An On-line Evolvable Hardware for
Learning Finite-State Machine

Chatchawit Aporntewan' and Prabhas Chongstitvatana?
Department of Computer Engineering, Faculty of Engineering,
Chulalongkorn University, Bangkok 10330, Thailand
Tel: (662) 218-6982, Fax: (662) 218-6955
E-mail: gd4lcap@cp.eng.chula.ac.th!, prabhas@chula.ac.th?

Abstract: The paper proposes an on-line evolvable hardware (EHW), called
mimetic EHW. The task is to mimic a sequential circuit by observing its partial
input/output sequences. The genetic algorithm (GA) is used to search for the
circuit satisfying input/output sequences collected from the target circuit. The
mimetic EHW consists of a custom microprocessor and a fitness evaluator. The
microprocessor is particularly designed for an execution of GA. The evaluator
acts as a coprocessor, accelerating the fitness evaluation which is a bottleneck
of GA. The microprocessor and the evaluator are designed using the Verilog
hardware description language (Verilog HDL), then realised on Xilinx XC4010
FPGAs. The result shows that, by using the state-of-the-art FPGA, the mi-
croprocessor combined with a parallel of 8 fitness evaluators could perform
36 times faster then the software version running on a conventional computer

(Pentium Pro with Linux OS).

Key words: Evolvable hardware, Genetic algorithm, Finite-state machine

1. Introduction

In previous work, the genetic algorithms (GA) was
used to search for the circuit (FSM) which satisfies
the input/output sequences collected from the tar-
get circuit. It can be shown that longer sequence
yields more chance to succeed in mimicking the tar-
get circuit [1]. However, only single long sequence
cannot produce the target circuit accurately. The
multiple input/output sequences were proposed to
improve the correctness percentage [2].

Due to the large number of sequences, the compu-
tational time is very extensive, especially the execu-
tion time taken by the fitness evaluation. An indi-
vidual, which represents a sequential circuit, is eval-
uated by executing random input sequences. The
resulting output sequences are compared to ones
collected from the target circuit. The fitness is de-
fined as the sum of similar output bits. It is clear
that to mimic a practical sequential circuit, we must
use a great number of long input/output sequences.
As a result, the evaluation time grows rapidly with
the size of circuit. Table 1 shows the percentage
of computational time used by fitness evaluation.
The evaluation time increases drastically with the
circuit size due to the large number of sequences
needed to yield high correctness percentage.

In order to realise a practical hardware which can
be used on-line, the GA process is migrated from
the workstation into a compact device such as FP-

GAs. A hardware evaluator is proposed to reduce
the evaluation time which is a major bottleneck of
GA. The reproduction and selection are performed
in a custom processor. The hardware evaluator exe-
cutes one input every clock cycle while the software,
because it simulates the finite-state machine, uses
many clocks to accomplish the task. As a result,
the hardware evaluator is very fast compared to
software. The evolvable hardware (EHW) is able to
infer a description of a deterministic finite-state ma-
chine from its input/output behaviour for a small
size of problem. In general, this problem is now
well established to be a hard computational prob-
lem, see for example [3]. With the ability to model
the environment, this is a step towards building a
system which can adapt to environmental changes.

The remaining sections are organised as follows.
Section 2 debates the hardware-based genetic algo-
rithms. Section 3 describes the parameters of ge-
netic algorithms that we use. Section 4 presents
the hardware organization. Section 5 discusses the
comparison of software and hardware implementa-
tion. Section 6 concludes the paper.

2. A Review of Hardware-based Ge-
netic Algorithms

Due to the extensive computation of genetic algo-
rithms, a myriad of hardware-based GAs has been
put forward. Here we cite only the more recent

Table 1: Percentage of evaluation time.

