ISCIT 2001

FAA1-02

AN FPGA IMPLEMENTATION OF A FIXED-POINT SQUARE ROOT
OPERATION

K. Piromsopa, C. Aporntewan and P. Chongsatitvatana

Department of Computer Engineering.
Chulalongkorn University.
254 Phayathai Road Patumwan Bangkok Thailand 10330
Phone:+66-2-218-6956, Fax:+ 66-2 -218-6955

Email:g4lkpr@cp.eng.chula.ac.th , u37cap@cp.eng.chula.ac.th, prabhas@chula.ac.th

ABSTRACT

Square root operation is considered difficult to
implement in hardware. In this paper, we present an
FPGA implementation of a 32-bit fixed-point
square root based on the non-restoring square root
algorithm. The operation latency is 25 clock cycles
(with 8-bit floating-point precision). The circuit
occupies 161 Logic Cells (13%) of Altera Flex
10K20RC240-4 FPGA. The maximum clock cycle
archived 1s 21.36 MHz. It means that the solution
of a 32-bit fixed-point number can be calculated in
about 1170 nanoseconds.

1. INTRODUCTION

Square root is a basic operation in computer
graphics and scientific calculation applications.
Because of the complexity of the square root
algorithms, the square root operation is hard to
implement on hardware. In this paper, we explain
various square root algorithms and our choice of
the one that suits for implements on an FPGA.

2. SQUARE ROOT ALGORITHMS

There are many algorithms and implementations
of square root on VLSI and FPGA. Three
algorithms will be discussed: Newton-Raphson
method [1] {2] [3], SRT-Redundant method [4] [5],
and Non-Redundant method [6] [7]. These three
algorithms will create an approximate value of the
solution. However, Y. Li and W. Chu have
introduced a new Non-Restoring Square Root
Algorithm [8] [9], which will generate an exact
resulting value.

2.1 The Newton-Raphson Algorithm.

The Newton-Raphson method was first used in
Cray-2 and Burroughs BSP. Iterative methods start
with an initial (guess) value and improve accuracy
of the result with each iteration. Assuming that X is
the original number, the iterative equation for
calculating the reciprocal of its square root, Y, is

().
Yier = i (3-X (Y)’) (1)

Once Y have been calculated, one can get the

square root by multiplying with X. This algorithm
has quadratic convergence.

The algorithm needs a seed generator for
generating Yg(the initial guess value of the result),
using a ROM table for instance. The number of
entries in the ROM and the length of each entry
affect the precision of the operation and the number
of iterations. To get the 24-bit result, the ROM
should be 64 words x 6bits. With this (pseudo) 8-bit
guess value only two iterations are necessary for
24-bit precision. In each iteration, multiplications
and additions or subtractions are needed. In order
to speed up the multiplier, there must be a special
algorithm such as Wallace tree to get a partial
production and use a carry propagate adder to get
the production. Because the multiplier requires a
rather large number of gate counts, it is not so
practical to place many multipliers on FPGA. Also,
it is hard to get an exact remainder of square root.

2.2 The Radix-2 SRT-Redundant and Non-
Redundant Algorithm.

The Radix-2 SRT-Redundant method and Non-
Redundant method are similar. Since they both
based on recursive relation. In each iteration, there
will be one digit shift left and addition. The
determination of a function is rather complex,’
especially for high-radix SRT algorithm. The
implementations are not capable of accepting a
square root on every clock cycle. Also notice that
this two methods may generate a wrong resulting
value at the last digit position.

2.3 The Non-Restoring Algorithm.

The non-restoring Square Root Algorithm uses
the two’s complement representation for the square
root result. At each iteration the algorithm can
generate exact result value even in the last bit.
There is no need to do the complex calculation as
appear in the SRT-Redundant and other methods.
The exact remainder can be obtained immediately
(with a little correction if it is negative)

Assume that the radicand is an 32-bit unsigned
number (denoted by D31..0). The square root for a
32-bit radicand is denoted by Q15..0. R is the
remainder (R=D-(Q)*) which will be denoted by
R16..0. Since this is redundant representation for
square root, exact bit can be obtain in each

587

iteration. The non-restoring square root algorithm is
given below (Fig. 1)

Let

D be 32-bit unsigned integer

Q bel6-bit unsigned integer (Result)

R be 17-bit integer (R =D - Q%)

Algorithm
Q=0;

R =0;

for i=15t00do

if (R>=0)
R=R<<2or(D>>({+1i) &3);
R=R-((Q<<2)orl)

Else
R=(R<<2)or(D>>(1+1) & 3);
R=R - ((Q << 2)or3),

End if

if (R >=0) then
Q=(Q<<Dorl;

Else
Q=(Q<<1)or0;

End if

Fig. 1 Non-Restoring Square Root Algorithm

Let us see an example in which D is an 8-bit
radicand value 140 (10001100,). The 4-bit solution
Q should be 11 (1011,) and remainder should be 19
(100115).

Set Q = 0000, R = 000000

i=3:

R>=0, R =000010 - 000001 = 000001
R>=0, Q=0001

i=2:

R>=0, R =000100 - 000101 = 011111
R<0, Q=0010

i=1:

R<0, R=011111 + 001011 = 001010
R>=0, Q=0101

i=0;

R>=0, R = 101000 - 010101 = 010011
R>=0, Q= 1011

To correctly determine the value of R, we need
to add 1 more extra bit to R (Consider as sign bit).

