n

lim (clock cycle per iteration)

n
lim (clock cycle per iteration) =

n
lim (Tn / n) =

n
lim ((4n + 64) / n)) = 4

R* = 2  200 MHz / 4 = 100 MFLOPS

Example The Linpack benchmark is a Gaussian elimination on a 100  100

matrix. The vector lengths range from 99 to 1. A vector of length k is used k

times. Thus the average vector length is 66.3. We obtain an accurate estimate

for the performance of DAXPY code, for 66 element vectors.

T66 = 2  (15 + 49) + 66  3 = 326

163

assume our vector processor has 200 MHz clock

R66 = 2  66  200 / 326 = 81 MFLOPS

Final remarks

The first vector machines were the CDC STAR-100 [HIN72] and TI ACS

[WAT72], both announced in 1972. Both were memory-memory vector

machines. Cray who worked on CDC 6600 and the 7600, founded Cray Research

and introduced the CRAY-1 in 1976 [RUS78]. The CRAY-1 used a vector-

register architecture to significantly lower start-up overhead. Most importantly,

the CRAY-1 was also the fastest scalar machine in the world at that time.

CRAY-1 does not have FP units. It also used T, B register as high speed access to

memory, similar to the use of cache memory to increase the memory bandwidth.

However, the memory management falls into the hand of programmer. It also has

instruction buffer, similar to instruction cache.

CDC-STAR has three data streams feeding pipeline functional units similar to a

simple vector machine. It used delay-line to distribute memory access across the

memory banks.

Notwithstanding, the vector machines, once called the supercomputer class, have

very high scalar performance as they are built for highest possible performance

without compromising with cost. In the real-world use for many applications they

run very fast even though those applications rarely used vector units.

(something about MMX and Patterson IRAM?)

References

[HEN96] Hennessy, J. and Patterson, D., Computer architecture : quantitative

approach, 2nd ed., Morgan Kaufmann Pub. Inc. 1996.

[HIN72] Hintz, R and Tate, D., "Control data STAR-100 processor design",

COMPCON, IEEE, September, 1972, pp. 1-4.

[RUS78] Russel, R., "The CRAY-1 processor system", Comm. of the ACM 21:1

(January), 63-72.

[STO93] Stone, H., High performance computer architecture, 3rd ed. Addison

Wesley, 1993.

164

[WAT72] Watson, W., "The TI ASC  A highly modular and flexible super

processor architecture", Proc. AFIPS Fall Joint Computer Conf., 1972, pp.

221-228.

165

Chapter 9

Stack machines

Stack machines are processors that the instruction set operate on implicit data in a

stack structure. They were once very popular for implementing "virtual machine"

mostly in software. It is very natural to translate a high level language, especially

the block-based languages, so called structured languages (PASCAL, C and

others), into these virtual machines. Stack machines can be implemented directly

into hardware as well. It has the advantage of being quite simple and its

executable code is very compact. This chapter explores stack machines in more

details.

The use of stacks

A stack is a LIFO (last in first out) storage with two abstract operations: push and

pop. Push will put an item into stack at the top. Pop retrieves an item at the top of

stack. Because a stack is LIFO, any operation must access data item from the top.

A stack does not need explicit addressing as it is implicit in the operators which

use stack. Any expression can be transformed into a postfix order and a stack can

be use to evaluate that expression. In stack machines, the allocation and

reclamation of the temporary space is done automatically via the stack.

Calling subroutines

The stack structure also plays an important role in the calling of subroutines (or

function calls). When a program transfers the control to another section of

program, the current state of computation is saved (composed of a program

counter, local variables, and other values). The place where the state of

computation is saved is called "activation record". When an execution of a

subroutine is completed, the previous state of computation is restored (this action

is called "return" from subroutines). Local variables can also be stored as a part

of the activation record. Because many of today programming languages are

166

structured or "block oriented" the creation and deletion of activation records

behave like LIFO. A stack is used to store activation records. Two pointers are

required to keep track of the thread of control: fp  frame pointer which points to

the current activation record and sp  the current stack pointer which points to

the current stack area.

Figure 9.1 an activation record

Local variables can be referenced via offsets from the frame pointer.

Parameter passing by stack

When a function call is made, parameters can be passed from the caller to the

callee by pushing them on the stack. The call to a function creates a new

activation record. The new activation record can be arranged such that its local

area is overlapped with the old stack area, therefore the passing parameters

become a part of the local area of the new activation record. The parameter

passing occurs without the need to copy them to the new stack. (This scheme is

very much like the register window scheme [PAT82] used in SPARC processor

family). For example, function f calls function g(A,B). A and B are pushed and

the call creates a new activation record (the AR n+1). The previous state of

computation (fp', sp', pc') is saved in the new activation record. As the

new activation record overlapped the old stack, A and B are in the local area of

the new activation record (Fig. 9.2)

167

Figure 9.2 the state of stack after a function call occurred

Figure 9.2 shows the state of stack after a funcion call occurrred, pc is the current

program pointer, pc' is the previous pc. The frame pointer links activation

records together. The stack pointer points to the current stack which is used for

storing temporary value of current calculation.

Pure stack machines

Accessing the local area required instructions to have "addressing" to the

variables. This is against the spirit of implicit operand. If the local variables are

not used, how can operands in the computation stack are accessed? With an

exception for the top two items all other items are difficult to get to. We need to

be able to reorder and copy a number of items in the stack in order to use them.

The following instructions did that:

dup duplicate TOP

swap swap TOP and NEXT

rot 1,2,3 -> 3,1,2 get the third item to the top

over copy NEXT to TOP , 1,2 -> 2,1,2

These are just some of the possible instructions. With these instructions, the need

to access local variables by addressing them explicitly is minimised. An example

of their use.

Define f(X,Y) = X*X + Y*Y

168

The function f can be evaluated with the following sequence of stack-

instructions. Assume X and Y are the top two items on computation stack when

call f.

dup mul ; X*X
swap ; Y, X*X
dup mul add ; Y*Y + X*X

Thinking about rearranging items on stack make it difficult to use pure stack

instructions. Having variables avoids the reordering of items on stack because a

variable can be accessed by using its name. However, the current compilation

techniques can handle the ordering of stack items therefore it frees a programmer

from this low level detail.

Microarchitecture of stack machines

A stack machine instruction set can be implemented in many ways. In stack

machines, the general purpose registers are not necessary. Two specialised

registers are needed to store the state of computation: frame pointer and stack

pointer. The stack structure can be either internal of external to a processor. If it

is internal the access time is faster. The stack can be regarded, in a way, as data

cache. However, the size of stack varies depended on the characteristic of the

running program. When the stack is internal, it has a real size limit. Therefore it

is necessary to have a mechanism to handle the stack underflow-overflow by

pulling and pushing the data between the stack and the main memory (called

stack spilling). The stack can also reside in the main memory. The number of

stack can be more than one Multiple stacks improve the speed of execution.

Figure 9.3 shows a typical microarchitecture of a stack machine.

To improve the speed of execution, 2 top elements on the stack can be cached

into registers. In Fig. 9.3, the register A and B can be used for this purpose. This

will reduce the amount of data movement in the stack because there are a large

number of binary operations in the stack which required popping out 2 elements,

performs operation and pushing back the result onto the stack.

169

Figure 9.3 a stack machine microarchitecture

Example result = A op B, requires 3 data movements in the stack:

pop A
pop B
op
push result

If the top 2 elements are cached (stored) in the register A and B. The data

movement will be reduced to one.

A = A op B (access registers)
pop B

By caching some elements to registers, the registers are considered a part of the

stack. Other operations can be modified to work with this scheme.

Push x performs

push B
B = A
A = x

and Pop x performs

x = A
A = B
pop B

170

As data movement between registers is faster than accessing the stack, the use of

caching will improve the speed of execution for binary operations and for other

operations that access 2 top elements.

R1 stack machine

To illustrate a concrete example of a stack machine, the R1 virtual machine will

be discussed. The R1 is a stack-based instruction set which is an architectural

neutral byte code aims to be portable and reasonably efficient across many

platforms [CHO98]. The R1 is intended to be a virtual machine for the purpose of

controlling real-time devices. It provides the support for concurrency control and

protection of shared resources including real-time facilities such as clock and

time-out. The interpreter for R1 is an abstract machine which execute the byte

code, providing the multi-task environment for the target machine. The reason for

choosing stack-based ISA is the compactness of code size and the ease of

implementation. It is well known that many virtual machines are stack-based

(example from symbolic computation text).

R1 instruction set

The instructions can be categorised into 6 groups:

1. load/store local

2. load/store

3. control flow

4. arithmetic

5. logical

6. support for real-time and concurrency.

The instructions are as follows.

load/store local : lval, rval (left value or store, right value or load)

load/store : lvalg, rvalg, fetch, set

control flow : jmp, jz, call, ret0, ret1, func

arithmetic : add, sub, mul, div, minus, index

logical : not, and, or, lt, le, eq, ne, ge, gt

others : lit (push literal)

Let us ignore the instructions that support real-time and concurrency. Load/store

local instructions access to local variables. Load/store instructions access to data

segment. Control flow instructions include jump, conditional jump, call and

171

return. Table 9.1 below shows the instruction set and its encoding. The opcode is

one byte. There are three instruction formats: zero-operand, one-operand and

two-operand. All arithmetic and logical instructions are zero-operand. The

load/store and control flow instructions are one-operand. Only one instruction

that is two-operand. It is the invocation of function, which also create the

activation record (func). All operands are 16 bits.

Table 9.1 R1 instruction set

 0 1 2 3 4 5 6 7

0 lit lval lvalg rval rvalg fetch set index

8 jmp jz call func proc ret0 ret1 stop

16 add sub mul div minus not and or

24 le lt eq ne ge gt print printch

32 send receive wait signal

op:8

op:8 arg:16

op:8 arg1:16 arg2:16

Figure 9.4 R1 instruction formats

Operational semantics of R1 instruction set

The execution model of R1 has one stack. The activation records (thread of

control) are stored in the stack (pointed to by Fp). The local variables are stored

in the activation record (accessed by the pointer Fpi where i is the number of the

variable) and the calculation is done on top of the current activation record

(pointed to by Sp). The following descriptions are the meaning of each

instruction of the R1 instruction set. Ip is the instruction pointer.

Notation

CS code segment, DS data segment, SS stack segment, M the memory.

Aop arithmetic operators { add, sub, mul, div, minus }

Lop logical operators { not, and, or, le, lt, eq, ne, ge, gt }

172

Uop unary operators { print, printch }

[Lit n] push(n)

[Lvalg ref] push(ref) 1

[Lval i] push(Fpi) 1

[Rvalg ref] push(DS[ref]) 1

[Rval i] push(SS[Fpi]) 1

[Fetch] push(M[pop])

[Set] M[pop1] = pop2

[Index] push(base_ads + index) 2

[Jmp ads] Ip = ads

[Jz ads] if pop = 0 then Ip = ads 3

[Call ads] push(Ip), Ip = ads 4

[Func np nl] save state, new stack frame, pass parameters 5

[Proc pid np nl] new process descriptor, initialise state, awake

[Ret0] remove stack frame, restore state

[Ret1] remove stack frame, restore state, return a value

[Stop] terminate the process

[Aop] push (pop1 Aop pop2)

[Lop] push (pop1 Lop pop2)

[Uop] push (Uop pop)

1 the variable access

2 the effective address calculation for an array variable

3 if top of stack = 0 jump

4 call to subroutine

5 create new stack frame, invoke a function

Example of a program : bubble sort

This example shows how a high level language program can be translated into

ISA of a stack machine. Given a[n] an array of integer, the bubble sort program

sorts the items in a[] in ascending order. Initially, i=0, j=0.

173

while(i < n) {
 while(j < n) {
 if(a[j] > a[j+1]) {
 t = a[j];
 a[j] = a[j+1];
 a[j+1] = t;
 }
 j = j+1;
 }
 i = i+1;
}

Data segment (word)

1: t
2: j
3: i
4: n
5: a[0]
6: ...

Code segment (byte)

The code segment shows how the stack-based instruction set is used.

68:rval 3 rval 4 ge // if not(i<n) exit

75:jz 187

78:rval 2 rval 4 ge // if not(j<n) goto 173

85:jz 173

88:lval 5 rval 2 index load // get a[j]
 lval 5 rval 2 lit 1 add index load gt // get a[j+1]
109:jz 159 // if a[j]<= a[j+1] skip
112:lval 1 lval 5 rval 2 index load store // t = a[j]

124:lval 5 rval 2 index // get address of a[j]
 lval 5 rval 2 lit 1 add index load store // a[j] = a[j+1]
144:lval 5 rval 2 lit 1 add index rval 1 store // a[j+1] = t
159:lval 2 rval 2 lit 1 add store // j = j+1
170:jmp 78 // loop while(j<n)
173:lval 3 rval 3 lit 1 add store // i = i+1
184:jmp 68 // loop while(i<n)
187:

Frequency of instruction used

To measure the behaviour of R1 instruction set, the Stanford integer benchmark

[HEN] is used. This benchmark is a small (not realistic) suite of programs. It is

174

composed of seven small programs: hanoi, permutation, quicksort, bubble sort,

sieve (prime number), matrix multiplication and 8-queen. The dynamic

instruction count are collected and tabulated in Table 9.2. Fig. 9.5 shows the

frequency of used of each instruction. This measurement ignores all aspects of

multi-task support instructions in R1.

bubble sort sort 100 integers

hanoi move 5 disks between 3 poles

matmul multiply two matrices of size 10 x 10

perm permute 5 digits

qsort quick sort 100 integers

queen find all solutions of 8-queen problem

sieve find all prime numbers < 100

Table 9.2 the number of dynamic instruction count in the benchmark

bubble 110,611

hanoi 1,300

matmul 41,099

perm 6,901

qsort 88,002

queen 752,804

sieve 57,788

Total number of instruction executed 1,058,520. Fig. 9.5 shows the frequency of

each instruction executed. Rval is the most frequently used at 267,045. The

frequency of used of R1 instruction set running Stanford integer benchmark

grouped into category is shown in Table 9.3 below.

