Second Asian Symposium on Industrial Automation and Robotics

BITEC, Bangkok, Thailand
May 17-18, 2001

IMPROVING THE ROBUSTNESS OF EVOLVED ROBOT ARM CONTROL PROGRAMS
WITH MULTIPLE CONFIGURATIONS

Worasait SUWANNIK, Prabhas CHONGSTITVATANA
Department of Computer Engineering
Chulalongkorn University
Phyathai Road, Patumwan,

Bangkok, Thailand. 10330
Tel: (662) 218-6983 Fax: (662) 218-6955
E-mail: vac@orange.cp.chula.ac.th, prabhas@chula.ac.th

Abstract: This paper proposes a method to improve the
robustness of a robot arm control program. The control
program is generated in simulation by genetic programming.
The robustness is measured in the real world. To improve the
robustness, the control program is evolved with multiple robot
arm configurations. The result shows that the robustness of a
control program is improved by 10% compared to a control
program evolved with a single configuration.
Keywords: Robot Programming, Genetic
Robustness.

Programming,

1. INTRODUCTION

Planning in classical robotics required exact geometrical model
of the robot (Lozano-Peréz et al., 1992). After the model is
obtained, the robot used a planner that is created specifically for
it to find a plan. There are several advantages of using
Evolutionary Robotics over the classical one. First, a
geometrical model of the robot is not required. The real robot
can use itself as the model (Floreano & Mondada, 1994)
(Nordin & Banzhaf, 1997). Second, the robot does not have to
be precisely engineered so that the geometrical model of the
robot can easily be obtained. Finally, for different types of the
robots to do the same task, there is no need to invent a new
algorithm for a new robot. Evolutionary approach can used the
same program (i.e., a fitness function) for a new type of the
robot.

Artificial evolution can be applied to various robotics problems
such as planning, creating a reactive neuron controller, and
creating a behavior-based program. The evolution starts from a
population of purely random solutions (or agents). After that,
they are evaluated based on a fitness function. Those random
solutions do not perform well in the beginning. However, after
being selected and applied the evolutionary operations (e.g.,
combination and mutation,) the solutions will be improved.

Genetic programming (GP hereafter) applies artificial evolution
to generate a computer program (Koza, 1992). We applied it to
generate a program for a hand-eye system. The task of the
system is the visually guided target-reaching in an area filled
with obstacles. By the time consuming nature of evolution,
thousands of fitness evaluations have to be done prior to the
emergence of the desired behavior. From this reason, a control
program is evolved in simulation. Since no simulation is
perfect, the control program obtained from simulation
frequently fails to work robustly when transferred to the real
world.

When using GP to evolve a control program for a target-
reaching task, we found that a control program evolved from a
simulation with single robot configuration did not work well.
Many aspects of the real robot and the real world have not been
simulated with enough accuracy. For example, the lens
distortion in the vision system had not been included in our
simulation. The result is that events that occur in the real world
do not have any corresponding events in the simulation. Rather
than improving the accuracy of the simulation, we proposed an
alternative. The alternative is to evolve a robot program that
does not depend on aspects simulated inaccurately. Using
multiple configurations to evolve robot programs is one way to
achieve that objective.

The organization of the paper is as follow. Section 2 reviews
related work. Section 3 explains the robot task. Section 4
defines the robustness of the robot arm control program.
Section 5 describes the experiment. Section 6 discussed the
result. Section 7 concludes the paper.

2. RELATED WORK

An evolved control program is usually brittle when dealing
with an environment that it has never seen during the evolution.
In the simulated world, the control program fail to work in an
environment that is different from where it was evolved. The
mobile robot control program fail to work when obstacles
position is moved (Chongstitvatana, 1998) (Chongstitvatana,
1999). A robot arm fail to reach a target when the target
position was slightly changed (Suwannik, 2000).

