A Genetic Algorithm Approach to Software Components Search using
Software Functional Requirement Checklist

Wiwat Vatanawood' and Prabhas Chongstitvatana®
Department of Computer Engineering
Faculty of Engineering, Chulalongkorn University, Bangkok 10330 Thailand
Email: wiwat@chula.ac.th', prabhas@chula.ac.th®

Abstract

In this paper, we present genetic algorithm for software components searching at the
early stage of conceptual design. We propose an alternative to convert software functional
requirements checklist, a mandatory checklist in software requirements specification
document produced by software analyst, into a set of computational operations which is
needed as the key to search for software component candidates from component libraries.
Moreover, component searching is practically performed to select not only the most relevant
candidate but also several feasible sets of component candidates that are capable to satisfy all
expected operations.

In our approach, it is considered as an optimization problem to search a set of software
component candidates that is most fit to given constraints. To consider at least N software
components and at least 7" operations expected to satisfy the functional requirements of an
application, the component search space is exponential. In our experiments with synthetic
data, we investigated the case of N =250 and 7' = 250. The results demonstrated that genetic
algorithm is applicable and produces a set of solutions along with the order of merit.

1. Introduction

Demands for higher software production and lower maintenance cost with expected
quality can be met by reusing approval existing software components. Reuse technique is
widely accepted, especially for complex and large-scale software applications. Recently, a
brand new software development process called Component-Based Software Development
(CBSD) is introduced, mentioned in [1,2]. In CBSD, software analysis and design phase in
software development life cycle become more critical since a software application is expected
to be constructed by set of existing software components and their interconnections without
writing program code from scratch. In practical, the number of software components
tentatively increases as time goes by and large numbers of software components are desirable
in order to provide software designer with variety of possible choices. However, it is very
difficult and highly time-consumed to search a relevant set of expected components and their
substitutes from a large number of existing components.

In this paper, we present genetic algorithm for software components searching at the
early stage of conceptual design. We propose an alternative to convert software functional
requirements checklist, a mandatory checklist in software requirements specification
document produced by software analyst, into a set of computational operations which is
needed as the key to search for software component candidates from component libraries.
Firstly, each of software functional requirements is decomposed into a set of preconditions
and associated actions — using decision table technique. Secondly, all of the actions
decomposed are converted into a set of computational operations using Action-to-Operation

mapping table. In general component libraries, a software component API is visible for
developers and described in terms of component’s operations, also called methods, and their
interface parameters. Thus, component searching is practically performed to select not only
the most relevant candidate but also several feasible sets of component candidates that are
capable to satisfy all expected operations. All of the entries in software functional
requirements are implicitly satisfied and make software development efforts more predictable
at the early stage of conceptual design before proceeding its implementation.

In our approach, it is considered as an optimization problem to search a set of software
component candidates that is most fit to given constraints - minimum cost and development
efforts. This paper is organized as follow: Section 2 briefly describes software functional
requirements and how to define preconditions and associated actions in decision table.
Section 3 defines Action-to-Operation and Component-to-Operation mapping tables. The
experimentation on searching software component candidates using genetic algorithm is
reported in section 4. Section 5 is our conclusion.

2. Software Functional Requirements Checklist

In general, software requirements specification document (SRS) is expected to be complete
before pursuing software design phase. Each functional behavior of target software
application is collected from end-users and documented. In our approach, software functional
requirement checklist, which is a mandatory section in SRS, is exploited. Each of functional
requirements is written in either English language or Thai language is considered as a rule in
decision table, shown in figure 1. [3] mentions decision table as a perfect tool to describe a
complicate event happened. Software analyst may use decision table to identify a set of
required associated actions to satisfy specified any combination of defined preconditions
happened in the software system. With this alternative of describing, the requirement
specifications are unambiguously defined.

To be formally, we can describe software functional requirement checklist by using a
decision table, as a set of rules (x,y) as follow:

Specification = { (x.y) : I1Precondition x I1Action | (Vx: I1Precondition;
yuy2: HActiono (x = y) A (X = y2) = y1=Yy2) }

where Specification is a set of many-to-one relations from power set of Precondition
to power set of Action; Precondition is a set of conditions which is valid in any particular time
and Action is a set of associated actions to be performed. For example, ({“class opens”, “a
new student registers”}, {“add student in the class”, “print class schedule”}) is a rule
describing how to enroll a student for a class, etc.

Considering specification rules defined, the possible number of rules is exponential.
Thus, it means a decision table is efficient enough to define a complicate specification rule.

However, it is still not simple to practically define preconditions and actions.