Table 9.3 the frequency of used of R1 instruction set

load/store local (lval, rval) 28%

load (rvalg, fetch) 12%

store (lvalg, set) 13%

control flow 10%

arithmetic 20%

logical 11%

others 6%

total 100%

175

0 25 50 75 100

lit

lval

lvalg

rval

rvalg

fetch

set

index

jmp

jz

add

sub

and

le

ge

267

Figure 9.5 the frequency of instructions used ( 1000)

Comparing this data to 80x86 which is a register machine. The top 10 most

frequently used instruction of 80x86 running SPECint92 are [HPA96]:

Table 9.4 the top 10 most frequently used instruction of 80x86

load 22%

conditional branch 20%

compare 16%

store 12%

add 8%

and 6%

sub 5%

move reg-reg 4%

call 1%

ret 1%

total 95%

Table 9.5 compares 80x86 and R1. The difference between the two is that R1 has

a large number of load/store local (28%) where as 80x86 uses more load/store

(34%) than R1 (25%). Access to local variables in a register machine is to its

register set but accessing local variables in a stack machine is to its stack.

Therefore for a stack machine load/store local are very frequent.

176

Table 9.5 Comparison between 80x86 and R1

 80x86 R1

load 22 12

store 12 13

control flow 22 10

arithmetic 13 20

logical 22 11

load/store local - 28

others 9 6

total 100 100

In a register machine, access to its register set is encoded into each instruction.

The R1 accesses its stack very frequently, rval is the most frequently used

instruction followed by index and lval which are used to access variables.

Improving the speed of execution

The improvement of R1 ISA is achieved by replacing some long sequence

frequently used byte-codes by specialised shorter codes which can be executed

faster due to the reduction of stack operations [CHO97]. The sequence are

classified into 4 classes :

1. increment, decrement and combined operators (such as "+=" in C

language).

2. array access

3. assignment

4. flow control

The first group such as a = a + 1 can be replaced by the combined operator

a += 1. The instruction sequence is

lval a, rval a, lit 1, add, set.

This sequence is replaced by

inc a

or the sequence a = a + expression

lval a, rval a, ... exp..., add, set.

is replaced by a new instruction

addset a.

177

Some flow control instruction such as while a < b has the following sequence

rval a, rval b, lt, jz $1

is replaced by the new instruction

jmp_ge a b $1

(jump if greater than or equal comparing local variable a and b)

Totally 21 new instructions are added to R1 instruction set in an experiment.

These new instructions are used by the compiler when generating optimized

code. Running the Stanford integer benchmark shows that these instructions help

to speed up 25-120%. The main reason for the speed up is the reduction of the

operations on the stack, it has been reduced by 20-80%. Comparing the

executable code size, the extended instruction set reduced the size of the

executable by 10-34%.

Stack vs register

Stack machines use stacks to store temporary value during calculation and also

stored activation records during transfer of control to subroutines. Where as in

register machines registers must be allocated explicitly to store temporary values

and an explicit LIFO manipulation must be done (via some kind of pointer) to

handle activation records.

It is interesting to compare the stack-based machine to the register-based

machine. Presently, register-based machines dominate the design in computer

industry as they have higher performance. However, the stack-based machines

can be much simpler, hence cheaper to produce. The question of performance

therefore is important. One work [WON99] uses R1 to experiment with

comparing stack-based to register-based by designing a register machine and

compare it to R1 at the level of instruction set simulation. We will summarise

this work as follows.

The main trust for improving upon a stack-based instruction set is the observation

that for a stack-based machine, the performance limit of the interpreter is likely to

be the fetch-limit, i.e. the time spending on fetching and decoding an instruction.

Hence to improve the performance the number of instruction to be executed

should be reduced. This can be achieved by designing an instruction set that each

instruction performs as much work as possible.

178

Based on this assumption, an obvious alternative architecture  a register-based

machine is investigated. By comparing two virtual machines: stack-based and

register-based using Stanford integer benchmark suite, the result shows that

register-based virtual machine interpreter is 1.5 to 2 times faster than the stack-

based virtual machine interpreter. Comparing the size of the executable code,

they are similar. Although each instruction of the register-based machine is larger

(32 bits) there are fewer instruction. Therefore the total size of executable code of

both machines are similar.

This work is based on the simulation at the instruction level without concerning

concrete implementation at the microarchitecture level. The comparison can

illustrate the trend that the reduction of dynamic instruction count in stack

machines can speed up its execution. However, it is not possible to make any

conclusion about the cycle time, whether the cycle time will increase or decrease.

This is still required further investigation.

Conclusion

There are a number of contemporary programming languages that use stack

abstraction, for example, Forth, Postscript. Also many languages use "virtual

machine" models to implement their executable representations. Pascal has P-

system, Smalltalk uses stack for calculation, JAVA has byte-code that use stack

model. R1 the real-time concurrent language, uses stack machine as virtual

machine.

The stack architecture was very popular and can be dated back quite far, from the

Burrough machine with a version of an early multi-tasking operating system.

Presently, the RISC architecture dominates the computer design. For a more

current discussion about modern stack architecture, the readers are invited to

consult Koopman’s book. [KOO89]. Presently, one of a commercial CPU that is

being designed especially for byte-code interpreting is based on stack architecture

[PIC96] [MGH98]. PicoJava is a special CPU which executes Java byte-code,

aims for a low power and the embedded applications market, such as Network

Computers and hand-held devices. PicoJava is not the only commercially

available stack-based processor. There are many others such as Harris RTX etc.

Stack machines are arguable almost the simplest kind of architecture. Its LIFO

structure is quite suitable for block-oriented language. The code size for a stack

machine can be very compact because most instructions have no operand field.

Stack architecture used to be very popular method to implement high level

179

language machine. Most of modern register machines are faster but there is some

renewal effort to improve stack architecture. Notably, Sun's Picojava processor

which aims to execute JAVA virtual machine byte-code. Stack architecture may

prove to be suitable for the machine in the future.

References

[CHO98] Chongstitvatana, P., A Multi-tasking Environment for Real-time

Control, the final report, Research Project Number 132-MRD-2537, Institute

of Research and Development, Faculty of engineering, Chulalongkorn

universiy, 1998.

[CHO97] Chongstitvatana, P., "Post-processing optimization of byte-code

instructions by extension of its virtual machine", Proc. of 20th Conf. of

Electrical Engineering, Thailand.

[HEN] Henessy, J. and Nye, P., "Stanford Integer Benchmark", Stanford

university.

[HEN96] Hennessy, J. and Patterson, D., Computer architecture: A quantitative

approach, 2ed., Morgan Kaufmann Pub., 1996, figure D-15, p. D-19.

[KOO89] Koopman, P., Stack computers: the new wave, Ellis Horwood, 1989.

[MGH98] McGhan, PicoJAVA, IEEE computer 31(10) 1998.

[PAT82] Patterson, D. and Sequin, C., "A VLSI RISC", Computer, September,

1982.

[PIC96] Picojava, 1996, http://java.sun.com.

[WON99] Wongsiriprasert, C. and Chongstitvatana, P., "Performance

comparison between two virtual machine interpreters : stack-based vs.

register-based", Proc. of 3rd Annual National Symposium on Computational

Science and Engineering, Bangkok, 1999, pp. 401-406.

180

181

Chapter 10

Memory System Design

This chapter discusses the memory system design. We discuss the memory

basics, how a memory module is organised. The hierarchical of memory, which

is one of the most important aspects of a high performance computer system

today, is introduced. The high-speed memory, the cache memory design is

explored. The operating system services, which provide logical memory space,

have a strong implication on the memory system design. The relationship

between processors and operating systems are discussed. We conclude the

chapter with a discussion of the memory technology, its rapid changes and the

future of technology.

Memory basics

There are many types of memory in a computer system. The major type of

semiconductor memory is random-access-memory (RAM). We will discuss the

memory technology topic in the later section. A memory module consists of an

array of memory cells. A memory cell can store one bit of information. To read

or write a memory cell, it must be selected (addressed) and the control signal

(read/write) is asserted. The data can be read off or written into the cell via the

data line.

Figure 10.1 a memory cell

address

read/write

data

182

A memory module is built on an array of memory cells. The most widely used

type of RAM is dynamic RAM (DRAM). A DRAM is made with cells that store

data as charge on capacitors. It requires periodic refreshing of the cell's content.

Fig. 10.2 shows a typical organisation of a 16 Mbit DRAM (4M  4 bits). The

memory array is organised as four arrays of 2048  2048 elements. The address

lines supply the address A0 .. A11. They are fed into row and column decoders

(211 = 2048). The row and column addresses are multiplexed to reduce the

number of pin of the memory package. The row-address-strobe (RAS) and the

column-address-strobe (CAS) signals provide the control to the memory chip.

The circuits on the chip included refreshing logic and input/output (I/O) lines

interface to the external bus. A number of these typical chips are used to build up

a larger memory for a computer system.

Figure 10.2 a typical 16 Mbit DRAM (4M  4 bits)

Memory hierarchy

There are many types of memory in a computer system. The range spanned the

memory in the control unit, the processor, the high-speed memory (the cache),

the main memory, and finally in the secondary storage (the disk cache). We

discuss each of them in turn. Fig.10.3 shows a typical memory hierarchy.

183

Figure 10.3 a memory hierarchy in a computer system

Control
unit

Microstore

ROM

Page table

CAM 256
16

150

Secondary
storage

RAM 64K

512

8
Processor

Registers

RAM ROM ALU

32 32

Cache RAM

Cache table

CAM
128

32

2K

Main
memory

RAM
1

RAM
2

RAM
4

RAM
3

32 32

 32K

32 32

184

The control unit contains a micromemory storing the microprogram. It is a read-

only-memory (ROM) (sometimes it may be a writable micromemory, in that

case, it is a high-speed RAM). The page table, which is used to map virtual

address (explained in the later section), contains the content-addressable-memory

(CAM). A CAM is a special kind of memory. Rather than retrieving the content

by the address lines, the content of a CAM is retrieved by the "association" of the

pattern of data. The query such as "Is there any number 105 stored in this

memory?" demonstrates the principle of the CAM. A CAM is generally more

expensive than a RAM.

Within a processor there are registers. The registers have very fast access time.

They are used to store temporary values during computation. The ALU has a

ROM storing many constant values used in the floating-point calculations such as

rounding operations.

A cache memory is a high-speed memory connecting a processor to a main

memory. Because the speed of a processor in much faster than the speed of a

main memory (at least by a factor of 10). The cache memory is matched to the

processor speed. It is much smaller than the main memory, but using a scheme

of storing the recently used data and instructions enables a cache memory to

behave as the larger main memory. The cache table is a CAM. Its use will be

explained in the later section.

The main memory is usually organised as one large unit. It can also be organised

as a number of parallel memory units. Each unit can be addressed independently.

The figure shows a four-way parallel main memory with 32-bit words. This

improves the memory bandwidth.

The next level in the hierarchy is the secondary storage, usually it is the magnetic

disk. The secondary storage has an access time much slower than the main

memory (a disk is at least 10,000 times slower than a RAM). Using the principle

of a cache memory, the disk cache, a large RAM, is as intermediate backup to the

main memory. The goal is to buffer large amount of data to and from the main

memory and the secondary storage. This arrangement improves the performance

and reduces the system cost. The figure shows 64K of 512-bit words.

The cost of a memory varies with its speed. A multi-level memory hierarchy

provides a large amount of memory that is not expensive. If the hierarchy is

properly matched to the patterns of addresses generated by programs run on the

system, its effective speed can match the processor speed. The address patterns

185

generated by programs are an important factor in the design of a memory system

and will be discussed further in the later section. Figure 10.4 shows a typical

parameters of memory hierarchy.

Level 1 2 3 4

Name Registers Cache Main memory Disk

Typical size < 1 KB < 4 MB < 4 GB > 1 GB

Technology CMOS
BiCMOS

On-chip or off-
chip CMOS
SRAM

CMOS DRAM Magnetic
disk

Access time (ns) 25 310 80400 5,000,000

Bandwidth
(MB/sec)

400032000 8005000 4002000 432

Managed by Compiler Hardware OS OS/User

Backed by Cache Main memory Disk Tape

Figure 10.4 a typical memory hierarchy (from [HEN96] p.41)

Interleaved memory

The constraint of a von Neumann architecture is that a single memory module of

conventional design can access no more than one word during each cycle of the

memory clock. There are several ways to increase memory bandwidth (bits/bytes

per second).

 reduce cycle time

 increase word size

 concurrent access (banking, interleaving)

Reduction of the cycle time can be achieved by using a faster memory, which is

more expensive. Increasing the word size will increase the number of connection

between memory and processor. In term of the number of pin on the package,

increasing the number of wires implies increasing the number of pin. The last

alternative, interleaved memory, is achieved by arranging multiple memory

arrays into parallel units, each of which can be accessed independently. All units

are addressed at the same time, hence the consecutive locations can be accessed

with zero delay after the first data is available.

186

Cache

A cache memory is a high-speed memory connecting a processor to a main

memory. It is much smaller than the main memory but it is faster. Its advantage

is that the average memory access time is nearly equal to the speed of the fastest

memory, whereas the average unit cost of the memory system approaches the

cost of the cheapest memory.

