
EVOLVING CONTROL PROGRAMS FOR A BIPED STATIC WALKER

Chanchai CHAISUKKOSOL, Prabhas CHONGSTITVATANA
Department of Computer Engineering

Chulalongkorn University, Bangkok 10330. Thailand
Tel: (662) 218-6983 Fax: (662) 218-6955

42702899@student.netserv.chula.ac.th, prabhas@chula.ac.th

Abstract: This work presents an automatic method to
synthesis robot control programs. The proposed method
is based on Evolutionary Computation. The problem of
biped robot walking is chosen to test the proposed
method. Walking motion is divided into six stages and
the evolution of control programs is carried out stage-
by-stage. The locomotion is restricted to forward walking
on the flat and smooth surface with static balance. The
synthesis process consists of both simulation and the
experiment with a real robot. The result of the
experiment shows that the biped walking is achievable
and stable.

Keywords: Evolutionary computation, biped robot
walking, static balance walking.

1. INTRODUCTION

Automatic programming for a robot to achieve a task has
been a long-term goal of robotic research community.
Programming a robot by human is difficult and error
prone. Modern robots are very complex, some robot has
sophisticated mechanisms that enable it to perform
human tasks such as the humanoid robot P2 by Honda
(Hirai, et al, 1998). The limitation of using these robots is
the difficulty in programming them to achieve a desired
task.

Evolutionary Computation is a family of algorithms,
some of which can produce solutions in the form of
“programs”. It is applicable to robot problems. Many
works have been demonstrated, for example, (Koza and
Rice, 1992; Davidor, 1990; Chongstitvatana and
Polvichai, 1996). Evolutionary Computation can be
regarded as a weak search method. It is effective for a
wide range of problems such as symbolic regression, job
scheduling, robot control and so on.

Evolutionary Computation is a search method based on
population. A number of candidate solutions are evolved
generation by generation to converge to a final solution.
The search is guided by the measure of goodness of
candidate solutions, called “fitness function” which is
defined for a particular problem to be solved.

Many problems in robot program synthesis that have
been attempted using evolutionary computation are the
problems that have low number of degree of freedom and
mostly are the work in simulation. This is because of the
high cost of computation and the huge number of
candidate solutions to be evaluated. It is well known that
transferring the solution from simulation to the real
world is not very successful (Brooks, 1991a). Many
aspects of the real world can not be sufficiently

simulated. To improve the success rate, the real world
should be engineered such that the simulation can predict
the effect in the real world with high degree of accuracy.
This is difficult if not impossible in many tasks which
robots are intended to be used.

This work proposes to synthesis programs for a biped
static walker. This task is chosen because it contains
high degree of freedom. A walking robot is interesting
because it can travel in many terrain that are not
accessible to a typical wheel-based mobile robot. A biped
robot is also more appropriate in the area that is
constructed for human, such as in a car, in a tunnel, on an
elevator etc. A biped is deemed to be more difficult to
control than a multilegged robot as it has to perform
balancing with minimum degree of redundancy. Genetic
Algorithm is used to synthesis programs. The walking
task is divided into stages and the program is synthesized
stage-by-stage. In each stage, the solutions from
simulation are validated using the experiment in the real
world. These validated solutions become the initial state
of the next stage of the synthesis. This is the key to
improve the transferring of solutions form simulation to
the real world. The subsequent sections explain the
proposed method in more details.

2. RELATED WORKS

There are many works on generating robot programs.
Genetic Algorithms (GA) and Genetic Programming
(GP) two of the most popular methods in Evolutionary
Computation are widely used. Hirai, et al, (1998)
developed a humanoid robot that has full body, head
arms, and legs. It could walk perfectly like human, it
could walk up and down the staircase, turn left and right,
and walk on any surface. This robot, however, used
manual programming. Chongstitvatana and Polvichai
(1996) demonstrated the automatic generating of robot
programs by using Genetic Programming (GP). The
robot is 3-joint arm moving in two dimensions.
Experiments were performed in simulation, and the
results were validated in a real robot.

There are many works on generating robot program to
control biped locomotion. Zheng, et al, (1988) developed
biped walking from a level surface to sloping surfaces
with positive gradients. Inaba, et al, (1995) constructed
an ape-like biped that can walk with static balance. Kun
and Miller (1997) applied neural network to perform
adaptive static balance of biped walking.