In order to get more precision digit, you can
simple shift left the radicand by 2n before the
iteration. And shift right the solution by n to get the
correct answer. For example if you want to find the
square root of 35 (00100011,) with one binary
floating point. You have to find the square root of
10001100,.(Shift left by 2 bits) After you get the
answer (1011,) you will have to shift right by 1 bit.

588

So the correct answer is 101.1, or 5.5.

3. HARDWARE DESIGN

Since the algorithm of Non-Restoring Square
Root show only a few functions (only Addition,
Subtraction, Shift Left, and Shift Right). We
decided to use this one. (Newton-Raphson method
require a ROM and multiplier which is not so
practical to implement on a small FPGA)

We design the circuit by using two shift registers
(one is shift 1-bit left, the other is shift 2-bit left),
one normal register, and an adder. D is the
Radicand, Q is the Solution, and R is the Partial
Remainder.

This design is different from the design of [9],
our aim is to avoid structural description and rely
on the synthesis tool to accept our behavioral
description and generate a good circuit.

Q-Shift Left 1
D - Shilt Left 2

Y D 32-but

A

N/
[8bit
0 sub
1 add

R 18-bit
L |

Fig. 2 Design of Non-Restoring Square Root

The size of each register (D, Q and R) and ALU
can be determined by the size of Radicand register.
If the Radicand contain X bit. Q will be X/2 while
ALU and R would be (X/2)+2 bit. And the total
number of iteration is (X/2)+1 cycle. In each cycle
D will shift left 2 bit and Q will shift left 1 bit. The
start up value of Register Q and R is 0 and should
be clear once the radicand is loaded into register D.

For example if you want to find square root of a
32-bit integer with 8-bit floating-point, you will
have to find square root of 48-bit radicand. Then
the size of D will be 48 bit. The solution will be 24
bit (16-bit integer with 8-bit floating-point). The
registers R and ALU will be operate at 26 bits.
While the circuit will need 25-clock cycles for the
solution.

4. PERFORMANCE ANALYSIS

Design Entry of this circuit is written in
VERILOG HDL. Altera FLEX10K20RC240-4
FPGA can operate the 48-bit radicand square root
circuit at 21.36 MHz.. Comparing to the same
software algorithm written in about 2000 lines of
assembly code on a custom processor with no
floating-point unit (average CPI is 4), the square
root circuit consumed 13% of Logic Cells. (see
Table. 1)

Implementation Time (Nanoseconds)
Software with 2000 320000
lines of assembly code
operate on custom CPU
at 25 MHz
Hardware operate at 20 1250
MHz

Table 1. Execution time analysis.

The speed up is 32000/1250 = 256 times faster
than using pure software.

After the square root circuit has been tested, it is
embedded in to a core processor. The Altera Max +
plus II reports the critical path in the control path.
This is unexpected since we normally suspect the
ALU to be the bottleneck. We have not done any
further optimization on the control unit.

5. CONCLUSIONS

There are a lot of Square Root Algorithms today.
On the systems that uses square root operations
frequently, to archive high performance at a
reasonable cost, the appropriate algorithm must be
implemented.

The Non-Restoring Square Root Algorithm can
be implemented with fewest and the result is the
fastest circuit among Newton-Raphson and Non-
Redundant methods. To meet the higher
performance the fully pipelined functional unit can
be used. From our experience, on an FPGA,
implementing your own Carry Look Ahead adder
circuit might not give you better performance, since
the synthesizer often achieves an impressive
performance.

REFERENCES

[1] J. Hennessy and D. Patterson: “Computer
Architecture A Quantitative ~ Approach,”
Second Edition, Morgan Kaufmann Publishers,
Inc., 1996. Appendix A: Computer Arithmetic
by D. Goldberg.

{2] C. Ramamoorthy, J. Goodman, and K. Kim:
“Some properties of iterative Square-Rooting
methods Using High-Speed Muliplication,”
IEEE Transaction on Coputers, Vol. C-21, No.
8, 1972. pp837-847

(3] H. Kabuo, T.Taniguchi, A. Miyoshi, H.
Yamashita, M.Urano, H. Edamatsu, S.
Kuninobu: “Accurate Rounding Scheme for the
Newton-Raphson Method Using Redundant
Binary Representation,” IEEE Transaction on
Computers, Vol.43, No. 1, 1994. pp43-51

(4] M. Birman, A. Samuels, G Chu, T. Chuk, L.
Hu, J. McLeod, and J. Barnes, “Developing
the WTL3170/3171 Sparc Floating-Point
Coprocessors,” IEEE MICRO February, 1990.
ppS55-64.

[5] M. Ercegovac and T. Lang: “Radix-4 Square
Root Without Initial PLA”, IEEE Transaction
on Computers, Vol.39. No.8, 1990. ppl016-
1024.

[6] JBannur and A. Varma, “The VLSI
Implementation of A Square Root Algorithm,”
Proc. of IEEE Symposium on Computer
Arithmetic, IEEE Computer Society Press,
1985. pp159-165.

{71 K. C. Johnson: “Efficient Square Root
Implementation on the 68000, ACM
Transaction on Mathematical Software, Vol.
13, No. 2, 1987. pp138-151.

(8] J. Bannnur -and A. Varma: “The VLSI
Implementation of A Square Root Algorithm,”
Proc. of IEEE Symposium on Computer
Arithmetic, IEEE Computer Society Press,
1985. pp159-165.

[9] Y. Li and W. Chu: “Implementation of Single
Precision Floating Point Square Root on
FPGAs,” Proc. of the 5th IEEE Symposium on
FPGA-Based Custom Computing Machines
(FCCM '97), IEEE Computer Society, 1997.
Pp226-232

589