A cache memory stored the most frequently used values from the memory. This

is possible because the principle of locality of references [DEN68]. The patterns

of addresses generated by programs run on a system exhibit two kinds of locality:

1. Temporal, the values that have been accessed will be accessed again in

the near future.

2. Spatial (array, vector, code segment), the values near the location of the

recently accessed will be accessed in the near future.

Temporal locality

Cache memory stored the most frequently used values from the memory. The

access pattern has "temporal locality", the locations in the memory may be

spatially separated but the cache memory stored them together when they are

accessed.

Figure 10.5 cache memory stored values that "temporally related"

Working set of an application is the amount of memory the application required

in a period of time. It varies with time.

187

Cache performance

When the processor attempts to fetch a word from main memory, the word is

supplied from the cache if it is resident there. If not the word is supplied from

main memory, but the cache is also loaded with a block of words including the

one requested. Thus, subsequent accesses to the same word can be handled at the

cache speed.

Let h, the cache hit ratio, be the fraction of the references to main memory that

can be found in the cache.

  mce ThThT  1

where Te the effective cycle time, Tc the cycle time of cache memory, Tm the

cycle time of main memory. The speed up due to cache is

cmc TTS /

Let express the speed up in term of hit ratio

 

















11

1

1

m

cmc

m

c

m
c

T

T
h

ThTh

T

T

T
S

since 1/ mc TT we can write

h
T

T
S

m

c
c















11

1

if 1/  kkh then

 
1

1

1

1

1

1

1
1

1

1





























 k
TkT

Tk

kT

T

k

k

T

T

k

k
S

cm

m

m

c

m

c
c

Thus, if h = 1/2 we can not achieve a speed up of more than 2. The figure shows

maximum Sc versus h.

188

0

2

4

6

8

10

0 0.5 1

Figure 10.6 maximum possible cache speed up versus hit ratio

Example We want to compare two size of cache memory, 512 K bytes and 1 M

bytes. Let the average hit ratio of 512 K bytes cache be 0.93 and the average hit

ratio of 1 M bytes cache be 0.97. Let Tc / Tm = 0.12.

Sc 512 = 1 / (1  0.88  0.93) = 5.5

Sc
1M = 1 / (1  0.88  0.97) = 6.85

Thus, adding 512 K bytes to the cache achieved a system speed up improvement

of

24.0
512

5121




c

c
M

c

S

SS

This 24 percent improvement could be a good return on relatively small

investment.

Example We want to assess how much a cache contribute to the performance of

a system. Assume a cache miss penalty is 50 clock cycles, all instructions take 2

clock cycles (not take into account the caches miss), the miss rate is 2%. There is

an average of 1.33 memory references per instruction. What is the impact on

performance when taking cache behaviour into consideration?

We start with the definition of performance

Performance = how fast a processor finishes its job

execution time = number of instruction used  cycle per instruction  cycle

time

Taking the behaviour of memory into account

Sc
Tm/Tc

h

189

execution time = (CPU execution cycle + memory stall cycle)  cycle time

memory stall cycle = number of instruction used  memory reference per

instruction  miss rate  miss penalty

Threrefore

execution time = number of instruction used  (cycle per instruction +

memory reference per instruction  miss rate  miss

penalty)  cycle time

= n.o.i.  (2 + (1.33  2%  50)  cycle time

= n.o.i.  3.33  cycle time

Therefore the execution time increases with CPI from 2 (no cache miss) to 3.33

with a cache that can miss. Without a cache at all, CPI would be 2 + 50  1.33 =

68.5, a factor of 30 times longer!

Cache organisation

A cache memory stored some part of the main memory. The main memory can

be viewed as "blocks". A cache stored a number of these blocks, which are

indexed by part of the address bit. The size of the block varies. For any size

larger than one, the lower address bits are used as "offset" to indicate the required

word within a block. The relationship between the size of the block, the size of

the cache, the organisation of the cache and the hit ratio are complex. The larger

cache size has a higher hit ratio. The cache contains the memory for storing the

address, called "tag", and the memory for storing the blocks.

Figure 10.7 the relationship between main memory and cache

190

The activities in a cache consist of the request for reading and writing. In

response to those requests, there are these possible events: load hit, load miss,

store hit, and store miss. A cache is classified according to its organisation. We

will discuss three major organisations: fully associative cache, direct map cache,

and set associative cache. Mostly they differ in the way they response to the

request:

1. Where can a block be placed in the cache?

2. How is a block found if it is in the cache?

3. Which block should be replaced on a miss?

4. What happens on a write?

Fully associative

In a fully associative cache, the tag memory is made of CAM, therefore a block

can be placed in any slot in the cache. The search for address matching is done

with all tags in parallel using the retrieval by association. If a conventional

memory (RAM) is used, it will require scanning every address. If there is no

ordering among the content, scanning will take O(n). If there is ordering, using

binary search will take O(n log n). An associative memory takes just O(1) to find

the required content.

Figure 10.8 a fully associative cache

However, the CAM is expensive and the fully associative cache is used mainly in

places where the speed is important and the small cache size is appropriate. To

increase the cache size without increasing the tag size (the tag is made of CAM),

the block size (made of RAM) can be increased.

191

Direct map

A direct map cache uses RAM instead of CAM to store tags. The lower bits of

address are used to index the block. Therefore a block has a unique place in the

cache. The addresses that have the similar higher bits will be placed in the same

slot. This reduces the effectiveness of the cache, as some addresses will collide.

Due to its simplicity, a direct map cache can be implemented with efficiency (it

can be very fast).

Figure 10.9 a direct map cache

Example to understand how a cache stores the tags, let us follow a simple

exercise. Assume a cache has 8 slots with a block size 1. A sequence of memory

requests is issued by the processor. Suppose the address sequence is 0, 1, 3, 6, 9,

13, 14, 3, 18, 19, 13. The following diagram shows the state of tags.

 address Tag t+3 Tag t+7 Tag t+10

0 8 16 0 0 0

1 9 17 0 1 1

2 10 18 2

3 11 19 0 0* 2

4 12 20

5 13 21 1 1*

6 14 22 0 1 1

7 15 23

 address sequence: 0,1,3,6 9,13,14,3* 18,19,13*

 Figure 10.10 the state of tags after the sequence of accesses

192

The tag is calculated by (address / 8) and the index to the slot is (address mod 8).

The address marked with * are the cache hits. There are two hits in this example.

Set associative

To improve the performance of a direct map cache, the set associative cache uses

a number of direct map caches in parallel, called a set, k. The search of the

matching address is done on k tags in parallel. The mechanism requires only k

set of comparators and a multiplexor to select data from k sets. This improves

the hit ratio as it reduces the chance of collision which different addresses map to

the same slot. Having a set of caches introduces another consideration, which set

to be replaced when a miss occurs? This question is settled with cache

replacement policy.

Figure 10.11 a set associative cache

Replacement policy

On a load miss, the value must be read from the main memory and also the whole

block must be updated into the cache. There is no choice which block to be

replaced in the direct map cache. The selection is done in hardware using the

lower address bits to index the slot. For the fully associative cache and the set

associative cache there are two major policies:

1. Random replacement, the block to be replaced is randomly selected so

that it is uniformly distributed in the cache.

2. Least-Recently-Used (LRU), this policy replaces the block that has been

unused for the longest time.

193

The random replacement policy is easy to implement in hardware, requiring only

a random number generator. The LRU policy must keep track of the number of

access to each block hence it is more complicate. Nearly all caches in

commercial production use LRU.

Write policy

Reads dominate cache accesses. All instruction accesses are reads. For data

accesses, writes constitute 7% of the overall memory traffic and about 25% of

data cache traffic. Reads can be made fast. A block can be read at the same time

as the tag is read and compared. If it is a miss the value read can be ignored.

It is not the case for writes. Because the tag checking cannot be done in parallel

with the memory access (write cannot be undone), writes normally take longer

than reads. On a write request, there are two options:

1. Write through, the information is written to both the block in the cache

and to the block in the main memory.

2. Write back, the information is written only the cache. The modified

cache block will be written to main memory only when that block is

replaced.

There is a bit associated with each block in cache called the dirty bit. This bit is

set when the content of that block is modified. When the block is going to be

replaced, the dirty bit is examined, if it is clean, it is not necessary to write this

block to the main memory. This reduces the frequency of writing back to the

main memory.

Address Trace

To measure the performance of a cache memory, a miss ratio is measured from

an address trace. Some problems are presented:

1. the workload on the trace may not be representative

2. the initialisation transient may grossly affect the evaluation

3. the trace may be too short to obtain accurate measurement.

The length of the trace is important for accuracy. Also the concern about

initialisation of cache (should or should not take into account for cache miss). If

cache size is 1,000 blocks, assuming 1 byte per block, and the miss ratio is 1%,

for a miss to occur once for every block requires the trace length of 100,000

addresses just to initialise the cache. An empirical formula for the trace length is:

194

Trace length = cache size 1.5

This formula implies that for each quadrupling of cache size, the trace length

increases by a factor of 8. A typical simulation run to collect the address trace

covers hundreds of milliseconds at most.

Improving cache performance

The performance gap between processors and memory is increasing every year.

During 1980-1986 the processor performance increased 35% per year and 1987-

2000 it increased 55% per year while the memory performance increased during

1980-2000 only 7% per year. In the year 2000, the processor is about 500 times

faster than memory. The cache is becoming more and more important to bridge

this gap. The average access time of a memory system is.

Taverage = Thit + miss rate  miss penalty

All three factors Thit, miss rate, and miss penalty are considered in improving

cache performance.

To reduce miss rate the larger block size can be used. The larger block size takes

advantage of spatial locality. However, increasing block size will increase the

miss penalty. Another way to reduce miss rate is to increase associativity. A

rule of thumb for cache is that a direct map cache of size N has about the same

miss rate as a 2-way set associative cache of size N/2. An 8-way set associative

is as effective in reducing misses as fully associative cache of the same size.

Using two separate caches for instruction and data instead of a unified cache can

be beneficial. A processor relies on prefetching instructions to fully use the

pipeline. Having a separate instruction cache reduces the interference from data

access.

The miss penalty can be reduced by using a second-level cache. In designing a

cache, it is always a question of whether to make the cache larger or to make it

faster. By adding another level of cache between the first cache and the main

memory, the first cache can be fast while the second cache can be large. The

second cache will reduce the number of traffic to the main memory. It is, in

essence, reducing the miss penalty.

The hit time can be reduced in two ways. First, a simpler and smaller hardware is

faster, therefore the simple organisation of cache such as a direct map cache can

be faster than a complicate cache. Second, use an on-chip cache. Because the

advancement of microelectronics, the number of logic on a chip has been

195

increasing. It has been possible to include a cache on the same die as a processor.

The on-chip cache is much faster than an off-chip cache due to shorter paths and

smaller delay in signal paths. However the size of an on-chip cache is limited.

For more detailed discussion of high performance cache design, there are

numerous research papers on the subject, for example [TAE98] [TAE98a]. The

thesis describes the design of a cache controller for a high performance processor.

Many other organisations of cache have been introduced to cope with the

changing of the workload that emphasis multimedia applications [CHI00].

Example The on-chip cache of Intel 486 is a 4-way set associative, the line size

is 16 bytes, total cache size 8Kbytes To simplify the hardware, it used pseudo-

LRU having 3 bits: r0, r1, r2. The replacement policy works as follows. Let the

set be s0, s1, s2, and s3. The most recently access sets the bit using these rules:

if the set is s0 or s1 set bit r0
if the set is s0 set bit r1
is the set is s2 set bit r2

Then, the replacement follows these rules:

if r0 r1 = 00 replace s0
if r0 r1 = 11 replace s1
if r0 r2 = 10 replace s2
if r0 r2 = 11 replace s3

Virtual Memory

An operating system provides a multi-task capability. It performs three types of

scheduling: accepting a number of processes, switching between processes, and

handling I/O requests. One important function of an operating system is memory

management. Many programs, including the operating system itself resided in

main memory. The allocation and reclamation of memory for these programs

must be done dynamically by the operating system.

The process in memory contains instructions and data. When a process is

swapped in and out, the addresses of these instructions and data will be changed.

A process is not likely to be loaded into the same place each time it is swapped.

The concept of logical address and physical address is used to solve this problem.

A logical address is expressed as a location relative to the beginning of the

program. A physical address is an actual location in main memory. A part of

196

processor hardware is designed to support the mapping between logical to

physical addresses.

Paging

To facilitate memory allocation, main memory is divided into small fixed-size

blocks, called pages. A number of pages are allocated to each process on

demand. To translate a logical address to a physical address, the operating

system maintains a page table for each process. The page table shows the

location for each page of the process. A processor uses the page table to produce

a physical address.

Figure 10.12 translation of logical to physical address

With demand paging it is possible for a process to be larger than main memory.

A process executes in main memory referred to as real memory. A user perceives

a much larger memory, the size of disk, referred to as virtual memory.

Parameter First-level cache Virtual memory

Page size 16128 bytes 409665,536 bytes

Hit time 12 clocks 40100 clocks

Miss penalty

(Access time)

(Transfer time)

8100 clocks

(660 clocks)

(240 clocks)

700,0006,000,000 clocks

(500,0004,000,000 clocks)

(200,0002,000,000 clocks)

Miss rate 0.510% 0.000010.001%

Data memory size 0.0161MB 168192 MB

Figure 10.13 Typical ranges of parameters for caches and virtual memory (from
[HEN96] p.441)

197

Figure 10.13 shows the difference between first-level caches and virtual memory.

Comparing the two, the difference in magnitude is about 10 to 100,000. A

cache miss is 850 costly as a cache hit but a page fault is 6,00020,000 as

costly as a page hit. A cache miss latency is in the range of hundred of clocks but

a page fault latency is in range of millions of clocks. A processor can execute a

fair number of instructions during this time.