Regarding works that apply GA to solve the biped
walking problem. Cheng and Lin (1995) developed a
walking robot with dynamic balance. In his work, GA is

applied to search for control gains and nominal trajectory
for a 5-link biped locomotion. The aim is to walk in
different constraints, such as, walking on an incline
surface, walking at a high speed, and walking with a
specified step size. The biped is experimented in
simulation. Rodrigues, et al, (1996) used GA to find the
minimum torque that is necessary for walking. The
fitness function is defined as similarity between the ideal
posture and the actual posture. The experiment is also
performed in simulation. Arakawa and Fukuda (1996,
1997) focused on using GA to produce a natural motion
trajectory and optimize walking energy. The learning
system was performed in simulation and the result was
confirmed by the real robot.

Most researches experimented only in the simulation. In
this work, there are both simulation and real world
included in the experiment.

3. GENETIC ALGORITHMS

Genetic Algorithms (GA) (Goldberg, 1989) is a subfield
of Evolutionary Computation. A candidate solution,
called “individual”, is a string. The process of GA is
shown in Fig 1.

Initial Population
Repeat

Fitness Evaluation
Selection
Crossover
Mutation

until (Terminated condition)

Fig. 1. Process of GA.

First, a number of individuals, called “population”, are
initialized as the first generation. All individuals are
evaluated to find their fitness. The genetic operators—
crossover, and mutation—are applied to produce the next
generation. The population in the next generation is
evaluated again. Selection, crossover, and mutation are
executed repeatedly until the terminated condition is
achieved.

There are many methods to select individuals. Generally,
individuals are selected according to fitness value. That
means the higher fitness individual is more likely to be
selected than the lower one. Nevertheless, this method
can cause all individuals to become similar to each other.
In this work, we use a selection, called “Combined Rank
Selection” (Winston, 1992).

The combined rank selection works as follows. The
individuals are ranked by their fitness. The highest fit
individual is then select as the first candidate. The
Hamming distance of all other individuals from the
selected candidate are then calculated. The individuals
are then ranked by their distance measures. The two
ranks--fitness and distance--are added then the next
candidate is selected based on this combined rank. This
process is repeated for the desired number of candidates.

Using this selection, the diversity of the population can
be maintained.

Crossover is an operation that exchanges some parts of
an individual with another one (see Fig. 2.a). For
mutation, some bits of a string are randomly changed
(Fig. 2.b). The mutation occurs by a small probability,
for example 0.001.

Fig. 2. Genetic operations

4. EXPERIMENT

The objective is to synthesis the biped robot control
program automatically. This work restricts the walking
task to the biped that can walk forward on the flat and
smooth surface with a static balance.

The experimental biped is 25 centimeter high, and the
area of the sole is 4.5 × 5.0 cm2. It has two hips, two
knees, and two ankles, rotated in sagittal plane (Fig. 3).
The biped does not have a torso, but it has a tail moving
in frontal plane. The reason for using a tail instead of a
torso is that the tail will lower the biped’s center of
gravity (C.G.), so the biped can keep its balance easier.

An individual contains two fields: a length, and a
sequence of walking commands.

Length a sequence of walking commands

The sequence of walking commands has the form:

m: r

where ‘m’ is motor command {0+, 0-, 1+, 1-, …, 6+, 6-}.
The biped has 7 motors numbered 0-6. The signs ‘+’ and
‘-’ mean increasing or decreasing angle of the motor by
‘r’, 0 ≤ r ≤ 150.

Walking motion of one step is divided in to six stages
(Fig. 4). GA is used to synthesize control program for
each stage step-by-step, called “stage evolution”
(Brooks, 1991b). With this approach, the fitness function
can be set appropriately with the subgoal of each stage.
Thus, the final solution can be achieved more rapidly.

0101 10
1001 01

0101 01
1001 10 010110

010100

(a) Crossover (b) Mutation

Fig. 3. Biped construction

0

1

2

3

4

5

6

The initial biped posture is standing on two feet. In the
first stage, the robot shifts its weight to the right foot. In
the second stage, it lifts the left leg. The third stage, it
lays down the left leg. The fourth stage, the robot shifts
its weight to the left foot. The fifth and sixth stage it lifts
the right leg and lays it down. After the final stage, the
posture is adjusted to be similar to the initial posture. The
sequence of control can be repeated to create a
continuous walk.

There are two types of fitness function: general fitness
function, and particular fitness function. Both fitness
functions are minimized function. The general fitness
function consists of three variables:

Fit = k1F + k2R
k3 T

where F = 1 when the robot falls otherwise 0, R = 1
when the robot turns otherwise 0, T is the duration that
the robot can achieve stable walk, k1, k2, k3 are
appropriate constants. The general fitness function
promotes the behavior that is stable and walk straight
without turning.

The particular fitness function for each stage is shown in
Table. 1.

