
1

Generate Leaf Shapes using L-system and Genetic Algorithms

Yodthong Rodkaew1, Suchada Siripant2, Chidchanok Lursinsap3 and Prabhas Chongstitvatana4

Department of Computer Engineering
Faculty of Engineering

Chulalongkorn University
Phayathai road, Bangkok 10330 Thailand
E-Mail: 43718130@student.chula.ac.th1 ,

prabhas@chula.ac.th4

Advanced Virtual and Intelligence Computing
(AVIC) Research Center 2,3

Department of Mathematics
Faculty of Science

Chulalongkorn University
Phayathai road, Bangkok 10330 Thailand.

Abstract: In this paper presents a method that combines with techniques
L-system and Genetic Algorithms (GA) to search for a rewriting expression
describing leaf shapes. L-system is used to construct a shape of leaf of a given
rewriting expression, and GA is used to search an unknown rewriting expression's
fitting parameters. Replacement of real value parameters to tag-function is
introduced. The result shows both L-system and GA work together and produce an
acceptable output.
Key words: Leaf Shapes, L-system, Genetic Algorithm

1. Introduction
In 1968, L-system [1] was introduced by a
biologist, Aristid Lindenmayer, to create a realistic
plant form by a context-free rewriting expression
with conditional and stochastic rule selection
concept. The computer graphical output from
computer software that use L-system [2,3] looked
like a real plant. However, there are some parts of
plant that cannot be derived by a rewriting
expression such as leafs or flowers. In the computer
software [2,3] a predefined leaf and flower shape
are used to compose a plant. The work [1, pp. 120-
127] presented a predefined expression for leaf
edge. We are interested in finding a rewriting
expression for a leaf network (Fig.1), Is there has
some expression that can create a leaf? The
research [4] tried to construct a primary branch
network with a given expression, the leaf shape is
modified by changing parameters. No expression
need to be changed. However, modification of the
parameters by human is difficult because there are
many parameters. In this paper, we propose to
construct a primary branch and use Genetic
Algorithm [5] to solve the problem of parameter
fitting.

Figure 1: The leaf shape and leaf network.

The paper is organized as follows, Section 2 and 3
briefly introduces L-system and Genetic Algorithm.
The experiment is presented in Section 4. Section 5
illustrates results. Finally, Section 6 contains a
summary and comments on future work.

2. L-system
From [1], a parametric OL-system, which are
context-free, operate on parametic words, which is
a string consisted of letters and parameters, called
modules. The letter as alphabet is denoted by V,
and the set of parameters is the set of the real
number ℜ. A module with letter A ∈ V and
parameters a1,a2,…,an ∈ ℜ is denoted by A
(a1,a2,…,an). Every module belongs to the set M =
V × ℜ* , where ℜ* is the set of finite sequences of
parameters. The set of all string of modules are
denoted by M* = (V × ℜ*)* , and the set of all
nonempty strings are denoted by M+ = (V × ℜ*)+ .

The real-valued actual parameters appearing in the
words correspond with formal parameters which
may occurs in the specification of L-system
productions. Let Σ be a set of formal parameters, C
(Σ) denotes a logical expression with parameter
from Σ, and ε(Σ) is an arithmetric expression with
parameter from Σ. The combination of formal
parameters and numeric constants using the
arithmetic operators {+,-,*, /, ^ (the exponentiation
operator) } the relational operators {<,>,= } the
logical operator { and, or, not } and parentheses {
(,) }. The set of all correctly constructed logical and
arithmetic expressions with parameters from Σ are
noted C(Σ) and ε(Σ).

2

A parametric OL-system is defined as an ordered
quadruple G = (V,Σ,ω,P) where:

 • V is the alphabet of the system.
 • Σ is the set of formal parameters.
 • ω ∈ (V × ℜ*)+ is a nonempty parametric word
called the axiom.
 • P ⊂ (V × Σ*) × C(Σ) × (V × ε(Σ))* is a finite set
of productions.

For an example, if the alphabets V in the system are
{ F, + } which may occur many times in a strings.
Each letter is associated with a rewriting rule. The
rule F → F+F means that letter F is to be replaced
by F+F. The rewriting process starts from a
distinguished string called the axiom or ω. Given
the axiom string F, in the first derivation step, the
string F is replaced by string F+F to be string F+F.
In the second derivation step, the string F+F is
replaced by string F+F+F+F.

2.1 Drawing mechanism in L-system
In the L-system the drawing is based on the turtle
graphics. A state of turtle is defined as a triplet
(x,y,α), the Cartesian coordinates (x,y)
represented the turtle's position, and α is the
direction of the turtle. Given a step size β and the
angle increment δ, With β = 5.0 and δ = 90.0° (Fig.
2a). The symbol F means move forward a step,
symbol - means turn left by an angle increment and
symbol + means turn right by an angle increment.
The string F+F+F+F draws a rectangle (Fig. 2b).
The symbol [and] is a stack. Symbol [push the
current (x,y,α), and symbol] pop a (x,y,α) from the
stack and assigned to the current one (Fig. 2c).