Address translation

The address translation requires accessing the page table. The page table resides

in main memory. If it is large, accessing a page table may cause page fault. The

worst case requires two memory accesses to get the data. A special cache, a

translation lookaside buffer (TLB), caches page table entries, hence improving

the speed of address translation. The TLB functions the same way as an ordinary

cache and contains page table entries that have been most recently used. The

principle of locality of references also applied to TLB, if the accesses have

locality, then the address translation of the accesses must also have locality.

The operation of paging and TLB is as follows [FUR87].

Request access to a page
CPU checks TLB
if the page table entry is not in TLB then
 access page table
 if page is not in memory then generate Page Fault
 else update TLB
CPU generates physical address

Page Fault
OS call routines to read the page from disk
CPU activates I/O hardware
If memory is full then perform Page Replacement
page table update
restart request to access a page

The virtual memory mechanism (TLB) must interact with the cache system.

When a memory access occurs the TLB is looked up, if the matching page is

present, the real (physical) address is generated. If TLB does not contain the

page, the entry is accessed from the page table. Once the real address is

198

generated the first-level cache is consulted, if the cache is a hit, the cache

supplies the word. If it is a miss, the word is retrieved from main memory.

Figure 10.14 Translation lookaside buffer and cache operation

Address translation can easily be on the critical path and hence determining the

clock cycle of a processor. The TLB is usually smaller and faster than a first-

level cache. The TLB access is sometimes pipelined to improve its speed.

TLB size 328192 bytes

Block size 48 bytes (1 page table entry)

Hit time 1 clock

Miss penalty 1030 clocks

Miss rate 0.1%2%

Figure 10.15 Typical parameters for a translation lookaside buffer

Page Replacement

A page fault is different from a cache miss as the page fault is very costly and the

latency is very long. During that time, a processor can perform a significant

amount of processing. This processing power can be used to reduce the miss

rate. Another difference is that virtual memory supports a multi-task

environment. The behaviour of tasks swapping in and out of main memory are

199

very dynamic compared to the behaviour of a cache miss that occurs in a single

thread of execution over a shorter period of time.

When a page fault occurs, a new page must be loaded from the secondary

memory, usually a disk. The trashing behaviour describes the situation where

there are excessively high traffic between main memory and the disk. Trashing

causes significant impairment of system performance. The replacement policy is

similar to that of a cache, the LRU. However, the question arises on how many

pages to be allocated to a process? The answer is to allocate as many pages as

the process needs at a given time. This requires the notion of a working set, the

footprint of a program execution over a short period of time.

How to find working set

W(t, w) the working set at time t for window w. It is the set of pages referenced in

the last w seconds at time t. The following steps allocate pages according to the

working set of a program:

1. when page fault, add a new page to the working set

2. from set of pages not referenced. within w, delete the LRU page

otherwise let the set grow

3. if two or more pages not referenced within w, delete two LRU pages, w

is measured by process time.

Page-fault frequency method

This method is based on the observation that a high page fault signals the change

in phase to a new working set

1. select a threshold Z

2. when page fault, estimate frequency. f = 1/(t1t0)

3. f > Z assume change phase, add page to the working set

4. f < Z assume stable. add new page, remove the old page (LRU)

5. f < Z over some period, assume stable and dead pages, reduce working

set and delete unreferenced. page (LRU)

How to allocate the number of pages to a program

The optimal is to get least page-fault rate. In a muti-task environment there are

many processes competing for resources. The allocation must consider all

processes. Let Ri (xi) be fault rate of process i with xi be the memory allocation.

The optimality can be achieved in the following sense:

200

)()(jjii xR
dx

d
xR

dx

d


The fault rates for each process for their respective allocation are equal. This

implies that an optimum allocation depends on fault rate derivatives. Figure

10.16 compare the working set method and the page-fault frequency method.

 working set page-fault frequency

assumption
immediate future will be like
the recent past

transient between two program
phases signaled by higher than
normal fault rate

implementation
difficult because of sliding
window

observable quantities use
hardware logging

Figure 10.16 comparison of the working set method and the page-fault
frequency method

Memory technology

Memory system design is becoming increasingly important as a computer system

performance improved. There are three major reasons for this. First, the new

generation of microelectronics technology improves speed and reduces power

consumption. However, the data transfer rate on a circuit board is independent of

technology scaling and remains at about 1 ns.

Second, the use of parallelism in processor design demands higher data transfer

rate but data parallelism cannot be exploited because the number of chip-to-chip

connections (the packaging) is limited.

Third, as memory is larger, the time for address decoding is at least logarithmic

increased, hence the memory becomes slower. As a result, while processor

performance improves exponentially according to Moore's law, memory system

performance does not.

History

Before 1960s, computer memory systems consisted of cathode-ray storage tubes,

ferrite cores, and thin magnetic films [ECK97]. The first semiconductor memory

was a six-transistor SRAM (static random access memory) cell, which is now

201

used mostly for cache and battery-backup memory. The one-transistor dynamic

memory was invented in 1968 [DEN68a] [DEN84]. The DRAM became very

successful, because of its low bit cost and high density. The DRAM has

dominated the computer main memory market.

DRAM operation

A DRAM is characterised by its access time and its cycle time. An access time is

the time between the request (the address is presented) and the time when the

data is ready. A cycle time is the time between two consecutive memory

operations. This is longer than the access time due to the electrical characteristics

of the memory circuits.

The memory cell consisted of storage capacitor and selection transistor. Its

binary state is represented by the amount of charge it holds. The storage

capacitor is implemented as a MOS (Metal Oxide Semiconductor) capacitor. The

memory array composed of cross-point array of memory cells. Its operational

scheme is as follows.

Figure 10.17 read operation of DRAM

For read operation, the RAS (row address strobe) latches the row address and

decoding. The CAS (column address strobe) decodes column address and

multiplexes data. The row and column address inputs are usually multiplexed to

minimize the number of pins in the DRAM package. Since the read operation is

202

destructive, the data must be written back to the memory cells in parallel with the

column access. This causes delay in RAS cycle time. The array then must be

precharged for the next memory access operation.

The write operation is similar, only difference is the I/O bit is forced into a new

logic state. In other words, writing to a DRAM cell is similar to writing back to

the cell with a new logic state.

The limitation in performance of DRAM involves two aspects: the latency and

cycle time in the row access and the data rate in the column access. The

performance in row access is caused by the resistance capacitance time constant

in both charging and discharging the dynamic memory cell and array. The cycle

time in column access determines the data rate. Widening the width for the chip-

to-chip connections increases the cost as the number of I/O drivers and packing

pins increases.

High-speed DRAM development

The research and development in late 1980s results in chips access time in the

low 20 ns range and a column access time in the low 10 ns range, using CMOS

(Complementary Metal Oxide Semiconductor) technology [LUN89] [TAK90].

For faster data rate, EDO (extended data out) DRAMs improve the data rate for

column access by adding an extra pipeline stage in the output buffer. A typical

4-M bit EDO DRAM with  8 I/Os operating at 33 MHz column access cycle can

provide a peak data rate of 266 Mbytes/second per chip.

In the 16-Mbit generation, SDRAM (synchronous DRAM) employed a high-

speed synchronous interface. The data rate was improved using pipelining the

data path or prefetching data bits over wider data lines. The performance was

also improved by interleaving multiple banks of memory arrays (normally two)

on the same chip. The peak data rate for a 16-Mbit SDRAM with  16 I/O

operating at 66 MHz is 1.1 Gbps (133 Mbytes/second) per chip. JEDEC (the

Joint Electron Device Engineering Council) has standardized both EDO DRAM

and SDRAM.

For faster random access, the performance near SRAM level is achieved by

integrating a small amount of SRAM as cache or using multiple banks of DRAM.

These designs are: EDRAM (enhanced DRAM), CDRAM (cached DRAM), and

MDRAM (multibank DRAM).

203

Rambus DRAM [KUS92] uses a packet-type memory interface to realise a peak

data transfer rate of 500 Mbps per data I/O pin (4 Gbps, or 500 Mbytes per chip)

with a 250 MHz clock. The improved version, called Concurrent Rambus,

realises a peak data rate of 600 Mbps per data I/O pin.

There are many types of memory that designed for specific applications, for

example VRAM, WRAM, and 3DRAM. Video RAM (VRAM) realised

concurrent dual port access by multiplexing the data in the DRAM array. The

internal data rate, with 4,096 full transfer, operating at 10 MHz, is 41 Gbps (5.1

Gbytes/second). It is aimed for video application using video screen refresh data.

Window RAM (WRAM) improves graphics operations in a GUI environment. It

simplifies VRAM design and it has additional functions such as bitblt (bit-block-

transfer) and block write for graphics applications. 3DRAM has been especially

designed for processing 3D graphics applications. The read-modify-write

operation, which occurs frequently in 3D graphics can be achieved with one write

operation.

DRAM Trend

The performance of a computer system can be associated with memory system

bandwidth and memory system capacity [KAT97].

performance = k1 (memory system bandwidth)

 = k1 (DRAM data rate) Ndram / Nbank

performance = k2 (memory system capacity)

 = k2 (DRAM density) Ndram

where Ndram is the number of DRAMs in the system, Nbank is the number of banks

sharing the same data bus, and k1 and k2 are coefficients. By dividing the two

equations.

DRAM data rate = Nbank (k2/k1) (DRAM density)

This equation implies that the DRAM needs a higher data rate as its density

increases. The coefficient Nbank(k2/k1) is called full frequency [PRZ96], it

depends on the application. The empirical numbers are 100 Hz for PC graphics,

10 to 20 Hz for PC main memory, and less than 10 Hz for servers and

workstations. The driving forces of DRAM changes are low-end and graphics

204

applications, where the data rate requirement per DRAM density is higher. The

transition to high-speed DRAM occurred not in the high end of the market but in

the low end. The high-speed memory DRAM could provide smaller memory

granularity for a given bandwidth requirement.

There are three major candidates for the next generation of high-speed DRAMs.

1. SDRAM-DDR (SDRAM double data rate), which uses a synchronous RAS

and CAS similar to SDRAM. The data transfer is at both edges of teh clock.

A 16-Mbit SDRAM-DDR with 16 I/O operating at 100 MHz clock (200

MHz data rate) can provide 3.2 Gbps.

2. Rambus DRAM, the data rate can achieved a peak of 13 Gbps per chip due to

400 MHz clock (800 MHz data rate) and 16-bit bus width.

3. SLDRAM (Ramlink IEEE standard 1596.4) [GIL97], It builds on the features

of SDRAM-DDR by adding an address/control packet protocol. The internal

DRAM address and control paths are decoupled from the data interface to

achieve higher bandwidth.

Beyond high-speed DRAM lies the merging between logic and memory, using

the processing at the memory cell. Putting RAM and processor together can

achieved a very high bandwidth, such as one proposed by Patterson [PAT97].

References

[CHI00] Chiueh, T., and Pradhan, P., "Cache memory design for Internet

processors, IEEE Micro, Jan./Feb. 2000.

[DEN68] Denning, P., "The working set model for program behavior",

Communications of the ACM, May 1968.

[DEN68a] Dennard, R., Field Effect Transistor Memory, US Patent 3387286,

1968.

[DEN84] Dennard, R., "Evolution of the MOSFET dynamic RAM  A personal

view", IEEE Electron Devices, no, 11, Nov. 1984, pp.364-369.

[ECK97] Eckert, J., "A survey of digital computer memory systems", Proc. IEEE,

vol. 85, no. 1, Jan. 1997, pp.184-197. (Originally in Proc. Inst. Radio

Engineers, vol. 41, Oct. 1953, pp. 1393).

[FUR87] Furht, B., and Milutinovic, V., "A survey of microprocessor

architectures for memory management", Computer, March 1987.

[GIL97] Gillingham, P. and Vogley, B., "SLDRAM: High-performance Open-

Standard Memory", IEEE Micro, Nov./Dec. 1997, pp. 29-39.

[HEN96] Hennessy, J., and Patterson, D., Computer architecture: A quantitative

approach, 2 ed., Morgan Kaufmann, 1996.

205

[KAT97] Katayama, Y., "Trends in semiconductor memories", IEEE Micro,

Nov./Dec. 1997, pp.10-17.

[KUS92] Kushiyama, N. et al., "500 Mbytes/s Data rate 512 Kbits  9 DRAM

using Novel I/O Interface", Dig. Tech. Papers, 1992, Symp. VLSI Circuit,

June 1992, pp.66-67. http://www.rambus.com

[LUN89] Lu, N. et al., "A 22-ns 1-Mbit CMOS high speed DRAM with address

multiplexing", IEEE J. Solid-state circuits, vol. 24, Oct. 1989, pp.1196-1205.

[PAT97] Patterson, D. et al., "A case for intelligent RAM", IEEE Micro,

Mar./Apr. 1997, pp.34-44.

[PRZ96] Przybylski, S. et al., "SDRAMs ready to enter PC mainstream",

Microprocessor report, vol. 10, no. 6, May 1996.

[TAK90] Takai, Y. et al., "A 23-ns 1-Mbit BiCMOS DRAM", IEEE J. Solid-

state circuits, vol. 25, Oct. 1990, 1102-1111.

[TAE98] Taechashong, Primas, A VLSI design of a load/store unit for a RISC

processor, Master of Engineering thesis, Department of computer

engineering, Chulalongkorn University, 1998. (in Thai)

[TAE98a] Taechashong, P. and Chongstitvatana, P., "A VLSI design of a

load/store unit for a RISC microprocessor", Proc. of The Second Annual

National Symposium on Computational Science and Engineering, pp. 244-

248, Bangkok, March 25-27, 1998.