Circuit Number of | Number of | Sequence | Evaluation
States Sequences | Length Time
Serial Adder 2 10 100 6.8%
0101 Detector 4 100 100 39.2%
Modulo-4 Counter 4 100 100 38.7%
Reversible 8-counter 8 10,000 100 95.4%

works. Scott [4] introduced an implementation of
simple GA on FPGAs. The hardware-based GA
was tested on linear, quadratic, and cubic function-
s. In terms of clock cycles, the speedup achieved
is 2-3 orders of magnitude compared to software-
based GA running on Silicon Graphics 4D /440 with
four MIPS R3000 CPUs. Graham [5] used the S-
plash 2, a reconfigurable computer, to solve a 24-
city TSP. The machine was 1.6 orders of magni-
tude faster than software running on 125 MHz H-
P PA-RISC workstation measured in the absolute
time. Graham [6] subsequently analysed the dif-
ferent performance between hardware and software
versions of GA. It can be shown that the hardware
is more efficient because it employs the benefits
of fine-grained parallelism, custom address gener-
ation, and well-organised memory hierarchy. In ad-
dition, the random number generator, in software,
dominates the execution time of crossover and mu-
tation, and therefore only hardware contributed to
produce the random numbers can remarkably im-
prove the performance. Sitkoff [7] used the Arm-
strong IIT Machine to solve a 500-component chip
partitioning problem. Salami [8] investigated an
implementation of simple GA on FPGAs. The GA
processor was tested with De Jong test suites and
adaptive IIR filter. Shackleford [9] proposed a high-
performance genetic algorithm machine. Testing
with the set coverage problem indicates a 2,200
speedup over software on a 100 MHz workstation.
Higuchi [10] proposed an evolvable hardware chip
running steady-state GA. The steady-state GA is
preferable because it is more suitable for pipelining
than generational GA. The chip was applied to the
myoelectric artificial hand. The 62x speedup com-
pared to software running on Ultra Sparc 2 (200
MHz) was reported. The other application for the
evolvable hardware chip is to realise a boolean con-
troller of a mobile robot [11]. Yoshida [12] intro-
duced a VLSI implementation of genetic algorithm-
s. The prototype was simulated to optimise the
Royal-Road function. Multiple fitness evaluators
were used in parallel. In addition, the island mod-
el, distributed version of genetic algorithms, was
investigated.

Most of the cited works achieve their speedup be-
cause of pipelining and dedicated functions in hard-

ware that are customised to the problems. For ex-
ample, the hardware that performs evaluation, s-
election, crossover, and mutation in one clock. In
the best work, an individual is evaluated every clock
cycle.

Our design is different. We concentrate on the fit-
ness evaluation and employ a custom processor (en-
hanced with a random number generator) to per-
form GA functions. The processor is intended for
the selection process which is rather complicated.
With this aim, we hope to achieve a design that
is simple and effective to demonstrate the mimet-
ic behaviour, possibly on-line. With the empha-
size in the fitness evaluation, this work is similar
to [13] which uses FPGAs to “evaluate” 16-sorting
networks and achieves 46:1 speedup over 90MHz
Pentium.

3. Genetic Algorithms
We use a small population and a large number of
generations. The algorithm is presented as follows:

generation = 0;

Initialize P individuals;

While termination conditions not met Do
Produce Q individuals using crossover;
Produce R individuals using mutation;
Select P individuals from (P U Q U R);
generation =

End While

generation + 1;

The maximum number of generations was set at
50,000. The P,), and R were set at 128, 256,
128 respectively. The genetic operators — crossover,
mutation, and selection — are defined as follows:

e Crossover: select a pair of parents randomly
from P individuals to produce two offspring
using single point, crossover.

e Mutation: select a parent randomly from P
individuals. Then mutate it to produce an off-
spring with P,, = 0.01.

e Selection: select best P individuals from
(P U Q U R) individuals to the next genera-
tion using combined rank method (fitness rank
+ diversity rank).

3.1.

An individual represents a finite-state machine (FS-
M). The FSM consists of state transition table and
function mapping input and current state to out-
put. The FSM can be constructed as a lookup table
representing state transition and output function.
Thus the hardware implementation can be a simple
device such as Random Access Memory (RAM).

An individual is represented by concatenating the
next states and the outputs to form a fixed-length
binary string. Table 2 shows an example, the FSM
is encoded by concatenating the next state and the
output of all rows together as “00111100”. For re-
al world applications, the number of internal states
needed to produce a complete solution might be un-
known. We let the number of states of an individual
to be larger than the number of state in the target
circuit. The solution may contain redundant states
and unreachable states.