 (a) (b) (c)

Figure 2: (a) The turtle. (b) The picture from a
string F+F+F+F. (c) The picture from a string F

[-F+F][+F-F]F.

2.2 The parametric words
One or more parameters can be associated with a
symbol. A symbol F means move forward, then F
(5) means move forward by 5 pixels.

F(α) Move forward by α pixels
+(α) Turn right by α angle
-(α) Turn left by α angle

However, users can promote a new parametric rule
by define it. Thus, the α is an arithmetric
expression ε(Σ), the definition below is also valid in
L-system:

ω : A → B(1)
P1: B(a) → C(a,a+1)
P2: C(a,b) → B(a)C(b,a+b)

The results after 1st derivation is: C(1,2)
The results after 2nd derivation is: B(1)C(2,3)
The results after 3rd derivation is: C(1,2)B(2)C(3,5)
The results after 4th derivation is: B(1)C(2,3)C(2,3)
B(3)C(5,8)

2.3 The tag-function
The parametric words need a derivation, changing
some parameters required calculation of a derived
parameter. Since derivation of axiom consume CPU
time, in this section, we introduced a tag-function to
replace parameters. The tag-function can reduce
CPU time because it reuses the calculation of
parameters value. It is a marker of the function's
position. User can change a function value without
requiring regeneration of an axiom derivation.

The tag-function looked like tag in HTML, it
begins with symbol < and end with >. Inside tag-
function is the name of function such as <Fx>
means this tag uses a Fx function. Users should
assigned tag-function before symbol that should be
parameters.

After derivation, all tag functions will be appended
with a number that was assigned by our specific L-
parser. This number indicates the position of the
function that tag-function associated with. When
drawing, the turtle will use both derived axiom and
function to get a real value (Fig.3).

Figure 3: Convertion of tag-function to
parameter value.

The meaning of tag-function used in this paper is
described below:

δ

β <SFx1> F <SFx2> F <SFx3>

A derived axiom

Parameter value

3

Table 1: Tag-function
Tag -

Function
Meanings Output

Range
<FxN> γ = Fx(N/Nmax) 0.0 - 1.0

<LxN> Turn left by Lx(N/Nmax) angle 0.0 –
90.0

<RxN> Turn right by Rx(N/Nmax) angle 0.0 –
90.0

<SFxM> γ = SFx(M/Mmax) 0.0 – 1.0

<SLxM,N> σ = M/Mmax

θ = (σ×2) × LL1x(N/Nmax)
 + (1.0-σ×2) × LL2x(N/Nmax)
 ; if (0.0 ≤ σ < 0.5)

θ = ((σ-0.5)×2) × LL2x(N/Nmax)
 + (1.0-(σ-0.5)×2) × LL3x(N/Nmax)
 ; if (0.5 ≤ σ ≤ 1.0)
Turn left by θ angle

0.0 –
90.0

<SRxM,N> Same as <SLxM,N>,
Turn right by θ angle

0.0 –
90.0

The N and M in tag-function are added by L-parser
which N is increased by the number of derivation,
M is increased by the number of tag-function. For
each function has their own N or M. The symbol γ
is denoted to a multiple value of step size β. A
symbol F will move forward by step size (γ × β)
pixels.

The function's output range from table is the output
from function (not value of N/Nmax) for an example,
function Lx(N/Nmax) can produce a value 50.0, N
value must in rannge 0.0 - Nmax , also M, and the
value of N/Nmax and M/Mmax should be in range 0.0 -
1.0. The tag-function <SLx> and <SRx> is
calculated by using tag-function LL1, LL2, LL3 .

2.4 Experiment's rule definition
In this paper, we will use the definition for an
experiment:

ω : A → <LT>M!N
P1: M → [BBBBBBBBBBB]
P2: N → [CCCCCCCCCCC]
P3: B → <FF>[L]
P4: C → <FF>[R]
P5: L → <LT><Lx><SFx>J
P6: R → <RT><Rx><SFx>K
P7: J → <SRx><Fx><Fx>J
P8: K → <SLx><Fx><Fx>K

Where β = 15.0, δ = 90.0° and using 8th derivative.

The definition derived from the idea of skeleton
(Fig.4a), with an adjustment of function, the
skeleton can be transformed (Fig.4b-d). Figure 4e
shows function adjustment by hand.

(a) (b)

(c) (d) (e)

Figure 4: The picture create from rules: (a) The
skeleton (b) (c) (d) Various transformation shape
by adjusting function. (e) an adjusted function

by hand.

3. Genetic Algorithms
The Genetic Algorithms [5] or called GA, is based
on an inspiration from natural selection. GA was
developed by John Holland, his colleagues, and his
student at the University of Michigan. It is a robust
algorithm use for search and optimization of
solutions. Each solution called individual. A group
of individual called population. GA evaluates each
individual to measure fitness. An individual who
has high fitness can produce their children or
offspring for the next generation.