206

207

Chapter 11

Magnetic Disk

This chapter examines the most important type of secondary storage, the

magnetic disk. Magnetic disks have dominated the secondary storage market

since 1965. Magnetic disks are almost an integral part of all computer systems.

It provides long-term, non-volatile storage for files and is used for virtual

memory. The use of multiple disks to improve reliability and performance is

discussed. Finally, the I/O functions that control data transfer between I/O and

main memory is explained.

Disk basics

The read-write mechanism is based on the magnetic field produced by the read-

write head and magnetic patterns are recorded on the disk surface. The

organisation of data on the platter is a concentric set of rings, called tracks.

Adjacent tracks are separated by gaps. This prevents errors due to misalignment

of the head. The density is the amount of bits per inch on each track. Data are

recorded in block-size chunk called sectors. Adjacent sectors are separated by

inter-record gaps. A sector position is identified by its relative position to the

control data recorded on the disk. The capacity of a disk is expressed as areal

density (bit/inch2)

areal density = track/inch on a disk surface  bits/inch on a track

Example A disk format, Seagate ST506 is as follows. Each track contains 30

sectors of 600 bytes each. Each sector stores 512 bytes of data plus control

information. The ID field is a unique identifier used to locate a sector. The

SYNC byte is a special pattern that delimits the beginning of the field. The ID

and data fields contain error-detecting codes (a cycle redundant code, CRC).

208

index Physical sector 0 (600 bytes per sector), . . . Physical sector 29

Gap
1

ID
Field
0

Gap
2

Data
Field
0

Gap
3

. . . Gap
1

ID
Field
29

Gap
2

Data
Field
29

Gap
3

17 7 41 515 20 17 7 41 515 20

ID Field Data Field

Sync
byte

Track

Head

Sector

CRC Sync
byte

Data CRC

1 2 1 1 2 1 512 2

Figure 11.1 Winchester disk format Seagate ST506

Disk access time

The disk is rotating at constant speed. The head must be positioned on the

desired track to read or write data. The time to move a head to the track is known

as seek time. Then, the system waits for the desired sector to line up with the

head, this time is known as rotational latency.

access time = seek time + rotational latency

After the sector lines up with the head, the transfer can take place. The transfer

time is the time it takes to transfer a block of bits, typically a sector. It is a

function of the block size, rotational speed, recording density and speed of

electronics connecting the disk to a computer.

Example What is the average time to read or write a 512-byte sector of a typical

disk? The advertised average seek time is 9 ms, the transfer rate is 4MB/sec., it

rotates at 7200 RPM, and the controller overhead is 1 ms.

average disk access time = average seek time + average rotational delay +

transfer time + controller overhead

9 ms + 0.5/7200 RPM + 0.5 KB/4 MB/s + 1 ms = 14.3 ms.

209

Disk Performance

The advances in disk technology improve disk performance. These advances

include increased rotational speed, faster seek times, and higher data rates. Some

other advances such as disk density or total drive capacity also impact the

performance [NGS98]. We will discuss these advances.

Disk performance is measured by "total job completion time" for a complex task

involving a long sequence of disk I/Os. The time for a disk drive to complete a

user request consists of:

 command overhead

 seek time

 rotational latency

 data transfer time

Performance parameters

Command overhead  the time takes for the disk controller to process and

handle I/O request  depends on the type of interface (IDE or SCSI), type of

command read/write, use of drive's buffer. Typical value is 0.5 ms for buffer miss

and 0.1 ms for buffer hit.

Seek time  the time for the head to move from its current cylinder to the target

cylinder.

Settling time  the time to position the head over the target track until the correct

track identification is confirmed. A typical seek time is 10 ms.

Rotational latency  In the past disk spins at the speed 3,600 rpm. Today the

highest speed is 10,000 rpm and typically 5,400 rpm. representing the average

latency 5.6 ms.

Data transfer time  It depends on "data rate" and "transfer size". There are two

kinds of data rate : media rate and interface rate.

Media rate depends on recording density and rotational speed.

Example, a disk rotating at 5,400 rpm with 111 sectors (512 bytes each) per track

will have a media rate 5 Mbytes per second.

210

Interface rate is how fast data can be transferred between the host and the disk

drive over its interface. SCSI drives can do up to 20 Mbytes per sec. over each 8-

bit-wide transfer. IDE drives with the Ultra-ATA interface support up to 33.3

Mbytes per sec.

Transfer time equals transfer size divided by data rate. The average media

transfer time is 0.8 ms, the average interface transfer time is 0.4 ms.

Example The typical average time to do a random 4-K byte disk I/O is

overhead + seek + latency + transfer

= 0.5 ms + 10 ms + 5.6 ms + 0.8 ms

= 16.9 ms

Locality of access  Most I/Os are not random, the effect is that the real seek

time is about one third of random seek time. Taking this into account the above

example will be

overhead + seek + latency + transfer

= 0.5 ms + 1/3 * 10 ms + 5.6 ms + 0.8 ms

= 10.2 ms

Caching  With caching the mechanical component, i.e. seek and latency, are

eliminated. Data transfer takes place at the interface data rate. Typical time to do

4K I/O becomes

overhead + transfer = 0.1 ms + 0.4 ms = 0.5 ms

Increase recording density

 bits per inch (bpi)

 track per inch (tpi)

Increase BPI

BPI is called "linear density", determines the number of sectors on a track. With

"zoned recording", each zone the number of sectors per track is constant. BPI

toward the outer diameter of a zone is somewhat lower than the BPI toward the

inner diameter of the same zone. Increasing BPI affects a higher media data rate,

puts constraint on rpm, has fewer head switches, and a bigger cylinder.

Higher media rate  media data rate = 2 pi  radius  bpi  rotational speed

211

Constraint on rpm  increasing bpi can push data rate beyond what the drive's

data channel can handle. Today's disk electronics can handle up to 25 Mbytes per

sec.

Fewer head switches  Switching to the next track on the same cylinder is called

"track switch" and switching to the next track on the next cylinder is called

"cylinder switch".

average switch time = (request size - 1/track size)  head switch time

Bigger cylinder  When BPI increases, more sectors per track, more sectors per

cylinder. When operating within a small range of data, more sectors in a cylinder

has 2 effects:

1. The seek distance is reduced

2. The number of seek is reduced

Higher track per inch

Seek time composes of two parts:

1. travel time

2. settling time

seek time = A + B  sqrt(seek distance) + C  log(TPI)

where A,B,C are some constants specific to the disk drive.

TPI has two opposing effects on the seek time. Higher TPI means shorter

physical seek distance, means shorter travel time. On the other hand, tracks are

narrower require longer settling time.

No ID record format

The conventional format, each sector has ID field (or header). To increase

capacity, no-ID recording eliminates the ID field, allowing more data sectors on

each track. The drive can find the sectors by keeping a table of relations between

sectors and embedded servos.

212

File system  Allocation unit

The size of allocation unit of a file system affects the total capacity of a drive.

For example, file allocation table (FAT) of DOS, Windows, the allocation unit is

called "cluster", the cluster size is 16 sectors for a drive with capacity 512 

1,024 M bytes.

For larger files  bigger cluster size is better.

For small files  larger cluster size means larger distance between file, hence

longer seek time. With a file occupies only small portion of a cluster, look ahead

buffer is less effective. Result: smaller cluster size is better.

RAID

Multiple disks can be organised to use redundancy to improve reliability and

performance. Using an array of disks that operate independently and in parallel.

Separate I/O requests can be handled in parallel as long as data reside on separate

disks. A single I/O request can be executed in parallel if the block of data is

distributed across multiple disks.

RAID (Redundant Array of Independent Disks) is proposed to close the gap

between processor speed and slow electromagnetic disk drives. The strategy is to

use multiple drives and to distribute data to enable simultaneous access, therefore

improving I/O performance. The RAID consists of level zero to level five. An

excellent survey written by the inventor of the RAID is [CHE94].

The reliability of a disk is stated by the manufacturer in terms of the Mean Time

To Failure (MTTF), assuming a constant failure rate  that is, an exponentially

distributed time to failure  and that failures are independent.

Example MTTF rated of the disk IBM 3380 (7.5 Gbytes formatted) is 30,000

hours and in practice this figure is 100,000 hours [IBM87].

The arrays are divided into reliability groups, with each group having extra

"check" disks containing redundant information. When a disk fails, within a

short time, it should be replaced and the information will be reconstructed onto

the new disk using the redundant information. This is called Mean Time To

Repair (MTTR). The MTTR can be reduced if the system includes extra disks to

act as "hot" standby spares; when a disk fails, a replacement is switched in

213

electronically. Periodically, a human operator replaces all failed disks. There are

five different organisations of disk arrays (not counting Level 0), beginning with

mirrored disks and progressing through a variety of alternatives with differing

performance and reliability.

RAID level 0

The data is distributed across all disks in the array by stripping. It increases the

chance of handling multiple I/O requests in parallel. It also achieves high data

transfer if the request contains large amount of contiguous data, compared to the

size of a strip. A single I/O request involves the parallel transfer of data from

multiple disks, increasing the effective transfer rate. RAID 0 can also handle

high I/O request rate by balancing I/O load across multiple disks.

RAID level 1

Every disk in the array has a mirror disk that contains the same data. A read

request can be serviced by either of two disks. A write request requires both

corresponding strips to be updated. When a drive fails, the data may be accessed

from the second drive. RAID 1 can achieve high I/O request rates if the bulk of

the requests are reads.

RAID level 2

All member of disks participate in executing every I/O request. The spindles of

the individual drives are synchronised [KIM86] so that each disk head is in the

same position on each disk at any given time. Data striping is RAID 2 is very

small as a single byte or word. An error-correcting code is calculated across

corresponding bit positions on each data disk. The bits of code are stored in

multiple parity disks. Typically, a Hamming code is used. This code is able to

correct single-bit errors and detect double-bit errors.

214

Figure 11.2 the organisation of RAID

 strip 4

 strip 12

 strip 0

 strip 8

 strip 5

 strip 13

 strip 1

 strip 9

 strip 6

 strip 14

 strip 2

 strip 10

 strip 7

 strip 15

 strip 3

 strip 11

 f1 (b) f2 (b) b0 b2 b1 b3 f0 (b)

 P(16-19)

 block 4

 block12

 block 0

 block 8

 block 5

 block13

 block 1

 block 9

 block 6

 block14

 block 2

 block10

 block 7

 block15

 block 3

 block11

 P(4-7)

 P(12-15)

 P(0-3)

 P(8-11)

 block16 block17 block18 block19

 block 4

 block12

 block 0

 block 8

 block 5

 block13

 block 1

 block 9

 block 6

 block14

 block 2

 block10

 block 7

 block15

 block 3

 block11

 P(4-7)

 P(12-15)

 P(0-3)

 P(8-11)

 b0 b2 b1 b3 P (b)

 strip 4

 strip 12

 strip 0

 strip 8

 strip 5

 strip 13

 strip 1

 strip 9

 strip 6

 strip 14

 strip 2

 strip 10

 strip 7

 strip 15

 strip 3

 strip 11

 strip 4

 strip 12

 strip 0

 strip 8

 strip 5

 strip 13

 strip 1

 strip 9

 strip 6

 strip 14

 strip 2

 strip 10

 strip 7

 strip 15

 strip 3

 strip 11

a) RAID 0 (non redundant)

c) RAID 2 (redundancy through Hamming code)

b) RAID 1 (mirrored)

d) RAID 3 (bit-interleaved parity)

e) RAID 4 (block-level parity)

f) RAID 5 (block-level distributed parity)

215

RAID level 3

RAID 3 is similar to RAID 2. The difference is that RAID 3 uses simple parity

bit so it requires only a single redundant disk. In the event of a drive failure, the

parity drive is accessed and data is reconstructed from the remaining drives. The

contents of any strip of data on any one of the data disks in an array can be

regenerated from the contents of the remaining disks in the array. Because the

data strip is very small, RAID 3 can achieve very high data transfer rate.

However, only one I/O request can be executed at a time.

RAID level 4

Each drive operates independently. Separate I/O requests can be satisfied in

parallel. The strips are relatively large. A bit-by-bit parity strip is calculated

across corresponding strips on each data disk, and the parity bits are stored in the

parity disk. Each time a write occurs, two reads and two writes must be

performed. One read for the data strip and second read for parity strip to

calculate new parity. One write to update data and second write to update the

parity strip.

RAID level 5

In RAID 4, every write operation must involve the parity disk, which becomes a

bottleneck. RAID 5 is organised similar to RAID 4 but the parity strips are

distributed across all disks to avoid the potential I/O bottleneck.

Performance of RAID

To compare all organisations we define several parameters:

D = total number of disks with data (not including extra check disks)

G = number of data disks in a group (not including extra check disks)

C = number of check disks in a group

nG = D/G = number of groups

216

The group MTTF is approximately [PAT88]

MTTRCGnCD

MTTF
MTTF

G

Disk
RAID




)1()(

2

Since the formula is the same for each level, we assume the following parameters

D = 100, G = 10, MTTFDisk = 30,000 hours, MTTR = 1 hour with the check disk

per group C determined by the RAID level.

To compare the performance, the following parameters are considered:

 Reliability overhead cost  this is the cost of extra check disks.

 Useable storage capacity percentage

 Performance  it is measured by the number of reads and writes per second.

It is measured for several types of load:

For high data rate  Large blocks of data, with large defined as getting at

least one sector from each data disk in a group. During large transfers,

all disks in a group act as a single unit, each reading or writing a portion

of the large data block in parallel.

For high I/O rate  Small blocks of data, which is read-modify-write

sequence of disk accessing. This is a suitable measure for transaction-

processing systems which contains many small transfers. During the

small transfers, each disk in a group can act independently.

We measure the effective performance per disk.