F1 = ΔSR ΔSR =)()(22
zzxx prcgprcg −+−

F2 = kΔz + Δy
Δz =) step_size - (prpl zz +

Δy = - groundply

F3 = Δy + penalty Δy = - groundply

F4 = ΔSL ΔSL =)()(22
zzxx plcgplcg −+−

F5 = kΔz + Δy
Δz = zz - prpl

Δy = - groundpry

F6 = kΔy + Δz
Δz = zz - prpl

Δy = - groundpry

Table. 1. Particular fitness function for each stage
where
cgx , cgz is the position of C.G. by X and Z axis
plx, ply , plz is the position of center of the left sole by

X, Y, and Z axis
prx, pry , prz is the position of center of the right sole by

X, Y, and Z axis

step_size is the length of stride (2.5 cm. in the
experiment)

penalty is the penalty value if the robot shifts its
weight from the right foot.

ground is the position of ground level (Y axis)
k is constant

The motivation for each particular fitness function is as
follows. For the first stage, the robot must shifts its C.G.
to the right foot. The function F1 measures the distance
between C.G. and the center of the right foot (ΔSR). In
the second stage, the robot lifts the left leg and moves it
forward. The function F2 measures the distance of the
left foot in front of the right foot (Δz). The variable Δy
controls the height of the left foot from the ground. The
step_size is used to limit the length of stride to prevent
the subsequent difficulty in transferring the weight to the
right foot in the fourth stage. In the third stage, the left
foot is laid down to the ground. The function F3
measures the height of the left foot from the ground (Δy).
The penalty value is used to prevent the robot from
shifting its weight to the left foot. If this happens the
robot will sway its body to the left side. In the fourth
stage, the robot moves its C.G. from the right foot to the
left foot. F4 is similar to F1 but alternate left and right.
The fifth stage is similar to the second stage but alternate
left and right. The right foot is not placed forward, the
step_size is zero. The robot lays down the right foot in
the sixth stage. The variable Δz is used to prevent the
right leg to move backward or forward.

Evolving the control programs in the simulation is
necessary. The experiment with an actual robot takes a
very long time as the number of candidates to be
evaluated is up to 100,000. However, the solution from
simulation alone does not yield programs that works in
the real world. The experiment with the real robot is
combined in the simulation to increase the success rate.
At the end of each stage of evolution, the experiment
with the real robot is performed to validate the solutions.

GA is run in each stage of evolution in the simulation
(Fig. 5). GA generates the solutions with some

Final Solutions

Simulation Real Eexperiment

…… ……

stage 1 stage 1Solution

stage 2 stage 2
Solution

stage 6 stage 6Solution

1

1 1 2

1 2 3 4 5 61 2 3 4 5

Fig. 5. Simulation + real world

stand on
two feet

1. shift
weight to the

right foot

2. lift and
move the
left leg

4. shift
weight to the

left foot

5. lift and
move the
right leg

3. lay down
the left leg

6. lay down
the right leg

Fig. 4. Six stages of walking motion.

variations. As the simulation ignores many aspects of
the real world, many solutions from the simulation
simply fail. However, some solution has a chance of
success. The experiment with the real robot is performed
to select only the solutions that work in the real world to
be further evolved to the next stage. Each validated result
becomes an initial state of the next walking stage. After
six stages, the complete solutions will emerge. The
number of different solutions from each stage is retained
to the next stage hence there are many different complete
solutions at the end. This method combines the
advantage of simulation (speed) with the advantage of
the experiment with the real robot (validity).

For the experiment with the real robot, the human
observation is used to score the behavior of the robot.
There are 2 types of criteria in observing the real
behavior: general criteria used in every stages, and
particular criteria used in each stage. The general
criteria judges the stability and the direction of the walk.
The observer asks the questions “Does the robot fall?”
and “Does the robot turn?”. The particular criteria are set
differently for each subgoal of each stage, as shown in
Table 2.

stage particular criteria
1 Is C.G. shifted to the right foot?
2 Is the left leg lift forward?
3 Is the left foot on the ground?
4 Is C.G. shifted to the left foot?
5 Is the right leg move forward?
6 Is the right foot on the ground?

Table 2. Particular criteria for each stage

The GA parameters are shown in Table 3.

Population size 500
Generation 200
Crossover probability 1.0
Mutation probability 0.001

Table. 3. GA parameters

Because an individual can contain redundant motions,
such as moving a joint back and forth or repeating the
same joint motion, edit operations are performed after its
fitness evaluation. The edit operations are 1) eliminate
redundant motions and 2) simplify repeating joint
motions. These operations help to maintain the
compactness of the representation.

5. RESULT

The robot can walk continuously more than 15 steps,
with the speed 40 second per step. Figure 6 shows an
example of a full step. Figure 7 shows the movement of
C.G. during a one-step walk. The solid line shows the
foot that is on the ground. The dotted line shows the foot
that is lifted. This figure is drawn from the simulation
result. It can be seen that the stability of biped
locomotion is marginal, especially in the stage 2 - 4.