In the first generation, GA randomly generates a
population with a specific parameters: a number of
individual, a length of individual etc. and evaluates
them. The second generation, GA randomly selects
an individual with probability according to its
fitness to produce offspring and modifies them by
genetic operators (reproduction, crossover, and
mutation). This process is repeat until the
terminating condition is reached such as an
individual can solve the problem or reach the
specific number of generation.

3.1 Individual
An individual in this experiment is denoted to the
points of β-Spline function [6]. A tag-function is
consisted of 4 points for each β-Spline. There are 7
tag-functions in this experiment, therefore, an
individual contains 28 floating-point variables
(Fig.5).

Block
1

Block
2

Block
3

Block
4

Block
5

Block
6

Block
7

Figure 5: An individual.

Figure 6: The ββββ-Spline construc
block .

The block number in an individua
the spline number. The spline N
<Fx>, No.2 is denoted to <Lx>, No
<Rx>, No.4 is denoted to <SFx
denoted to <LL1> <LL2> <LL3> re

3.2 Genetic Operator
In this paper, we used reproduction
mutation. The reproduction is the d
parent to their child. With the cross
individuals is to be selected as 2 par
random point to split each individu
and recombine them. This metho
offstrings. The last one is mutation
offspring by randomly change fou
parent.

3.3 Fitness Function
The comparison from the output fro
the target picture is the fitness fu
paper, we are interested in an outli
fitness function is calculated by this

4. The Experiment
An individual as set of parameters
L-system which produces a pictur
We matched the target picture and t
L-system and measure the fitness o
The fitness depends on the differen
pictures using the function in section

4.1 Genetic Parameters
The genetic parameters are as follow:

Number of Individual 200
Reproduction 20%
Crossover 40%
Mutation 40%
Number of Generation 200

4.2 Target
The target picture is taken from the outline of a real
leaf. A sample of the target is shown below:

Floating-point

P1
0.0P1

P2 P3

P4




+−−= ∑ ∑

= =

width

i

heigh

i

source
i

ett
i xxFitness

0 0

arg0.100
Block
P2 P3 P4
1.0 1.0 0.0
4

ted from the

l is matched to
o.1 is denoted
.3 is denoted to
>, No.5-7 are
spectively.

, crossover, and
uplication from
over operator, 2
ents and make a
al in to 2 parts,
d generates 2

, it produces an
r values in the

m L-system and
nction. In this
ne of leaf. The
formula:

is evaluated by
e as an output.
he picture from
f an individual.
ce between two
 3.3.

(a) (b)

Figure 7: (a) The real leaf and (b) its outline.

4.3 Results
Our system generates the output satifactority.
Initially the match good but gradually becomes
better. Figure 8 shows the fiteest individual of the
first generation. Figure 9 shows the result of the
final generation. The output matches closely to the
target. It is better than the one produced by
manually adjusting parameters by human.

5. Conclusion
In this paper, we presented a method that combines
two techniques L-system and Genetic Algorithms
(GA) to search for a rewriting expression
describing leaf shape. Replacement of real value
parameter by tag-functions has been introduced.
The result from GA is better than function that is
adjusted by human. The leaf shape from a rewriting
expression looked like a leaf. However, the real leaf
is not symmetric. Our result can be improved by
modify a rewriting expression. For the future work,
we will try to construct a primary branch, same as a
real leaf.

6. References
[1] Prusinkiewicz P. and Lindenmayer A., The
Algorithmic Beauty of Plants., Springer-Verlag,
1996.




−

t
source
i

ett
i yy arg

5

[2] Cynthia F. Kurtz and Paul D. Fernhout,
P l a n t S t u d i o . , C o m p u t e r S o f t w a r e ,
http://www.kurtz-fernhout.com/PlantStudio/.
[3] Chuai-aree S., PlantVR., Computer Software,
ht tp : / /www.geocit ies.com/csomporn_2000/
plantvr/plantvr.htm.
[4] Lursinsap C., Sophatsathit P., and Siripant S.,
Simulation of Leaf Growth Based On A Rewriting
System: A Unified Leaf Model., Advanced Virtual
and Intelligence Computing (AVIC) Research

Center, Chulalongkorn University., Technical
Report No. 01.01.2000.
[5] Goldberg D.E., Genetic Algorithms in Search,
Optimization, and Machine learning., Addison-
Wesley, Redwood City, 1989.
[6] Watt A., Watt M., Advanced Animation and
Rendering Techniques., Addison-Wesley, New
York, pp.90-91.

Figure 8: The best individual in the 1st generation.

Figure 9: The best individual in the 200th generation.

	I
	Introduction
	L-system
	
	Table 1: Tag-function

	Genetic Algorithms
	The Experiment
	Conclusion
	References