One additional factor needs to be considered, the slow down factor S. When

individual accesses are distributed across multiple disks, average queueing, seek,

and rotational delay may differ from the single disk case. When many arms on

different disks seek to the same track, the average seek and rotate time will be

larger than the average for a single disk. To account for this, the factor S is

included, 1  S  2, when a group of disks work in parallel. With synchronous

disks [KIM86], the spindles of all disk in the group are synchronised so that the

corresponding sectors of a group of disks pass under the head simultaneously,

there is no slow down, S = 1. Figure 11.3 summarises the performance

parameters of all RAID levels.

217

 RAID 1 RAID 2 RAID 3 RAID 4 RAID 5

MTTF >500 years >50 years >90 years >90 years >90 years

Total no. of disk 2D 1.4D 1.1D 1.1D 1.1D

Overhead cost 100% 40% 10% 10% 10%

Usable storage
capacity

50% 71% 91% 91% 91%

Efficiency per
disk (event/sec.)

Large read 1.00/S .71/S .91/S .91/S .91/S

Large write .50/S .71/S .91/S .91/S .91/S

Large R-M-W .67/S .71/S .91/S .91/S .91/S

Small read 1.00 .07/S .09/S .91 1.00

Small write .50 .04/S .05/S .05 .25

Small R-M-W .67 .07/S .09/S .09 .50

Figure 11.3 The performance parameters of all RAID levels (from [PAT88])

To achieve reliability and performance, the RAID starts with mirrored disks, and

with each succeeding level improving:

 the data rate  characterised by a small number of request per second for

massive amounts of sequential data.

 the I/O rate  characterised by a large number of read-modify-write to a

small amount of random data.

 the useable storage capacity

Figure 11.4 shows the performance improvement per disk for each level RAID.

The highest performance per disk comes from either Level 1 or Level 5. In

transaction-processing situations using no more than 50% of storage capacity,

then the choice is mirrored disks (Level 1). For a high data rate, Level 5 looks

best with high data rate and high useable storage capacity.

218

6 8 9

50

767676

6056
67

919191

71

50

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5

RAID Level

P
e
rc

e
n

t
Large I/O Small I/O Capacity

Figure 11.4 The efficiency per disk and usable storage capacity of all RAID levels
for D = 100, G = 10, S = 1.3. (from [PAT88])

I/O functions

The processor and memory are connected to input/output devices via I/O

modules. Peripherals do not connect directly to the system bus. The data rate of

peripherals is much slower than the processor and memory and the data formats

are usually different. There will be many I/O devices connected to an I/O

controller. Each device has an identifier and it is used to communicate with the

I/O controller. There are many activities in an I/O controller:

 control and timing

 CPU communication

 device communication

 data buffering

 error detection

The following scenario illustrates the control of data transfer from an external

device to the processor.

1. The CPU interrogates the I/O module to check the status of the device.

2. The I/O module returns the device status.

3. If the device is operational and ready to transmit, the CPU requests the

transfer of data, by means of a command to the I/O module.

219

4. The I/O module obtains a unit of data from the external device.

5. The data are transferred from the I/O module to the CPU.

There are three techniques for I/O operations: programmed I/O, interrupt-driven

I/O and direct memory access (DMA). With programmed I/O, the CPU directly

controls I/O operations, it must wait until the I/O operations are completed. As

the CPU speed is much higher than an I/O module, this is wasteful of CPU time.

With interrupt driven I/O, the CPU issues an I/O command and continues to

execute other task, it is interrupted by I/O module when the data transfer is

completed. Both programmed I/O and interrupt-driven I/O, the CPU is

responsible to exchange data between main memory and input/output devices.

The programmed and interrupt driven I/O have limitations that the I/O transfer

rate is limited by the speed of the CPU and also the CPU is tied up managing I/O

transfer. With direct access memory, the I/O module exchanges data with main

memory without the CPU involvement.

DMA function

The DMA module takes over the control of the system bus from the CPU in order

to transfer data to and from memory. It can forced the CPU to temporarily

suspend operation, this is referred to as cycle stealing. The DMA module steals a

bus cycle. When a CPU wishes to read or write a block of data, it issues

command to the DMA module, the following:

 read or write request

 the addresss of I/O device

 the starting location in memory

 the size of data to be read or write

The CPU delegates the I/O operation to the DMA module. The DMA module

transfers data, one word at a time, directly to memory. When the transfer is

completed, the DMA module sends an interrupt signal to the CPU.

Evolution of I/O Channels

The evolution of I/O functions started from a simple control of CPU to the

delegation of the task to the I/O system without the CPU involvement. The

following steps show how I/O functions have evolved:

1. the CPU directly control I/O

220

2. I/O controller, the CPU uses programmed I/O. The CPU is isolated from

specific details of devices interface.

3. add interrupt, increase efficiency

4. I/O controller uses DMA

5. I/O controller is enhanced to become a processor, running special I/O

instructions.

6. I/O controller has local memory, a large set of I/O devices can be

controlled with minimum CPU intervention.

Step 5 and 6, I/O controller is called I/O channel. The term I/O channel is

associated with IBM mainframes as IBM is the first to recognise the importance

of using direct access devices for external storage and used it in their major

operating system OS/360 [PRA89]. Putting a lot of functionality into an I/O

controller, so called, the intelligent I/O control, is attractive but in practice the

CPU will be advanced in a much higher rate due to the market pressure. A CPU

is fabricated using the most advanced process technology for performance

reason. Hence, in practice, I/O channel will be one or two generations behind the

CPU in terms of speed. Therefore, when the speed of the CPU is much higher

than I/O channel it makes sense to let the CPU controls devices directly.

References

[CHE94] Chen, P., Lee, E., Gibson, G., Katz, R., and Patterson, D., "RAID: high-

performance, reliable secondary storage", ACM Computing surveys, June

1994.

[IBM87] IBM 3380 Direct Access Storage Introduction, IBM GC 26-4491-0,

September 1987.

[KIM87] Kim, M., "Synchronous disk interleaving", IEEE Trans. of Computers,

vol. C-35, no. 11, November 1987.

[NGS98] Ng, S., "Advances in disk technology: performance issues", Computer,

May 1998, pp.75-81.

[PAT88] Patterson, D., Gibson, G., Kaltz, R., "A case for redundant arrays of

inexpensive disks (RAID)", Proc. of the ACM SIGMOD Conf., Chicago, IL.,

June, 1988.

[PRA89] Prasad, N., IBM mainframes: architecture and design, McGraw-Hill,

1989.

[STE81] Stevens, L., "The evolution of magnetic storage", IBM Jour. of

Research and Development, vol. 25, no. 5, September 1981, pp.663-675.

221

Chapter 12

Future architecture

The future of computer architecture ties closely with the advancement of

microelectronics. This chapter reviews the progress of architecture and projects

the future based on the fact that one billion-transistor device will be possible

(circa 2010). There are many alternative proposals ranging from more

conservative designs to revolutionary designs. As the future is not likely to be

predictable with accuracy, we see only the sketch of what is possible for the

future computer architects.

Evolution of computer architecture

The evolution of computer architecture has progressed from simple sequential

machines to modern out-of-order execution machines. In the early days, the main

challenge has been to design and construct the large and complex systems that

required team of engineers. The emphasis in term of computer design has been

the instruction set architecture (ISA). As the technology advanced, especially

microelectronics industry that can produce a large amount of resources, the

number of transistors, on a single chip, it enables the designer to build the most

complex part of computer, the processor, on a chip. A new dimension on

performance issue brought about many new ideas in computer architecture. We

will review this evolution as follows.

Sequential execution

A simple machine performs instruction execution that composed of instruction

fetch, decode, execute and writeback in sequence. Each instruction is complete

before the next instruction begins.

I1, I2, I3

222

Overlapped execution (pipeline)

A pipelined machine achieves a higher performance by using the overlapping of

execution. Each instruction execution is divided into a number of steps, which

are then executed by independent hardware units. The functional units are used

concurrently. The next instruction can begin before the first instruction is

finished. In this way, many instructions can be resided in the pipeline at once.

Fetch, Decode, Execute
 Fetch, Decode, Execute

Without caches, memory access is much slower than processors. The rate of

instruction execution is limited by the speed of fetching instruction from

memory. The time spending in fetching an instruction is larger than the time to

decode and execute it. To increase performance, designers tried to do "more" in

one instruction during execution, the execution phase is multistep.

------ Fetch----- Dec Exe Exe

 -----Fetch--- Dec Exe Exe

The characteristic of the ISA in this era is that the CPI is large. The cycle time is

also large because the complex circuits required executing complex instructions.

This also increases the chance of having conflict in the pipeline because one

instruction stays in the pipeline for long time that it interferes with other

instructions.

The invention of cache memory reduces the fetch time greatly. Current design

concentrates on reducing CPI and cycle time. By simplifying the execution of

one instruction and with appropriate choices of the ISA, the pipeline can be more

effective and circuits can be simpler and faster.

Superpipeline

Once the pipeline enables CPI to reach 1.0, the only way to increase speed is to

reduce cycle time. To make it possible, the pipeline is divided into finer grain

which reduce the clock time for each stage. This technique is called

"superpipeline".

Fet1, fet2, dec1, dec2, wrt1, wrt2
 Fet1, fet2, dec1, dec2, wrt1, wrt2

223

Superscalar

To increase performance further we need to issue more than one instruction per

clock. This is called "superscalar". It relies on the instruction-level-parallelism

(ILP). As the number of simulateneous instructions in the pipeline increase, the

stall becomes very costly. Several techniques were invented to reduce the

number of stall cycles, for example branch prediction, out-of-order execution,

and speculative execution. It is becoming more difficult in extracting the

instructions that can be executed concurrently from programs.

Fetch, decode, execute, writeback
Fetch, decode, execute, writeback
 Fetch, decode, execute, writeback
 Fetch, decode, execute, writeback

Of course, the combination such as superpipe-superscalar is possible.

Fet1, fet2, dec1, dec2, wrt1, wrt2
Fet1, fet2, dec1, dec2, wrt1, wrt2
 Fet1, fet2, dec1, dec2, wrt1, wrt2
 Fet1, fet2, dec1, dec2, wrt1, wrt2

Summary

The evolution from a non-overlap execution (sequential) machine to an

overlapped execution (pipeline) machine was the first step. The pipeline

technique can be used for instruction execution or for complex instruction (such

as floating-point) execution that required multi-cycle in the pipeline. The CPI for

a pipelined machine approaches one. Multiple functional units are used to allow

concurrent execution of instructions. Scoreboard and Tomasulo methods are

hardware technique that enable dynamic execution in which instructions can be

rearranged by hardware to execute according to the resource availability. The

superpipeline machine has CPI equals 1.0 with a high clock rate. The superscalar

has CPI less than 1.0. Another class of machine is vector machines. Vector

machines reduce fetch time and increase effective pipeline using the data-level-

parallelism (DLP) but its use is restricted to the class of program that fits to

vector computation. With this background in mind, now we start to look into the

future.

224

Driving factors

In 2010 the microelectronics industry will be able to manufacture 800 Million

transistors processors with thousands of pins for 1,000 bit-bus and with the clock

speed over 200 GHz. The device will consume around 180 W of power. The

current trend is that the on-chip wires are becoming much slower than logic gates

as the device size getting smaller. It will be impossible to maintain one global

clock over the entire chip.

The hardware alone will not be able to extract more parallelism from programs.

A new compiler technology is required to extract parallelism from code. The

present workloads are becoming more multimedia-centric and will continue to be

so in the future. The design and manufacturing of complex devices such as one-

billion transistor processor will be a challenging task for engineers. Verifying

that the design works correctly and testing each chip now consume 40-50% of

Intel chip's design cost. The architecture that simplifies this process will have a

great impact.

Multimedia workloads

The multimedia workload is different from the traditional workload of the past

[DIE97]. The characteristics of multimedia are as follows. It requires real-time

response, the data streams are continuous. It is fine-grained data parallelism, and

the workload is multitask. Finally, multimedia workload requires very high

memory bandwidth.

All signal processing and graphics applications have inherent data parallelism.

Input data streams are large amount of small data elements such as pixels,

vertices and signal values. These data frequently need identical processing such

as filtering and transformations. Vector units with wide data path would achieve

significant speed up for such workloads. Because input data are streams, cache

performance will suffered from poor locality of data. Data prefetch and cache

bypass schemes become more important.

General purpose processors have been enhanced with special functional units to

support multimedia, for example Intel's MMX, Sun's VIS for SPARC, Silicon

Graphic's MDMX for MIPS, Digital's MVI for Alpha, and Hewlett-Packard's

MAX2 for PA-RISC. The future architecture will provide similar functional

units to handle multimedia workloads.

225

Proposals for future architectures

We review seven proposals that aim to make full use of one billion transistors on

a chip. They range from evolutionary designs, which emphasise software

compatibility and retaining the current programming model, to revolutionary

architecture that break away from current practices. The more traditional designs

employ some recent advance concept such as trace cache and multiple branch

predictors to improve the performance of instruction issued. The non-

conventional designs rely on the combination of compiler and hardware to extract

more parallelism from programs.

To deliver a large number of instructions to the execution units, the first three

proposals rely on a common technique, the trace cache [ROT96]. The second

technique that will have impact on the future architecture is the use of hybrid

branch prediction. The current branch predictor is capable of 97% accuracy but

the remaining misprediction still incurs a large performance penalty. A

multicomponent hybrid predictor such as Multi-Hybrid [EVE96] can achieve

nearly 100% prediction accuracy.