3. Define Mapping Table

All marked actions from specification rules, called target actions, are gathered and
used as keys to search target components. In our approach, both actions and components are
defined as a set of computational operations so that a set of software components is possibly

searchable as to perform all of operations needed in target actions for a software application.
Each action is mapped into a set of operation using Action-to-Operation mapping table,
shown in figure 2.

Given a set of computational operations called Operation, Action-to-Operation
(ActionTab) and Component-to-Operation (ComponentTab) mapping table, shown in figure 2
and 3, are formally defined as follow:

ActionTab = { (a,b) : Action x I1Operation | (Va: Action; by,by: I1Operation o
(a Hb])/\(a I—>b2) :>b1:b2)}
ComponentTab = { (c,d) : Component x I10peration | (Vc: Component,
di,dy: IOperation o (¢ = d) A(c > dy) =di=dy) }

where Component is a set of components to be selected. The mapping tables are
simply a set of many-to-one relations from either action or component to a set of operations.
Our approach for searching is to find a set of final components, called TargetComponent,
which perform all of target actions, called TargetAction. We further our formal descriptions as
follow:

TargetAction == \U(ran Specification)

TargetComponent = { ¢ : Component | (V¢c: Component; d,,d>: [10peration;
a: TargetAction © (¢ +—d;) € ComponentTab A
(a > dy) € ActionTab = Ud; =Ud,)}

Genetic Algorithm technique is used to search several TargetComponent sets with
minimum cost as final results. For any component c¢; and c, selected within the same set
TargetComponent, both components may provide the capability of performing the same
operation.

A N e aat
¥ ¥ @y N ¥
D D S S
TS ¥ &
Precondition 1 | X X X
Precondition 2 X X
Precondition 3 | X X X X
Precondition P X X
Action 1 X
Action 2 X X X
Action 3 X X X
Action A X X

Figure 1: An example of decision table.

> L L& L o
& & © S o
3 k) k) 3 k)
R X XXX R
Action 1 X X
Action 2 X X X
Action 3 X X X X X

Action A

Figure 2: An example of Action-to-Operation mapping table

> Qq/ ';) 'Qb‘ 06 0&/
NS S
3) Q Q 2
R RN, KX
Component 1 X X
Component 2 X X
Component 3 X X X X
Component N X | X X

Figure 3: An example of Component-to-Operation map table

4. Experiments and Results

In our experiments, genetic algorithm is expected to illustrate the ability of
components searching and propose the best target component set for software designer with
minimum estimated cost of efforts. However, since the capability of a component may vary,
we investigate the effect of both special-purpose components and multi-purpose components
to component search as well. Special-purpose and multi-purpose components are formally

defined as follow:

SpecialComponentTab = { (c,d) : Component x I1Operation | (V¢: Component; d;,dy:
[1Operation o (¢ = d) A(c>d) =>di=dy A#d<5) }

MultiComponentTab = { (c,d) : Component x I1Operation | (Vc: Component; d,,dy:
[1Operation o (¢ =>d)A(ct>d)=>di=dy A#d>5
A#d<10) }

where SpecialComponentTab and MultiComponentTab denote component mapping
tables and # denote the number of members in a set (Z notation in [4]).

Using genetic algorithms for searching, an objective function is required as to evaluate
the survival set of each generation. Our cost model defines an equation to calculate estimation
of cost of efforts. A set of components with minimum cost of efforts is the survivor.

Specification rules, components and operations are synthetically built — at least 250
components and 250 computational operations are expected.

4.1 Genetic Encoding

GA problems are typically encoded as an n-digit string that represents a complete
solution to the problem. In our experiments, a chromosome is composed of N tuples. Each
tuple is defined as three attributes: action, operation and component as (act; op; comp;).
Figure 4 shows a chromosome of N tuples.

| (actl, opl, compl) \ (act2, op2, comp2) | | (actN, opN, compN) \

Figure 4: Chromosome encoding as a stream of tuple (action, operation, component)

4.2 Genetic Parameters

In our experiments, we applied genetic parameters as shown in Table 1

Table 1: Genetic parameters being used in GA experiments

Parameter Value
Selection Strategy Tournament size 7
Mutation Strategy Change one gene

P, Probability of Crossover 1.0
P, Probability of Mutation 0.1
Population 5,000

Unlike the typical genetic algorithms, initial sets of chromosomes are randomly
generated with the possible solutions from SpecialComponentTab, MultiComponentTab, and
ActionTab defined earlier. Thus, each chromosome in any generation is always feasible
solution. During the experiments, the crossover and mutation techniques always preserve the
feasible chromosome as well.