Encoding Scheme

Table 2: Example FSM

State | Input | Next State | Output
0 0 0 0
0 1 1 1
1 0 1 1
1 1 0 0
3.2. Selection

A variety of selection schemes were proposed for ef-
fective implementation in hardware. However, it is
unknown that those schemes perform effectively for
a wide range of problems. The premature conver-
gence arises when applying simple GA and steady-
state GA to our problem. Therefore the diversity
should be maintained in the selection process.

First, the elitist is selected. Then the remaining
individuals are ranked by fitness and ranked by di-
versity — the hamming distance from the selected
individuals. The best individual is selected from
the combined rank created by adding fitness rank
and diversity rank. The procedure is repeated P—1
times, where P is the population size.

3.3. Fitness Function

The input/output sequences, used in fitness evalu-
ation, are generated by the following steps:

1. given a target circuit
2. reset the circuit to start state
3. produce a random input sequence

4. feed the input sequence to the circuit and col-
lect the corresponding output sequence

5. repeat steps 2-4 for the next input/output se-
quences.

The fitness of an individual is evaluated by the fol-
lowing steps:

1. fitness, F, =0
2. reset the individual (circuit) to start state

3. feed a given input sequence to the individual
to get the corresponding output sequence

4. compare the corresponding output sequence
with the given output sequence, F = F +
number of similar output bits

5. repeat steps 2-4 for the
put/output sequences

remaining in-

4. Hardware Organization

4.1. Top-Level Design

The department of computer engineering provided
us plenty of prototyping boards for Xilinx XC4010
FPGAs. A prototyping board consisted of a small-
size FPGA permanently connected to an EEPROM
and a static RAM. There were four input/output
ports for connecting the FPGA to other devices.
Because the overall design was too large to syn-
thesise in one FPGA, it was necessary to split the
design into two parts: the microprocessor and the
fitness evaluator. The top-level design is shown in
Figure 1.

Microprocessor: The 16-bit, load/store architec-
ture microprocessor was used to execute the
GA. The processor was connected to a pro-
gram memory (EEPROM) and a data memory
(RAM). The processor was able to write data
to the BUFFER and start/stop the fitness e-
valuator (EV).

EEPROM(1): The (32k x 8-bit) EEPROM was
used as program memory storing the machine
code of GA. The object code was about 2k
bytes. The first 512 bytes were used to store
the constant values used by the program.

RAM: The (32k x 8-bit) RAM was used as data
memory storing a population, program vari-
ables, and CPU stack. The population was s-
tored at address 0x0000 upto 0xOFFF. The pro-
gram variables began at address 0x1000 up-
to 0x3FFF. The CPU stack began at address
0x3FFF downto 0x0000. Note that the CPU
stack possibly collided with the program vari-
ables.

BUFFER: The BUFFER was a dual-port mem-
ory used to stored an individual while it was
being evaluated. The processor wrote an indi-
vidual to the BUFFER, then started the EV
to evaluate the individual.

(15
< g
|a I___ 'g ‘?D ~
[oiiosjes ae 2 & & P &% m
TN b T 3
o 8
3 O N 2 ..
g -U — (0E]
| —1
g - C -
-, S
o B
E e -
B B i [0:vlippeTe
— - -r—g
™ i Py
[lozeees et D
E :Dl — O
z = s "..‘ . m
‘ " ST
\. (2] (1] "E
! k o |'s o
% -
[E}F o e
Y] U S =
- 2l
o \ =3 R
-n Bl N b o r—-\l
O . -
=| M g 3
a m \ g
5| \ E
- . S,
T % 3
= i . 2
N . E
% g— \\ a'
o m “
Sz .
A=R K= e
]
= e
- |7 A 3
— o
m |—— JT58) AS =
< =,
. [0:Lhoajes ™Al 2
by |0 |0 o
| | o S
o |w |- 3
B lalo 2
(S|P o
?3 > |3 S
=N EAR L
=3

%a)woadaa

Figure 1: To

EEPROM(2): The (32k x 8-bit) EEPROM was
used to stored the input/output sequences col-
lected from the target circuit. The maximum
size of input and output were set at 4 bits, and
thus the EEPROM was able to store 32k in-

p-level design.

put/output pairs.