Several Evolutionary Robotics reseachers reported a reality-
simulation gap problem. In (Nolfi et al., 1994), an experiment
was conducted on a mobile Lego robot. A neural network
controller was evolved in a simulation. When transferred to the
physical world, the trajectories of the real robot differed
significantly from that of the simulated robot. In
(Chongstitvatana & Polvichai, 1996), GP was used to evolve a
robot arm program in a simulator. Some successful program,
when transferred to the real world, failed to reach the target.
Obviously, robustness is one of the most important issues the
Evolutionary Robotics researchers have to deal with.

By observing the behavior of a real robot, robustness can be
improved. Several methods of improving the robustness of a
mobile robot control program were proposed. A mobile robot
neural network controller evolved in simulation that had an
appropriate level of noise is robust (Jakobi et al., 1995). The
robustness of mobile robot controllers evolved in a simulation

can be improved by training them in multiple trials (Lee et al.,
1997) (Jakobi, 1998). Recording sensor and motor responses
from a real robot and used the data in the simulation resulted in
a robust behavior of a real robot (Lund & Hallam, 1997).

3. ROBOT TASK

This work aims to improve the success rate of robot arm control
program in the real world. The robot control program was
evolved in simulator using GP. After that, the control program
is tested with the real robot. The task of the real robot arm is to
reach the target while avoiding the obstacles. It can reach the
target if the distance between the tip of the arm and the center
of the target is less than or equal to 5 units. The target does not
obstruct the arm.

Fig. 1. shows the real robot arm. The arm has three joints,
called a shoulder, an elbow, and a wrist respectively. The arm's
initial configuration is stretching to the right. The arm can
move only in a plane. The joint is made of different models of
servos. The joint limit of the first, the second, and the third
joint are 164, 180, and 150 degrees respectively. The
resolution of the first, the second, and the third joint are 70, 70,
and 60 steps respectively. The length of each link was not
measured. The robot knows the length of each links from the
robot vision. The robot can sense if the robot hit an obstacle
and knows the distance between the tip and the target by using
its vision. The arm are not allow to move any of its parts out of
the visual field.

Fig. 1. The robot arm seen from its vision
4. EXPERIMENTS

A robust robot program can perform its task in the real world
despite the partial knowledge of the real world in the simulator
used to evolved the program. In our experiment, a robot learnt
its task in a simulator. The simulator is deliberately built such
that it is only an approximation of the real world in three
aspects.

- The lens distortion is not included in simulation. The
vision system used in the experiment has high distortion
due to the close up effect.

- The motion of each joint is not calibrated with the real
robot. The accumulated error is as much as 3%.

- The noise in locating the position of each joint due to the
vision system is not included in simulation. The vision
system locates each joint by recognizing the circular marker
and calculates its centroid. The light, which caused uneven
reflection in the scene (as seen from Fig. 1), together with
the lens distortion resulted in up to + 2 pixels noise in
reporting the position of each joint.

The robustness is measured in the real world as the percentage
of time the real robot can successfully reach the target.

Two experiments were conducted. In the first experiment, GP
composed a control program that can work with one robot
configuration. In the second experiment, we compensated the
partial knowledge of the real world by making a control

program that did not rely on a robot configuration. With the set
up that we used, the major discrepancy between the simulator
and the real world is the distortion of the size of the arm caused
by the lens. The length of each link varies as the arm moved in
the visual field but the simulator had no knowledge about this
variation. We decided to choose this aspect for the evolution
process to evolve a robot control program that was independent
of it. We evolved a program can control three different
simulated robot arms to perform the task successfully. Those
arms are varied in length. The first arm is the same as that used
in the first experiment. The second and the third arm are little
shorter and little longer than the first arm respectively.

E.

Fig. 2. Five instances of target-reaching task used as a
benchmark for robustness testing

As shown in Fig. 2, five instances of the problem were created
as the representatives of the problem. They varied in target
positions and obstacle positions. A circle in each picture is a
target. Black rectangles are obstacles. To make the experiment
easier to conduct, the obstacles and the target are not captured
from the robot vision. This simplification does not have any
effect on the measurement because both types of control
programs will be tested with the same benchmark.