Trace cache

The trace cache is an instruction cache. Its main purpose is to fetch pass a taken

branch. It stores logically continuous instructions in physically continuous

storage. A cache line stores a segment of the dynamic instruction trace  up to an

issue width  across multiple taken branches. Instruction fetch hardware

unwinds programs into traces, each of which may have 8-32 instructions as well

as predicted conditional branches. The traces are placed in a trace cache and the

fetch unit subsequently reads traces from the trace cache. A single entry in the

trace cache holds an entire trace. The trace cache is access using the starting

address of the next block of instructions combined with predicted information

returned by the trace predictor. An entire trace consisting of multiple basic blocks

is fetched in one cycle. The fill unit attempts to maximise the size of segments

by coalescing instructions from multiple cycles. Figure 12.1 shows the

organisation of a trace cache.

226

Figure 12.1 the organisation of a trace cache

Figure 12.2 shows the gain of a trace cache versus an instruction cache for three

largest applications from SPECint95 benchmarks: go, gcc, and vortex. Assume a

16-wide issue processor with perfect branch prediction. The trace cache is more

effective and the gain increased as the size of cache is increased.

0

2

4

6

8

64 128 256 512

Cache sizes (Kbytes)

In
s
tr

u
c
ti
o

n
 p

e
r

c
y
c
le

I cache

Trace cache

Figure 12.2 the effect of trace cache continue to gain when the size is increased

227

Hybrid branch prediction

The multi-hybrid branch predictor uses multiple separate branch predictors. Each

predictor is tuned to different class of branch. This solves the problem of

sensitivity versus accuracy. A large predictor takes more time to react to changes

in a program. A small predictor can react quickly but is not very accurate. The

Multi-Hybrid [EVE96] uses a set of selection counters for each entry in the

branch target buffer keeping track of the predictor currently most accurate for

each branch and then using the prediction from that predictor for that branch.

Figure 12.3 shows the nearly 100% accuracy of the Multi-Hybrid on SPECint95.

0
0.01
0.02
0.03
0.04
0.05
0.06

16 32 64 128 256
Predictor size (Kbytes)

M
is

p
re

d
ic

ti
o
n

 r
a
te

Figure 12.3 Misprediction rate of Multi-Hybrid for SPECint95

Advanced superscalar

An advanced superscalar processor is a scale up of the current design to issue 16-

32 instructions per cycle [PAP97]. The first difficulty is in instruction delivery,

an advanced superscalar processor uses the trace cache and a hybrid branch

predictor to deliver sufficient number of instructions to the execution units.

The second difficulty is the memory bandwidth and latency. A 16-wide issue will

need to execute about eight load/stores per cycle. Instead of using a large

monolithic, multiported, first-level cache which will have large cycle time, a

228

number of smaller replicated first-level caches will provide the require ports with

fast cycle time. A large second-level cache is also on-chip.

Figure 12.4 an advanced superscalar processor

The execution units comprising 24 to 48 pipelined functional units with large

reservation stations having the capacity of 2000 or more instructions will be able

to execute 16-32 instruction per cycle. Figure 12.5 shows the available ILP of

SPECint95 benchmarks with an instruction window of 2000 instructions while

varying issue/execution widths. Assuming a perfect cache and perfect branch

prediction.

0

5

10

15

8 16 24 32
Issue/execution width (instructions)

In
s
tr

u
c
ti
o

n
 p

e
r

c
y
c
le

Figure 12.5 the available parallelism with a instruction window of size 2000.

229

Superspeculative

A superspeculative processor enhances the wide issue superscalar performance

using speculative at every point in the pipeline [LIP97]. The instruction execution

has four phases: fetch, decode, execute, and commit. The architecture employs a

wide range of speculative technique to improve the throughput of instruction

flow, register dataflow, and memory dataflow.

To improve the instruction flow, a trace cache is used. The misprediction is

reduced using two-phase branch predictor with a local history and a global

branch history [MCF93]. Multiple branches are predicted in each cycle.

Register dataflow affects the processing of ALU instructions. The dependence

prediction can resolve inter-instruction dependency. This technique predicts the

dependence between instructions and speculatively allowing instructions that are

predicted to be data ready to execute in parallel with exact dependency checking.

The source operand value prediction eliminates true data dependency. This

technique uses dynamic-value history, stored per static program instruction, to

predict future values of that instruction's source operands.

Figure 12.6 an organisation of a superspeculative processor

230

To improve memory dataflow the average memory latency is minimised using

load value prediction. This technique uses per-static-load value history to predict

future values.

The performance of a superspeculative processor is evaluated using a processor

with 32-issue, 128-entry reorder buffer, 64K byte 4-way set associative D cache

and I cache, a perfect second-level cache, and a 128-entry fully associative store

queue. Figure 12.7 shows the cumulative gain of the superspeculative IPC

(instruction per cycle) beyond a superscalar.

The result demonstrates that superspeculative techniques provide impressive

performance, without them a very wide superscalar does not scaled to improve

the level of performance.

0

5

10

15

go

m
88

ks
im gc

c

co
m

pr
es

s li
ije

g
pe

rl

vo
rte

x

ha
rm

on
ic

S
u

s
ta

in
e

d
 i
n

s
tr

u
c
ti
o

n
 p

e
r

c
y
c
le

Superscalar Additional by Superflow

Figure 12.7 additional performance of a superspeculative over a superscalar

Trace processors

A trace processor [SMI97] breaks programs into dynamic sequences of

instructions, called traces, and uses multiple processing elements to execute

multiple traces. A trace processor can execute ordinary serial programs written

in a standard language. A high-level control unit partitions the instruction stream

231

into traces. The processor fetches and executes traces as a unit using a trace

cache. Each processing element issues four instruction per cycle, a four-element

system can achieve a performance of 16 instructions per cycle. (Fig. 12.8)

Figure 12.8 a trace processor

Simultaneous multithreading

A simultaneous multithread processor (SMT) [EGG97] exploits all types of

parallelism. It consumes both instruction-level (ILP) and thread-level parallelism

(TLP). The TLP can come from either multithreaded, parallel programs or

individual, programs in a multiprogramming workload. More instructions are

extracted from TLP to fill the pipeline. It combines wide issue superscalar

processors (similar to MIPS R10000) with multithreading. The processor can

hold the hardware state (registers, PC and so on) for several threads at once. It

can issue multiple instructions form multiple threads in each cycle.

The fetch unit has eight program counters, one for each thread context. On each

cycle, it selects two different threads and fetches eight instructions from each

thread. This increases the probability of fetching only useful instructions. It then

chooses a subset of these instructions for decoding. This scheme performs 10%

232

better than fetching from one thread alone. The thread selection uses the

instruction count feedback technique, which gives highest priority to the threads

with the fewest instruction in the decode, renaming, and queue pipeline stages.

A SMT processor has an eight instruction fetch/decode width, six integer units,

four floating-point units, 32-entry integer and floating-point dispatch queues,

hardware context for eight threads, 100 integer renaming registers, 100 floating-

point renaming registers, and retirement up to 12 instruction per cycle.

Figure 12.9 a simultaneous multithread processor

To evaluate the performance, the SMT is compared with a four-processor

multiprocessor system running parallel workloads. Each processor in the four-

processor system contains approximately one-fourth of SMT's chip resources.

The benchmark is the parallel applications from SPEC95 and Splash2 suites. The

result is shown in Figure 12.10.

The SMT obtained better speedup than the multiprocessors. Speedups of the

multiprocessors were hindered by the fixed partitioning of their hardware

resources across processors. Using both instruction-level-parallelism and thread-

level-parallelism, a simultaneous multithread processor uses functional units

more effectively. It achieves greater instruction throughput and programs speed

up on multiprogramming and parallel workloads.

233

0

2

4

6

8

1 2 4 8

Number of threads

IP
C

MP4

SMT

Figure 12.10 instruction throughput of SMT and MP4 on parallel workloads.

Chip multiprocessors (CMP)

A chip multiprocessor (CMP) [HAM97] has a number of duplicated processors

(4-16) on a chip and run parallel programs. In addition to loop-level-parallelism

and thread-level-parallelism, a CMP exploits a third form of very coarse-

grain

234

Figure 12.11 a chip multiprocessor

parallelism, process-level-parallelism. The form of parallelism comes from

independent applications running in independent processes.

Because of the interconnect delay, the layout of a billion-transistor chip will

significantly affect the processor architecture. A CPU will be built out of several

small, high-speed logic blocks connected by longer, slower wire that are used

infrequently. A CMP processor composed of 8 small 2-issue superscalar

processors with 16 16K byte caches. Eight cores are independent. The small

cache and tight connection allows single cycle access.

To maximise CMP performance, programmers must find thread-level-

parallelism. The CMP has been evaluated against a single 2-issue processor

running SPEC95 and multiprograms. The multiprogram is an integer

multiprogramming workload. All of them are computation intensive and run as a

separate process. This benchmark has a large amount of process-level-

parallelism. The result is reported in Figure 12.12.

0

2

4
6

8

10

co
m

pr
es

s

m
pe

g

to
m

ca
tv

m
ul
tip

ro
gr

am

S
P

E
C

9
5

Figure 12.12 CMP performance relative to a superscalar

Among many alternatives, a multiprocessor on a chip will be easiest to

implement. A CMP processor offers superior performance using relatively

simple hardware. On code that can be parallelised into multiple threads, the

CMP core will perform as well as or better than more complicated wide issue

superscalar on cycle-per-cycle basis.

235

Intelligent RAM

The intelligent RAM [PAT97] merges a high-performance processor and DRAM

main memory on a single chip to lower memory latency, increase memory

bandwidth, and improve energy efficiency. The processor and memory speed

gap has been widening steadily as processor performance increasing at the rate of

60% per year while memory latency in improving at only 7% per year. Large

amount of chip area is devoted to cache memory to bridge this gap. For example,

caches occupy almost half of the die area in Alpha 21164. IRAM approach uses

on-chip resources for DRAM.

This on-chip memory can be treated as main memory. It supports high

bandwidth and low latency using a wide interface. Using on-chip main memory

also reduces the number of pins for memory interface off-chip. An architecture

that is a natural match to IRAM is vector processors. The combination of vector

units with a scalar processor creates a general-purpose architecture. Vector units

have many applications including scientific calculation, multimedia, and

databases. Because of the simplicity of their circuits, vector units can operate at

higher clock speed and also provide higher energy efficiency.

Figure 12.13 organisation of an IRAM vector processor

Assume the feature size of 0.13 um and a die area of 400 mm2, a full size DRAM

die with a quarter of area dedicated to logic. A vector IRAM processor includes

236

the following: the vector unit consisted of 64-bit floating-point add, multiply, and

divide; integer operations; load/store; and multimedia operations, running at

1GHz, 32 64-element vector registers, and sixteen 1024-bit-wide memory ports.

The peak performance is 16 GFLOPS at 64-bit per operation. The on-chip

memory has a capacity of 96 Mbytes, assuming a pipelined synchronous DRAM

interface with 20-ns latency and a 4-ns cycle time, the bandwidth will be

adequate for 192 Gbytes/sec to feed vector units.

Merging a microprocessor and DRAM on a chip has the following advantages: a

reduction in latency by a factor of 5 to 10, an increase in bandwidth by a factor of

50 to 100, an advantage in energy efficiency of a factor of 2 to 4.

RAW

RAW is a highly parallel architecture consists of hundreds of simple processors

connected through a reconfigurable logic [WAI97]. It eliminates the traditional

instruction set interface and exposed the simple replicated architecture directly to

the compiler. This allows the compiler to customise the hardware to each

application.

A RAW processor is a set of interconnected tiles, each of which contains

instruction and data memory, an ALU, registers, configurable logic, and a

programmable switch for routing the message between tiles. It allows

communication with short latencies, similar to register access. Each tile can use

configurable logic to construct operations suited to a particular application.

Static RAM distributed across tiles eliminates the memory bandwidth bottleneck

and provides short latency.

One billion-transistor die could carry 128 tiles, each has 16 K bytes instruction

memory, 16 K bytes switch instruction memory, 32 K bytes first-level data

memory. The memory is SRAM type and backed by 128 K bytes DRAM. Each

tile has 2 M transistors for a pipelined processor (a R2000 equivalent CPU),

floating-point units and configurable logic. Interconnect consumes 30% of chip

area.

237

Figure 12.14 organisation of a RAW processor

Software implements operations such as register renaming, instruction

scheduling, and dependency checking. Compilers can schedule single word data

transfer and exploit ILP. A RAW architecture implements wide-word arithmetic,

and multiple-bit or byte-level operations in each tile. Software can select the data

path width. The processor can perform bit-level applications such as logic

simulators and byte-level applications such as graphics with high degree of

parallelism.

The compilation process maps programs to RAW hardware. It composed of

partitioning, placement, routing, scheduling and configuration selection.

Partitioning aims to find fine-grain ILP. Placement maps threads to physical

tiles. Routing and scheduling allocate physical network resources and produce a

program for each tile switch. Configuration selection replaces each compound

operation by a call to an appropriate custom instruction. Compiler invokes a

logic synthesis tool to translate a custom operation into the configurable logic.

A prototype using FPGA technology running at 25 MHz. It uses static schedule

and hardwired control. Table xy compares the prototype with all software

executing of a 2.82 SPECint95 SparcStation 20/71. The compilation step of the

RAW prototype is very expensive requiring several hours on 10 workstations.

The prototype achieves 10-1000 speedup over the commercial processor.