EV: The evaluator was used to speedup the fit-

ness evaluation.
the input/output

The fitness evaluator used
sequences stored in the EEP-

ROM(2) to calculate the fitness of an individ-

Table 3: The instruction set.

Instruction | Opcode Description Clocks used
JEQ 0000 jump if equal 8
JNE 0001 jump if not equal 8
JGR 0010 jump if greater than 8
JLE 0011 jump if less than 8
JMP 0100 jump 8
JSR 0101 jump subroutine 10
CIJ 0110 compare, increment and jump 9
RES 0111 return subroutine 9
LDC 1000 load constant 9
LDD 1001 load direct 9
STD 1010 store direct 8
LDR 1011 load register 10
STR 1100 store register 9
LDX 1101 load x 10
STX 1110 store x 10
SEV 1111 0000 00 | start evaluator 7
REV 1111 0000 01 | stop evaluator 7
LFH 1111 0000 10 | load fitness 8
LFN 1111 0001 00 | load finish 8
HLT 1111 0001 01 | halt 7
SED 1111 0001 10 | seed 8
MOV 1111 0001 11 | move 10
CMP 1111 0010 00 | compare 8
CoM 1111 0010 01 | complement 9
SFL 1111 0010 10 | shift left 9
SFR 1111 0010 11 | shift right 9
PSH 1111 0011 00 | push 9
POP 1111 0011 01 | pop 9
POT 1111 0011 11 | port out 8
INC 1111 0100 00 | increment 9
DEC 1111 0100 01 | decrement 9
CLR 1111 0100 10 | clear 9
ADD 1111 0100 11 | add 9
AND 1111 0101 00 | and 9
ORR 1111 0101 01 | or 9
XO0R 1111 0101 10 | exclusive or 9
STI 1111 0110 00 | store individual 9
RND 1111 0110 01 | randomise 9
AD3 1111 111 add three 10

ual stored in the BUFFER.

4.2.

To demonstrate the feasibility of evolvable hard-
ware, we would like to design a system that can
be implemented on a limited resource. The proces-
sor which runs genetic algorithms and controls the
hardware evaluator is designed to meet this goal.

The Microprocessor

The 16-bit, load/store architecture microproces-
sor was customised to the execution of GA. At the
design stage, the number of registers was set at 8.
It was later reduced to 4 because the processor was
too large to be implemented in single FPGA. The

instruction set consisted of load/store instruction-
s and arithmetic instructions. The load/store in-
structions were used to performed loading and s-
toring data between data memory and registers.
The arithmetic instructions were used to performed
arithmetic operations between the registers, then
the result was stored in a register. The instruction
set was summarised in Table 3.

The first version of GA was written in C language
which can be executed and debugged on a conven-
tional workstation. Then the C version was man-
ually rewritten in assembly language. An assem-
bler for the microprocessor was implemented. The

sel rag_|oad
X _
1 , reg_outd r/;/.y
16 2 {
= | mux_out B | alu_out 16,
...r._.".“n mmﬁm ”V m e .
o . reqlout?
_ “ 16 ir_ena pe_enal,2 sSp_ana
\f % ir_Ioacl 2k po_made sp_mods
2 2 E\W ir_insir _ i qm_ m& nn loadd 2l sp_load
" reg_sell reg_sel2 : g ; _ _ + d
% . = L ir_rgn —s—=* _unl,_ _. sP | | LATCH(z) ~— 2_ena
| - LATCH(|I,
| |l_ CH{) F __
| i_addr 18 | T 1 T
| jdata 18 1
Bl L _ .—.
| |
T 71 load ——w
alk |m.1_ S m e, 08, 08, we Po.10ad = Port_Out
mim_mods —4=— MM B i _load
— = av_selact po_out
g addr 18, ﬁ
a_data] i
—

icroprocessor.

The m

Figure 2

high-level language compiler was not implemented
since it required a lot of time and the microproces-
sor was not intended for general purpose. Finally,
the assembly version was compiled to machine code
downloaded into an EEPROM on the prototyping
board.

