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ABSTRACT

Performance of Genetic Programming depends
its genetic operators, especially the crossover
operator. The simple crossover randomly swaps
subtrees of the parents. The "good" subtree can be
destroyed by an inappropriate choice of the
crossover point. This work proposes a crossover
operator that identifies a good subtree by measuring
its impact on the fitness value and recombines good
subtrees from parents. The proposed operator,
called selective crossover, has been tested on two
problems with satisfactory results.

1. INTRODUCTION

Genetic Programming [1] is a search method that
imitates natural evolution and natural selection. It
is developed from Genetic Algorithms [2] and is
differed by the way the solution is represented in a
tree structure instead of a fixed length binary string.
The candidate solutions formed a population and
are evolved via genetic operations. The parents are
selected according to their fitness and the crossover
operator is applied to produce offspring. The
mutation occurs to retain the diversity of the
population.  The crossover operator is very
important in Genetic Programming.

The simple crossover selects the crossover
points on two parents randomly (with bias towards
the internal nodes) and exchanges their subtrees.
The "good" subtree can be destroyed by an
inappropriate choice of the crossover point. If the
"good” subtree can be identified then it can be
protected against the crossover operator. The good
subtrees can also be combined to form a fit
offspring.

This work proposes a crossover operator that
identifies a good subtree by measuring its impact on
the fitness value and recombines good subtrees
from parents.

2. RELATED WORK
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In a simple crossover there is no way to find out
whether the choice of crossover point is good or
bad. One way to measure it is to try a number of
different choices and choose the best result. This
has been proposed by Tackett [3], which he called
"brooding selection”. Iba [4] suggested to measure
the "goodness" of subtrees and use them to bias the
choice of crossover points. He proposed a number
of estimate using the shape of the tree. Evolutive
intron [5] is proposed as a way to protect good
subtrees. The main idea is to use the non-action
node, so called "intron", to protect the good subtree
from the crossover operator.

Our method proposes a direct measurement of
the impact of subtrees on the fitness value and uses
them to choose the crossover points.

3. SELECTIVE CROSSOVER

To measure the impact of a subtree on the
fitness value, that subtree is pruned from the
original tree and the tree is re-evaluated. Pruning is
achieved by substituting the subtree by a non-
operating node. Two nodes are identified: the best
node and the worst node. The best node is the node
that has the highest impact on the fitness value, i.e.
When it is pruned the fitness value dropped the
most (in case we use the maximised fitness
function). The worst node is the opposite. It is the
node that when it is pruned the fitness value is
increased. Figure 1 shows the pruning of 3 nodes:
node 1, node 2 and node 5. The fitness value of
the original tree is 200. The fitness values after
pruning are 350, 100 and 310 respectively.
Therefore, the best node is the node 2 and the worst
node is the node 1. The best node signifies the
good subtree, i.e. without this subtree the fitness of
the candidate will be worst. The worst node is the

opposite.



fitness = 200

(a) original tree

fitness = 350

(b) after pruning of node 1

fitness = 100

(e) the best and the worst nodes with pruning

Figure 1 Identify the best and the worst nodes with
pruning

In the selective crossover, the best node and the
worst node are identified by pruning every nodes in
the tree. The crossover is performed by substituting
the worst node of one parent by the best node of the
other parent, therefore combining the good subtrees
from both parents to produce offspring (Fig. 2).
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Figure 2 Selective Crossover
4 THE EXPERIMENTS

To test the selective crossover, two problems
are chosen: 1) the robot arm control by
Jassadapakorn [6] and 2) the artificial ant in Koza
[1]. The parameters of GP run are shown in Table
1. The mutation is not used in the experiments.

Table 1 Parameters in GP run

Robot arm Artificial ant
Population 400 500
Max. generation 10 51
Number of runs 1000 200
Crossover rate 90% 90%
mutation rate 0% 0%

The selective crossover is measured against
the simple crossover. The metric is the
computational effort as defined by Koza [7]. The
computational effort measured the minimum
number of candidate that must be processed to find
the solution.

4.1 The robot arm control

The objective of the problem is to generate a
program that control a 3 DOF robot arm to reach a

535



specified target. There are 3 environments
contained obstacles. The command primitives are
robot joint movements and sensing the collision
between the arm and the obstacles.
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Figure 3 The 3 environments in the robot arm
control problem

The results are shown in Table 2 and Figure 4.
In all cases, the selective crossover achieves a
lower computational effort.

Table 2 the results of the robot arm control

problem
Environment 1 Environment 2 Environment 3
Simple 21600 20400 291200
Crossover
Selective 17600 16000 202800
Crossover

Computational Effort

envirgmment 1

W simple Crossover [ selectve Crossover

(a) environment 1

536

25000
20000 - -
15000
10000
5000 -1—-

Computational Effort

environment 2

M simple Crossover [J Selective Crossover

(b) environment 2

400000

300000 - ~--

200000 4

100000 4

Computational Effort

0

environment 3

B simple Crossover {J Selective Crossover

(c) environment 3

Figure 4 Comparison of computational effort of
the robot arm control problem

4.2 The Artificial Ant

The objective of this problem is to generate a
program that control an artificial ant to find all food
tablets in the trail within a limited time. The trail is
a 32 by 32 grids contained 89 food tablets. The
time limit is when exceeding 400 primitive
operations. The trail in the test is called "Santa Fe
trail" as defined in Koza [1] and [2] and is shown in
Fig. 5.
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Figure 5 The Santa Fe trail

The result is shown in Table 3 and Figure 6. The
selective crossover achieves a lower computational
effort.

Table 3 the results of the artificial ant problem
Simple Crossover Selective Crossover
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Figure 6 Comparison of computational effort of
artificial ant problem

5. CONCLUSIONS

This work demonstrates that using the selective
crossover which combines good subtrees from
parents and eliminates bad subtrees can achieved a
lower computational effort when compared with the
simple crossover. The selective crossover uses a
direct measurement of the goodness of a subtree by
accessing its impact on the fitness value. However,
pruning every nodes of a candidate takes a lot of
CPU time. In practice, this time consuming
computation must be weighted against the gain
from faster convergence rate achieved by the
selective crossover. The future work will be on
reducing the computation time required by pruning.
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