238

Table 12.1 Hardware prototype 25 MHz (Xilinx 4013) compares to
software executing on 2.82 SPECint95 SparcStation (Sparc 20/71)

 Benchmark data width (bits) no. of elements speed up over sw

 binary heap 32 15 1.26

 bubble sort 32 64 7

 DES encryption 64 4 7

 integer FFT 3 4 9

 Jacobi 16x16 8 256 230

 Jacobi 32 x 64 8 2048 1562

 Conway's life 64 x 16 1 1024 597

 Conway's life 64 x 64 1 4096 1758

 integer matrix multiply 16 16 90

 merge sort 32 14 2.6

 n queens 1 16 3.96

 single-source shortest path 16 16 10

 multiplicative shortest path 16 16 14

 transitive closure 1 512 398

Conclusion

The rate of progress is very fast. It is interesting to explore the trends that will

affect future architectures and the space of these architectures. Future processors

will have large on-chip memory. The level-two cache will be the norm. Large

amount of on-chip transistors allows virtually anything to be implemented. The

limiting factor will likely be the imagination of the architect.

References

[DIE97] Diefendorff, K., and Dubey, P., "How multimedia workloads will

change processor design", Computer, September 1997, pp. 43-45.

[EGG97] Eggers, E., Emer, J., Levy, H., Lo, J., Stamm, R., Tullsen, D.,

"Simultaneous Multithreading: a platform for next-generation processors,"

IEEE Micro Sept./Oct. 1997, pp.12-19.

[EVE96] Evers, M., Chang, P., and Patt, Y., "Using hybrid branch predictors to

improve prediction accuracy in the presence of context switches," Proc. 23rd

Ann. Int. Sym. Computer Architecture, ACM Press, NY., 1996, pp.3-11.

239

[HAM97] Hammond, L., Nayfeh, B., Olukotun, K., "A single chip

multiprocessor," Computer, September, 1997, pp.79-85.

[LIP97] Lipasti, M., and Shen, J., "Superspeculative microarchitecture for

beyond AD 2000," Computer, September, 1997, pp.59-66.

[MCF93] McFarling, S., "Combining branch predictor, Tech. Rep. TN-36,

Digital Equipment Corp., Maynard, Mass., 1993, http:// www. research.

digital. com/ wrl/ home.html

[PAT97] Patterson, D., Anderson, T., Cardwell, N., Fromm, R., Keeton, K.,

Kozyrakis, C., Thomas, R., and Yelick, K., "A case for intelligent RAM,"

IEEE Micro, Mar./Apr., 1997, pp.34-44.

[PAP97] Patt, Y., Patel, S., Evers, M., Friendly, D., and Stark, J., "One billion

transistors, one uniprocessor, one chip," Computer, September, 1997, pp.51-

57.

[ROT96] Rotenberg, E., Bennett, S., and Smith, J., "Trace cache: a low latency

approach to high bandwidth instruction fetching," Proc. 29th Ann.

ACM/IEEE Int. Sym. on Microarchitecture, IEEE CS Press, 1996, pp.24-34.

[SMI97] Smith, J., and Vajapeyam, S., "Trace processors: moving to fourth-

generation microarchitectures," Computer, September, 1997, pp.68-74.

[WAI97] Waingold, E., Taylor, M., Srikrishna, D., Sarkar, V., Lee, W., Lee, V.,

Kim, J., Frank, M., Finch, P, Barua, R., Babb, J., Amarasinghe, S., and

Agarwal, A., "Baring it all to software: RAW machines", Computer,

September, 1997, pp. 86-93.

240

241

Appendix A

Projects in computer architecture

Problem definition

The objective is to design or modify a machine and run one or two benchmark

programs on its simulator and report its performance (CPI). Basically what you

have to do is to "design" a machine, i.e. its instruction set and its behaviour

(microstep). You must modify or write a simulator and run some benchmark

programs chosen from the Stanford integer benchmark suite. If you cannot make

the simulation to work you can submit your design and simulate it by hand.

There are 15 problems ranging from creative to mechanistic process. The reward

will be proportional to the "quality" of the solution and the "difficulty" of the

chosen problem.

Project list

1. Superscalar S1 with 2 ALUs

Add extra ALU to S1. You can use non-pipe or pipe version. Invent a way to

issue two instructions at the same time when possible.

2. LIW version of S1

Redesign S1 to have LIW capability. You have to determine what kind of

additional functional units you want to add to improve the performance (depend

on your benchmark programs).

242

3. S1 with Scoreboard

Assume S1 has multifunctional units : FPmult1, FPmult2, FPadd, FPdiv, Integer.

Simulate Scoreboard running this program :
LF F6,34(R2)
LF F2,45(R3)
MULTF F0,F2,F4
SUBF F8,F6,F2
DIVF F10,F0,F6
ADDF F6,F8,F2

4. S1 with Tomasulo

Assume S1 has FP adder, FP multiplier, with 3 and 2 reservation stations, Load

buffer, Store buffer with 6 and 3 entries. Simulate S1 with Tomasulo running this

program:
LF F6,34(R2)
LF F2,45(R3)
MULTF F0,F2,F4
SUBF F8,F6,F2
DIVF F10,F0,F6
ADDF F6,F8,F2

5. S1p with branch prediction

Add branch prediction capability to S1 pipe. You have to decide the method to do

branch prediction, branch-target buffer.

6. S1p with delay branch

Add delay branch capability to S1 pipe. Examine your benchmark programs.

How many delay slot can be usefully filled?

7. Stack machine ISA

Design a stack machine, its instruction set must be stack oriented (no register!).

Have a look at my research paper which I designed a stack machine

http://www.cp.eng.chula.ac.th/faculty/pjw/r1/R1.htm

http://www.cp.eng.chula.ac.th/faculty/pjw/r1/R1.htm

243

at the section "intermediate code specification". You can also have a look at Java

chip called PicoJava at http:// www.cp.eng.chula.ac.th/ faculty/ pjw/ teaching/ ca/

JavaVM/ picojava.pdf

8. Minimum instruction set CPU

Design a processor with minimum number of instructions. It must be able to run

at least a benchmark program completely (that is, it must have enough instruction

to implement a benchmark program). You should not worry too much about the

ISA being absolute minimum, however you should try to make its ISA as small

as you can.

9. Fastest Matrix Multiplication S1

Modify S1 such that it can run Matmul.c fastest. There are many ways to do this,

you can modify the instruction set (add some special instruction) or add

functional units or modify organization (such as two pipelines).

10. Comparing S1 with 2, 3, 4 pipeline stages

Design S1 with 2, 3, 4 stages pipeline. Compare its performance with S1p which

has 5 stages pipe. Please note that in this case one stage of the pipeline will take

several clocks to be completed.

11. S1 microprogram with 2 formats microprogram

Modify S1m to use 2 formats microprogram to shorten the width of a

microprogram word. After observing that ALU functions, Memory control, are

never activated at the same time as Bus transfer (Dest, Src, SelR), the following

formats are suggested :

Format 1  Bus transfer

First bit is 0 , Dest : 5, Src : 6, SelR : 3, Cond : 4, Goto : 5 , total = 24 bits

Format 2  ALU and Memory control

First bit is 1, Sel2R : 1, ALU : 4, Mctl : 2, PC+1 : 1, undef : 6, Cond : 4, Goto

: 5, total = 24 bits

244

This format reduces the width from 31 bits to 24 bits without performance

penalty. Sel2R is a control bit to select 2 registers for ALU input. All the rest are

similar to S1m.

Write a new microprogram using this narrower microprogram word. Write

simulator to run it. Run a benchmark program under this new simulator.

Remember that the machine code (object code) doesn't change at all running

under this new simulator or the original S1.

(Read Stalling's text book for an example of two-format microprogram)

12. Using microprogram as instructions directly.

Consider that there is no "instruction set", no program counter (but microprogram

counter), no instruction fetch in the normal sense. Your machine and "program"

is the microprogram itself. You have to add some fields into microprogram

word such as : R0, R1, R2, ADS which hold the appropriate values. Can you

pipeline this machine? (pipeline execution of the microprogram).

13. Add Floating point instructions to S1

Add the following FP instruction to S1 : fadd, fmult, fdiv. The FP number

in your design is a 32 bits word and a set of FP register (32 bits) is needed. In

writing the simulator you don't have to do IEEE Floating point arithmetic

yourself. You can use data type in C to do it for you, i.e. you can multiply,

divide, add the floating point number in C.

Benchmark programs (choose one)

1. running the program to find square root.

Using NewtonRaphson, or so called "successive approximation" method.

Let x be a guess square root of a then

x n+1 = 0.5 (xn + a/xn)

Iterate this 7 times and the precision will always be better than 24 bits.

2. evaluate sin x

sin x = x - x3/3! + x5/5! - x7/7! + ...

using only four terms (not very accurate), where x is expressed in radians and

maximum is pi/2.

245

14. Change S1 to 32 bits word

Design new ISA, instruction set, instruction formats. This machine is essentially

S1 with 32 bits instruction and data. You should add some new instructions to

make your machine run the benchmark program faster. Write its simulator and

run benchmark

15. Change S1 instruction set to 3 registers format

You must change ALL S1 instructions that are appropriate and add the

"immediate" value to some instruction. These are the example of immediate

instructions :

Immediate mode : addi, cmpi, inci, storeri.

addi r1,N r1 = r1 + N

Index mode : loadx, storex

loadrx (r1),r2,offset (r1)+ offset -> r2
storex r1,(r2),offset r1 -> (r2) + offset

Write microstep, modify simulator and run benchmark programs.

Benchmark Programs

The benchmark suite is Stanford Integer benchmark. They are a collection of

small interger programs supposed to test CPU integer performance. These

programs are suitable for students' excercise and are NOT realistic by today

standard: qsort.c, queen.c, sieve.c, hanoi.c, matmul.c, bubble.c, perm.c.

Stanford integer benchmark suite

bubble sort 100..1 to 1..100 global a[100], N=100

hanoi 5 disks from 1 to 3, global num[4], D = 5

matmul mul 10 x 10 matrix, global a[100], b[100], c[100] a = b  c

perm permute N, global val[4], id, N = 4

qsort quick sort 100..1 to 1..100, global a[100], N = 100

queen soln of all 8-queen, global Q,Z,D, col[8], d45[15], d135[15],

queen[8], soln, run find(0)

246

sieve find prime less than N, global p[1000], N = 1000, original N = 10000

but is too large for 16-bit applications.

How to do the project

1. You have to design an instruction set with enough instruction to execute

some benchmark program (no I/O).

2. You have to design "microarchitecture", i.e. the internal structure of a CPU

and write its "microstep".

3. A set of benchmark program (Stanford integer benchmark) written in C is

provided. To run a benchmark program you have to convert it to an assembly

level program (in the instruction set of your own design). You don't have to

run the whole program. You must choose some portion of programs to

measure your design. The most important portion that determine the runtime

of a program is its "innest loop". The benchmark should be taken from

several parts of high level program and should be at least 10-20 lines of

assembly code in total. Choose the benchmark that will illustrate the

capability of your design.

4. To validate (check that the design is correct) and evaluate (measure how fast

your processor is) the design, you can either :

4.1. Write (modify) a simulator and run the benchmark programs to count

the number of clocks required to complete the tasks (you will earn extra

bonus for doing the simulation) or

4.2. Estimate the number of clocks by hand. You need to make sure that you

count the right thing.

5. You must hand in a report containing the following sections :

5.1. Motivation behind your design (why you did it that way).

5.2. Instruction set details : opcode, opcode format, number of clock required

by each instruction.

5.3. Microarchitecture and its microstep.

5.4. Your benchmark program (in your assembly language) and why you

choose this particular part of the program. Programs should be well

commented so that I can read and understand what it does.

5.5. How you validate and evaluate your design.

5.6. Performance of your design (Cycle Per Instruction)

5.7. Conclusion, what you learn from this project.

247

How I evaluate your project

I will look for the "quality" of your work including:

 the innovative idea and/or well thought out solution

 the correct understanding of the concept that you applied

 the completeness of your work, correctness of the result

Any question regarding the project, please contact me promptly.

248

249

Appendix B

How to do a paper

In this assignment, students learn how to acquire additional knowledge from the

current academic literature. The list of recommended articles are posted and

students choose to do one of them. These articles come from the current research

work in the conference proceedings or the journals. They contain the advanced

information not appear in a normal textbook. Students are expected to read and

summarise, then present it to the class and finally submit written reports.

Requirements

You have to submit

1. You report summarising the paper. You can write in either English or

Thai. Please write in your own words. I will not accept the style of "cut

and paste" from the original paper. I will look for the following point :

 Can you get the main point of the paper (hint: main point always

state in the abstract). If you can, do you explain it correctly? This is

asking you "what" about the paper.

 Can you get the motivation behind the paper. This is asking you

"why" this paper.

 Can you explain "how" they experiment/propose their idea.

2. You must attach a copy of the original paper with your report. I need it to

check your writing/ understanding of the paper.

Everyone has to prepare a 8-minute presentation. I will choose around 8 papers

for presentation on spot. Please prepare to present your summary using around 4-

5 transparencies.

250

Assessment

I will judge the paper along these aspects :

 Correct understanding of the concept in the paper.

 Quality of your writing : completeness, easy to understand, clarity of the

issue etc.

 Quality of your report. (but don't spend too much time in making the

report looks "superb", it is the "content" that is important).

Don't just translate English to Thai. Write in your own words! Make the central

issue clear. Don't write 40 pages to explain 6 pages of the original English.

Tips how to give a good talk

 Presenting what you understand. Your friends will be more likely to

appreciate a talk that they understand which mean the presenter must

understand the subject first.

 Don't just summarize the paper. It will not be convincing. You need to

present some evidence for what you are claiming, such as, the processor

X is very good because it is very fast, now, show me the benchmark

result for this processor. Therefore, present some hard fact that included

in the full paper.

 Talk about what you think about that paper. This is your opinion. The

audience like to hear opinion and give them something to discuss.

 Prepare your slide. A big, easy to see, clear layout, slide will relieve the

eyes strain of your friends. Remember they all have to sit through 8

papers!