The design of the microprocessor is shown in
Figure 2. The microprocessor consisted of the
following components: LATCH, REG, ALU, MUX,
IR, PC, SP, MIM, PORT OUT, CONTROL UNIT.

LATCH The latch was used to block a signal sen-
t to the bus. If the signal was blocked, the
output would be high impedance.

REG The register bank consisted of 4 16-bit reg-
isters. The selected registers were sent to the
arithmetic unit (ALU). The value sent from
MUX was stored in a specified register when
the reg_load was positive edge.

ALU The ALU was used to perform the arithmetic
and logical operations of the selected register-
s. When the alu_load was positive edge, the
ALU performed the arithmetic operation ac-
cording to the opcode sent from IR. The 16-
bit random number generator [14], embedded
in the ALU, was an one-dimensional, 2-state
cellular automata (CA) in which the rule was
150-150-90-150-90-150-. -90-150. The CA,
consisted of 16 cells, can produce a random
number between 0x0001 and OxFFFF.

MUX The multiplexor was used to selected the
data to be stored in a register. For load in-
structions, the data was selected from i_data.
For arithmetic instructions, the data was se-
lected from alu_out.

IR The instruction register (IR) was used to s-
tored an instruction while it was being execut-
ed. The opcode and the operand were extract-
ed from the instruction, then sent to the ALU
and the control unit.

PC The program counter (PC) was initialised at
address 0x0200. Every executing an instruc-
tion, the PC was increased by one. For jump
instruction, the PC was added to the relative
address sent from IR. The PC involved the
CPU stack when jumping into subroutine.

SP The stack pointer (SP) was used to stored the
top-of-stack address. The SP was initialised
at 0x4000. For push operation, the SP was
decreased by one. For pop operation, the SP
was increased by one.

MIM The memory interface module (MIM) was
used to connect to the memory devices (EEP-
ROM, RAM, and BUFFER) of which the data

width was 8 bits. In read mode, the MIM read
a value from an external device, then the value
was placed on i_data. In write mode, the MIM
wrote a value from i_data to an external device
using the address on i_addr. The bf_load sig-
nal was used to write the BUFFER. Once the
bf_load was positive edge, the data on e_data
and the address on e_addr were used to write
the BUFFER. The ev_select signal was used
to select 3 signals from the EV to e_data. The
three signals were fitness[15:8], fitness[7:0], and
finish value.

Port_Out The port_out was used to display a reg-
ister value.

Control Unit The control unit was a 16-state F-
SM used to control the processor. The control
unit simply fetched and executed the instruc-
tions in sequence.

The microprocessor consumed about 90% of the to-
tal chip area. Due to the place-and-route method
of the synthesis tools, the FPGA cannot be fully
utilised. The processor was able to operate at 6
MHz (the bottleneck of the memory was 8 MHz).
For more details, the readers are cited to master
thesis [15].

4.3. Fitness Evaluator

The evaluator performs fitness calculation in the
following steps.

Initialize state = 0, fitness =0

1. read one input/output from input/output se-
quences

2. read (next_state, next_output) from the buffer,
state = next_state

3. compare output to next_output

4. fitness = fitness + number of similar output
bits,
if end of sequence then state = 0

5. repeat steps 1-4 for the
put/output sequences

remaining in-

It can be seen that the steps 1-4 can operate con-
currently. A 4-stage pipeline is implemented. The
number of clocks spent to evaluate an individual is
(m x n) 4+ 4, where m is the number of sequences
and n is the sequence length.

The fitness evaluator consumed a half area of the
chip. The evaluator was able to operate at 20 MHz
(higher than the bottleneck of the memory). It can
be seen that the design yielded a satisfactory result.
Therefore it was not necessary to put more effort for
optimising area and clock speed. Since the fitness
evaluator was designed as single behavioral module,

we did not know the inside structure of the actual
circuit synthesised by the Xilinx tool.

5. Performance Analysis

A profile of software-based GA, running on 200
MHz PentiumPro with Linux OS, is shown in Table
1. It can be seen that to mimic a practical sequen-
tial circuit, we must use a great number of long in-
put/output sequences. As a result, the evaluation
time increased drastically with the circuit size due
to the large number of sequences needed to yield
high correctness percentage.