4.1 Robot Learning

In both experiments, artificial evolution took place in
simulation. For each instance of the task, the evolution was
repeated for 10 runs. This is because, due to its probabilistic
nature, GP normally gives a different program for each run.
Thus, a number of runs are needed to ensure statistically
reliable results. The results are averaged over 10 programs
generated from GP.

The following subsections describe how we applied GP to the
robot learning problem.

4.1.1 Fitness function

Each robot program is given a limited amount of time to be
executed in the simulation before its fitness is evaluated. The
fitness of a robot program is measured as its ability to go to the
target at the end of the run. A fitness function f defined as
follow.

fw) = [100; d(v,tip) <2
- HOO—d(V,tip); otherwise
where

d(v1, v2) is the distance between point v1 and v2.

For the program evolved with multiple configurations, the
fitness function is the summation of the fitness function f
evaluated from each configuration. The program is accepted as
a solution when all three arms can use it to reach the target.

4.1.2 Terminal and function set

The structure of a program obtained from GP is a tree. Each
node of a tree in GP population is an executable unit in a
terminal or function set. GP composes a program from items in
both sets. In our work, each node in the sets returns Boolean
value. The terminals set contains robot movement and sensing
primitives. Items in the terminal set are listed in Table 1. The
function set contains basic control flow primitives. Items in the
function set are listed in Table 2.

4.1.3 Genetic parameters

The genetic parameters listed in Table 3 are fixed for all runs.
The evolution will stop if the solution is found or it reach the
maximum generations. In the latter case, the evolution will be
rerun. These genetic parameters are just good enough for GP to
learn the task in reasonable amount of time. We did not try to
optimize the genetic parameters.

4.2 Measuring the Robustness

After the control program is obtained from simulation, the
robustness of robot programs was measured in the real world.
They are measure against five instances of the target-reaching
problems shown in Fig. 2. Those instances are the same as that
the robot had learnt. The different is that a real robot arm is
used to run the control program in this measuring phase.

Each program ran on the real robot arm for 10 times. A run
that has errors will be discarded. An error was occurred when
the robot vision cannot detect all the joints. A run was also
discarded when a robot arm cannot ‘escape’ from an obstacle

after it hits the obstacle. A program fails to work when it
cannot reach a target in a specified period of time and produces
no such errors.

Terminal Name
Closer

Operation

Return true if the tip of the robot is
closer to the target. Otherwise, return
false.

Rotate a shoulder, elbow, or wrist one
step clockwise. Return true if the
operation is successful. Otherwise,
return false.

Rotate a shoulder, elbow, or wrist one
step counterclockwise. Return true if
the operation is successful. Otherwise,
return false.

Return true if the tip is away from the
target. Otherwise, return false.

Return true if the last clockwise move
results in hitting an obstacle. Otherwise,
return false.

Return true if the last counterclockwise
move results in hitting an obstacle.
Otherwise, return false.

Return true if the tip is on the target
(i.e., the distance between them is
2 units). Otherwise, return false.

See Return true if the tip can see the target
(i.e., there are no obstacles between
them). Otherwise, return false.

Sp, Ep, Wp

Sm,Em,Wm

Farther

HitPT

HitNT

OnTarget

Table 1. Terminal set

Function name Operation

If, IfAnd, IfOr Basic control flow functions.

Not Evaluate its child and return the
negation.
Table 2. Function set

Name Value

Population 1,000 programs

The method used for
generating the first

Grow method with depth limit 4

generation

Crossover rate 80%
Reproduction rate 10%
Mutation rate 10%

Tournament selection with
tournament size 7
30 generations

Selection method

Maximum generation

Table 3. Genetic parameters
5. RESULTS

We limited the genetic learning time to 30 generations. For a
program that is for one simulated arm, it normally took less
than that to evolve a successful controller. In some cases,
30 generations are not enough to find the control program. For
a controller that could control three simulated arms to reach a
target, it took more effort. Effort also depends on the difficulty
of an instance of the problem. Some instances are more
difficult to evolve a successful program.