At the end of each stage in the simulation, 20 individuals
are selected to be validated with the real robot. An
average number of successful individual in the
experiment with the real robot of each stage is 7. We
found that even without the general fitness function, the
final solution could still be achieved.

The fourth stage is the most difficult stage to evolve. The
robot must transfer its weight to another foot. It becomes
more difficult when the length of stride is large. The
length of stride is determined by the fitness function in
the second stage. Sometimes, the unexpected behavior
emerges in the fourth stage such as moving the leg
backward before the weight transfer.

6. CONCLUSION

In this work, we investigate a method to automatically
generate control programs for a walking biped. Walking
motion is divided into six stages. GA is used to
synthesize the robot control program stage-by-stage. The
fitness function is set differently and appropriately in
each stage. This work uses simulation combined with the
experiment in a real robot. The results show that the real
robot can achieve a stable and continuous walk.

The experiment in the real world is used to select and
validate the result from the simulation. The cooperation
between simulation and real world experiment is the key
to achieve a solution that works in the real world.

Initial posture Stage 1

Stage 6

Stage 4Stage 3

Stage 2

Stage 5

Fig. 6. Result.

7. REFERENCES

Arakawa T., Fukuda T. (1996). “Natural motion
trajectory generation of biped locomotion robot using
genetic algorithm through energy optimization”,
Proc. of IEEE Int. Conf. on Systems, Man and
Cybernetics, Vol. 2, pp. 1495 -1500.

Arakawa T., Fukuda T. (1997). “Natural motion
generation of biped locomotion robot using
hierarchical trajectory generation method consisting
of GA, EP layers”, Proc. of IEEE Int. Conf. on
Robotics and Automation, Vol. 1, pp. 211 - 216.

Brooks R. A. (1991a). “Artificial Life and Real Robots”,
Towards a Practice of Autonomous Systems:
European Conference on Artificial Life, Paris,
France, MIT Press, December, pp. 3 - 10.

Brooks R. A. (1991b). “Intelligence without
representation”, Artificial Intelligence, 47, pp. 139 -
160.

Cheng M.-Y., Lin C.-S. (1995). “Genetic algorithm for
control design of biped locomotion”, Proc. of Int.
Conf. on Intelligent Systems for the 21st Century,
Vol. 2, pp. 1315 -1320.

Chongstitvatana, P., Polvichai, J. (1996). “Learning a
visual task by Genetic Programming”, Proc. of
IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems, Vol. 2, pp 534 - 540.

Davidor Y. (1990). “Robot programming with a genetic
algorithm”, Proc. of IEEE Int. Conf. on Computer
Systems and Software Engineering, pp. 186 - 191.

Goldberg D. E. (1989). “Genetic Algorithm in Search,
Optimization, and Machine Learning”, Addison
Wesley.

Hirai K., Hirose M., Haikawa Y., Takenaka T., (1998).
“The development of Honda humanoid robot”, Proc.
of IEEE Int. Conf. on Robotics and Automation, Vol.
2, pp. 1321 - 1326.

Inaba M., Kanehiro F., Kagami S., Inoue H., (1995).
“Two-Armed Bipedal Robot that can Walk, Roll
Over and Stand up”, Proc. of IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems, Vol. 3, pp. 297 -
302.

Koza J. R., Rice J. P. (1992). “Automatic programming
of Robots using Genetic Programming”, in Proc. 10th

National Conf. on Artificial Intelligence, pp. 194 -
201.

Kun A. L., Miller W. T. (1997), “Adaptive Static
Balance of a Biped Robot Using Neural Networks",
Proc. of the Int. Conf. on Robotics and
Manufacturing (IASTED), Cancun, Mexico, May 29-
31, pp. 245 - 248.

Rodrigues L., Prado M., Tavares P., Da Silva K., Rosa A.
(1996), “Simulation and control of biped locomotion-
GA optimization”, Proc. of IEEE Int. Conf. on
Evolutionary Computation, pp. 390 - 395.

Winston, P. (1992). “Artificial intelligence”, Reading
MA: Addison-Wesley, pp. 505 - 528.

Zheng Y. F., Shen. J., Sias F. (1988). “A motion control
scheme for a biped robot to climb sloping surfaces”,
Proc. IEEE Int. Conf. on Robotic and Automation,
Vol. 2, pp. 814 - 816.

Initial Posture Stage 1

Stage 3Stage 2

Stage 4 Stage 5

Stage 6 Reinitiate Posture

Fig. 7. Movement of C.G.