The profile in Table 1 shows that the fitness eval-
uation was a major bottleneck of GA. Accordingly,
the hardware contributed to speedup the fitness e-
valuation is reasonable. A comparison of software
and hardware evaluator is shown in Table 4. The
evaluation time of serial adder, in software, was pro-
filed. In hardware, the evaluation time was calcu-
lated from the fitness evaluator (EV) operating at
its maximum frequency (8 MHz). The result in Ta-

Table 4: A comparison of software and hard-
ware evaluator (serial adder).

Number of | Sequence | Evaluation Time (ms)
Sequences Length | Software | Hardware
10 100 0.06 0.25

100 100 0.65 2.50

1,000 100 13.50 25.00
10,000 100 136.94 250.00

ble 4 shows that the fitness evaluator was little slow-
er than the software running on PentiumPro. The
fitness evaluator is not very fast due to two main
reasons. First, the PentiumPro operates at very
high frequency (200 MHz) while the maximum fre-
quency of the FPGA in this experiment is 20 MHz.
Second, the bottleneck of the memory limits the
operational frequency at 8 MHz. Actually, the e-
valuator can operate at higher frequency. This is
not surprising since the evaluator uses very little
resources (about 5,000 gates) whereas the commer-
cial CPU uses millions of transistors. Although the
performance of the fitness evaluator is moderate, for
large problem the evaluator can be parallelised. By
using a number of evaluators in parallel, the linear
speedup is achievable.

Next, the performance of the microprocessor is
analysed. In the design stage, the number of reg-
isters was set at 8. In the synthesis stage, number
of registers was reduced to 4 due to the reason that
the size of FPGA was not sufficient. The first as-
sembly program was well-optimised for 8-register
processor, then the 8-register program was simply
translated to the 4-register program instruction by
instruction. We did not put much effort to opti-

mise the 4-register program. The translation of 8-
register to 4-register program drastically dropped
the performance.

The result of executing 4-register and 8-register
programs, done in the simulator, is shown in Ta-
ble 5. In the 4-register program, the number of
load/store instructions increased due to the small
number of registers. For the same reason, the num-
ber of push/pop instructions, used to load/store the
program variables to CPU stack, increased. It can
be seen that the number of registers greatly affect-
ed the number of executed instructions. By using a
little larger FPGA, the performance of the micro-
processor can be significantly improved.

Table 5: A comparison of 8-register and 4-
register program.

The number of instructions executed
8-register program | 4-register program
36,869,277 175,229,984

The comparison of PentiumPro and the custom
microprocessor is shown in Table 6. The micro-
processor and the fitness evaluator were separately
analysed, therefore the execution time did not in-
cluded the fitness evaluation. The number of clocks
in Table 3 was used to calculate the execution time
of the custom processor. For PentiumPro, the ex-
ecution time was profiled, then subtracted by the
evaluation time. The result shows that PentiumPro
is 200 times faster than the 8-register processor
and 1,400 times faster than the 4-register proces-
sor. The execution time of GA on the custom pro-
cessor was slower than the PentiumPro due to the
following reasons.

e The custom processor executes the instructions
in sequence while the commercial CPU uses an
aggressive pipeline.

e The number of registers is too small. This
causes the extensive load/store instructions.

e Our processor executes at 6 MHz whereas Pen-
tiumPro executes at 200 MHz. The FPGA
cannot operate at high frequency as ASIC tech-
nology.

e The register allocation is not optimal. It can
be done better by using a compiler.

The performance of the custom processor is low-
er than PentiumPro; however, the performance de-
pends on the the available resources. The custom
microprocessor is considerably efficient according to
the FPGA sizing of 10,000 equivalent gates.

The performance of the microprocessor and the
fitness evaluator can be significantly improved by

Table 6: A comparison of PentiumPro and
the custom microprocessor (serial adder).