4.3 Cost Model

We simply define a cost estimation function Cost, in terms of indirect efforts to be
used as follows:

Cost = z (C1(Component,) + C2(Component,) * (OccurCount(Component,) — 1))

Component,; €T arg eiComponent

where C/ and C2 calculate initial effort and modification effort respectively.
OccurCount returns the number of modification for each Component; . Figure 5 shows sample
of initial effort and modification effort for C/ and C2. We simply assume that initial effort of
reusing each component varies with the number of computational operations served, while
modification effort of each component is approximately one-third of initial effort.

Component Number of Initial effort for C/ | Modification effort for C2
Name Operations served (man-hour) (man-hour)
Component 1 5 25 8
Component 2 3 18 5
Component N 12 36 11

Figure 5: Sample of initial and modification effort of components

4.4 Conducting Experiments

We investigate 10 cases of Specification which are randomly generated with
experiments settings in table 2. Each action in Specification performs 1 to 5 operations.
Special-purpose and multi-purpose components are expected to serve 1 to 5 operations and 6
to 10 operations respectively. Special-purpose component is called fine-grain component that
is developed for special-purpose operations while multi-purpose component is called coarse-
grain component. Multi-purpose component is developed for multi-functional tasks and more

efforts are expected to reuse once.

Table 2: Experiments settings

Experiments Settings

Value

Specification rules

10 different synthetically built cases

Each action performs

1-15 operations

Each special-purpose component serves

1-5 operations

Each multi-purpose component serves

6-10 operations

Component’s initial cost of effort

10-1,000 man-hours

Component Library to be searched
(Special-purpose:Multi-purpose)

150:100

Table 3: Minimum cost of efforts purposed by GA

Spec. | Average Initial | Average Reuse | Average Total Actions

Cost Cost Cost expected
Case 1 22,953 38,328 61,281 848
Case 2 22,803 36,470 59,273 780
Case 3 20,840 30,105 50,945 690
Case 4 23,117 37,507 60,624 792
Case 5 25,229 42,197 67,426 870
Case 6 23,452 40,929 64,381 817
Case 7 21,505 33,439 54,944 775
Case 8 21,949 33,425 55,374 765
Case 9 24,579 41,783 66,362 883
Case 10 25,098 28,360 53,458 734

Cost of Efforts for each Generation of GA

140000 L\

120000 &
- A3
E 100000 A N
= AN ;jﬁ
= 80000 *—\—"L'a = —e—Case 1
:, ‘A. ey - M- Case?2
~ L N - — -t =C 3
S 60000 ~“'--ip,__‘__ T ———t———t . ,sz4
= Tk - e A - A -A— -A
S 40000
8
o

20000

0 T T T T T
0 100 200 300 400 500 600

Generation

Figure 6: GA shows the prediction of minimum cost of efforts for case 1 to 4

Minimum Cost of Efforts by GA

40,000+

Man-Hours

30,000 M Total Reuse Cost

@ Total Initial Cost

Figure 7: Cost of efforts by GA for 10 cases of specification rules

4.5 Results

As shown in the results in figure 6, genetic algorithm performs a remarkable software
component searching. The cost of efforts decreases and converges at a stable value in the

500" generation. Software designer is able to predict the minimum effort to be invested for
developing an application. As shown in table 3, cost of efforts is approximately 60,000 man-
hours for an application of size 800 operations. Cost of efforts on reusing selected
components is approximately 60% of total cost. GA illustrates the ability of selecting the
solutions from both Special ComponentTab and MultiComponentTab table.

5. Conclusions

As demonstrated in the experiments, software designer may formulate a searching
problem to select a set of relevant software components with any constraints required. This
approach provides several sets of target components for software architectural design rather
than only one best solution. Moreover, each target set of components is proposed in the order
of merit so that software designer is able to select any substitute and the search process is
repeatable with minimum efforts if any constraint or specification rule is adjusted. The
searching problem is applicable by simply using direct encoding method as experimented.
The results are satisfactory.

References

[1] P. Clements, “From Subroutines to Subsystems: Component-Based Software
Development”, American Programmer, November 1995

[2] D. Garlan, D. Perry, “Introduction to the Special Issue on Software Architecture”,
IEEE Transactions on Sofiware Engineering, April 1995

[3] J. FitzGerald, A. FizGerald. “Fundamentals of Systems Analysis: Using
Structured Analysis and Design Techniques”, John Wiley & Sons Inc., 1987

[4] J. Bowen. “Formal Specification & Documentation Using Z: A Case Study
Approach”, International Thomson Computer Press, 1996.