The real world is noisy. The robot arm did not move exactly
the same trajectories even it was using the same program.
There are errors from several sources. First, the model of the

robot is not accurate. The length of arm seen from the vision
system is varied due to the lens distortion. The joint step of the
robot arm is just the estimation of the real joint step. Second,
the robot vision detected different joint position due to variation
in lighting and shadows.

Table 4 shows the robustness measure from each map. The
robustness value obtained depends on maps. The average
robustness of the proposed method is 90%. Training with
multiple configurations can improve the robustness by 10%.

6. CONCLUSION

GP can create a robot control program. A control program
evolved from simulation is not robust in the real world. The
reason is because simulation is not accurate. However,
evolving a control program that does not rely on any inaccuracy
in simulation can create a robust control program. We
identified the main reason that causes the program to fail. To
improve the robustness, we evolved a control program that does
not rely on the robot configuration.

Robustness of a control | Robustness of a control
Instance program program
evolved with one evolved with three
configuration configurations
A 86 100
B 92 99
C 81 90
D 84 85
E 54 75

Table 4. Robustness of control programs in various maps
7. REFERENCES

Chongstitvatana P. (1998). “Improving Robustness of Robot
Programs Generated by Genetic Programming” in
Proceedings of IEEE Asian-Pacific Conference on Circuits
and Systems, pp. 523-526.

Chongstitvatana P. (1999). “Using Perturbation to Improve
Robustness of Solutions Generated by Genetic
Programming for Robot Learning” in Journal of Circuits,
Systems, and Computer, volume (9), Nos. 1 & 2, pp. 133-
143.

Chongstitvatana P., Polvichai J. (1996) “Learning a Visual
Task by Genetic Programming”, in Proceedings of
IEEE/RSJ International Conference on Intelligent Robots
Systems (IROS-96), pp. 534-540.

Floreano D., Mondada F. (1994). “Automatic Creation of an
Autonomous Agent: Genetic Evolution of a Neural-
Network Driven Robot” in From Animals to Animats IIl:
Proceedings of the 3rd International Conference on
Simulation of Adaptive Behavior, SAB'94. MIT
Press/Bradford Books.

Jakobi N. (1998). “Evolving Motion-Tracking Behavior for a
Panning Camera Head” in Proceedings of the 5"
International Conference on Simulation of Adaptive
Behavior, August.

Jakobi N., Husbands P., Harvey I. (1995). “Noise and the
Reality Gap: the Use of Simulation in Evolutionary
Robotics” in Proceedings of the 3™ European Conference
on Artificial Life, pp. 704-720.

Koza J. (1992). Genetic Programming, volume (1).

Lee W., Hallam J., Lund H. (1997). “Applying Genetic
Programming to Evolve Behavior Primitives and
Arbitrators for Mobile Robots” in Proceedings of the 1997
IEEE International Conference on Evolutionary Compu-
tation, pp. 501-506.

Lozano-Peréz T., Jones J., Mazer E., O’Donnell P. (1992).
Handey: a robot task planner.

Lund H., Hallam, J. (1997). “Evolving Sufficient Robot
Controllers” in Proceedings of the 1997 IEEE International
Conference on Evolutionary Computation, pp. 495-499.

Nolfi S., Floreano D., Miglino O., Mondada F. (1994). “How
to Evolve Autonomous Robots: Different Approaches” in
Evolutionary Robotics, Proceeding of Artificial Life IV,
pp. 190-197.

Nordin P., Banzhaf W. (1997). “Real Time Control of a
Khepera Robot wusing Genetic Programming” in
Cybernetics and Control, Vol 26 (3), pp. 533-561.

Suwannik W., Chongstitvatana P. (2000). “Improving the
Robustness of Evolved Robot Arm Control Programs
Generated by Genetic Programming” in Proceedings of
International Conference on Intelligent Technologies.