PentiumPro Custom microprocessor
(8 registers) | (4 registers)
0.28 sec. 56 sec. 6 min. 32 sec.

using the latest FPGA technology. The Virtex F-
PGA (Xilinx, 2000), which is a high-speed, high-
density FPGA sizing of 3.2M equivalent gates and
operating at 200 MHz, could be used. The memory
bandwidth can be increased to 200 MHz using ZBT
SRAM (Zero Bus Turnaround SRAM) — a next gen-
eration of SyncBurst SRAM specifically used for PC
cache applications such as Pentium and PowerPC.

Table 7 shows the overall performance of three
versions: SW, HW(XC4010), and HW(Virtex). It
can be seen that SW took 10 min. 50 sec. while the
HW(XC4010) took 24 min. 40 sec. to accomplish
the same task. Although the fitness evaluation is
a major bottleneck consuming about 90% of total
time, the HW(XC4010) containing a fitness evalu-
ator cannot outperform the SW. The use of Virtex
device and ZBT SRAM can speedup both the mi-
croprocessor and the fitness evaluator. It can be
seen that the total execution time of HW(Virtex)
was 10.77 times faster than SW. Indeed the enor-
mous size of Virtex device could provide a pipeline
and an adequate number of registers for the mi-
croprocessor. This considerably enhance the per-
formance of the microprocessor. However, the pro-
file in Table 1 shows that the evaluation time in-
creased dramatically with the size of input/output
sequences. Accordingly, the contribution to im-
prove the microprocessor does not yield much ben-
efit for larger problems. A parallel of fitness e-
valuators will helpfully reduce the evaluation time.
Supposing the Virtex device operates at 200 MHz,
and the evaluation time decreases linearly with the
number of fitness evaluators. The comparison of the
use of fitness evaluators in parallel is shown in Ta-
ble 8. It can be seen that the evaluation time (EV)
of HW(Virtex) with 8 EVs was 8.0 times faster
than the HW(Virtex) with single evaluator. This
reduced the overall performance (GA+EV) to 18
sec. that was 3.4 times faster than the unparalleled
version.

By using the state-of-the-art FPGA, the HW
(Virtex) with 8 EVs could perform 36 times faster
than the software(SW) running on a conventional
workstation.

6. Conclusions

The mimetic EHW, regarded as an on-line EHW,
was demonstrated. The software version of GA was
migrated to the FPGA prototyping boards consist-

ing of a custom microprocessor and a fitness evalu-
ator. It can be shown that the hardware tailored to
the problem could be 36 times faster than a conven-
tional computer. The significant speedup, resulted
from the use of fitness evaluators in parallel, val-
idates the contribution on accelerating the fitness
evaluation.

Although the FPGA is a reconfigurable device, in
practice the configuration bits cannot be changed
by the FPGA itself. The configuration bits are
normally compiled from hardware description lan-
guages, then the configuration bits were download-
ed from a host computer to the FPGA via a cable
link. The use of FPGA is limited due to the follow-
ing reasons.

e The FPGA manufacturers do not provide the
interpretation of the configuration bits in order
to protect the customers design from reverse
engineering. As a result, the behavior of the
configuration bits cannot be simulated.

e An illegal configuration causes a permanent
damage on the FPGA. This restricts the eval-
uation of a random configuration in the actual
circuit (intrinsic hardware evolution).

Accordingly, it is relatively impossible to evolve
the FPGA configuration bits since the configura-
tion bits cannot be evaluated whether in the soft-
ware simulator or the actual hardware. An FPGA
dynamically reconfiguring itself would be a great
challenge of the future research.

References
[1] Manovit, C. and Aporntewan, C. and
Chongstitvatana, P. “Synthesis of Syn-

chrounous Sequential Logic Circuits from
Partial Input/Output Sequence,” in Proc. of
Int. Conf. on Evolvable Systems (ICES’98),
pp. 98-105, 1998.

[2] Chongstitvatana, P. and Aporntewan, C. “Im-
proving Correctness of Finite-State Machine
Synthesis from Multiple Partial Input/Output
Sequences,” in Proc. of the First NASA/DoD
Workshop on Evolvable Hardware, pp. 262-
266, 1999.

[3] Rivest, R. and Schapire, R. “Diversity-based
Inference of Finite Automata,” in Jour. of the
ACM, Vol. 4, pp. 555-589, 1994.

[4] Scott, S. and Seth, A. “HGA: A Hardware-
Based Genetic Algorithm,” in Proc. of the
ACM/SIGDA Third Int. Symp. on Field-
Programmable Gate Arrays, pp. 53-59, 1995.

[5] Graham, P. and Nelson, B. “A Hardware Ge-
netic Algorithm for the Traveling Salesman
Problem on SPLASH 2,” in Proc. of the 5th

[6]

[7]

[8]

[9]

Table 7: A comparison of overall performance

(serial adder, sequence length = 100, number of sequences = 10,000).

Version GA EV | GA + EV
SW 0:29 min. | 10:21 min. | 10:50 min.
HW(XC4010) | 6:32 min. | 18:08 min. | 24:40 min.
HW (Virtex) 0:12 min. | 0:49 min. | 1:01 min.

Table 8: A comparison of the use of fitness evaluators in parallel

(serial adder, sequence length = 100, number of sequences = 10,000).

Version GA EV | GA + EV
HW(Virtex) with 1 EV | 0:12 min. | 0:49 min. | 1:01 min.
HW (Virtex) with 2 EVs | 0:12 min. | 0:25 min. | 0:37 min.
HW(Virtex) with 4 EVs | 0:12 min. | 0:12 min. | 0:24 min.
HW (Virtex) with 8 EVs | 0:12 min. | 0:06 min. | 0:18 min.
GA denoted the execution time of GA except the fitness evaluation
EV denoted the evaluation time.
SW denoted the software version of GA.
HW(XC4010) denoted the custom hardware running on XC4010 device.
HW(Virtex) denoted the custom hardware running on Virtex device.

Int. Workshop on Field Programmable Logic
and Applications, pp. 352-361, 1995.

Graham, P. and Nelson, B. “Genetic Algo-
rithms in Software and in Hardware - A Per-
formance Analysis of Workstation and Cus-
tom Computing Machine Implementations,” in
Proc. of the IEEE Symp. on FGPAs for Cus-
tom Computing Machines, pp. 216-225, 1996

Sitkoff, N. et al. “Implementing a Genetic Al-
gorithm on a Parallel Custom Computing Ma-
chine,” in Proc. of IEEE Symp. on FPGAs
for Custom Computing Machines, pp. 180-187,
1995.

Salami, M. “Genetic Algorithm Processor on
Reconfigurable Architecture,” in Proc. of the
Fifth Ann. Conf. on Evolutionary Program-
ming, pp. 355-361, 1996.

Shackleford B. et al. “A High-Performance Ge-
netic Algorithm Machine,” in Proc. of the IPSJ
Int. Symp. on Information Systems and Tech-
nologies for Network Society”, pp. 113-120,
1997.

Higuchi, T. et al. “A Gate-Level EHW Chip:
Implementing GA Operations and Reconfig-

10

[13]

urable Hardware on a Single LSL,” in Proc. of
Int. Conf. on Evolvable Systems (ICES’98), p-
p. 1-12, 1998.

Higuchi, T. et al. “Real World Applications
of Analog and Digital Evolvable Hardware,”
in IEEE Trans. on Evolutionary Computation,
Vol. 3, pp. 220-235, 1999.

Yoshida, N. and Yasuoka, T. and Moriki, T.
“Parallel and Distributed Processing in VL-
SI Implementation of Genetic Algorithms,” in
Proc. of the Third Int. ICSC Symp. on Soft
Computing, 1999.

Koza, J. et al. “Evolvable Hardware and
Rapidly Reconfigurable Field Programmable
Gate Arrays,” in Genetic Programming III,
Morgan Kaufman, pp. 942-951, 1999.

Hortensius, P. and McLeod, R. and Card,
H. “Parallel Random Number Generation for
VLSI Systems Using Cellular Automata,” in
IEEE Trans. on Computers, Vol. 38, No. 10,
pp-1466-1473, 1989.

Aporntewan, C. “A Mimetic Evolvable Hard-
ware for Sequential Circuits,” Master Thesis,
Chulalongkorn University, 1999.

