
Abstract--We propose a new method for the use of genetic
algorithms to synthesize a finite state machine consistent with a
given input/output sequence set. Our approach improves the
method previously used by many researchers by omitting the
evolution of complete FSM but rather evolve only the state
transition function. The output will later be inferred from the
input/output sequence set. The results show that our method is
able to solve a much larger problem size than the previous
approach.

Keywords: Grammatical Inference, Finite State Machine,
Genetic Algorithm

I. INTRODUCTION

We propose the use of genetic algorithms to solve the
problem of synthesizing a finite state machine consistent with
a given input/output sequence set. Our motivation is to mimic
the target machine by synthesizing a machine that is
consistent with partial input/output sequences observed from
the target machine. Some researchers have attacked this
problem. Manovit [1] show that longer length of sequence
yields higher percentage of the correct machine.
Chongstitvatana and Aporntewan [2] also show that multiple
input/output sequences should be used to improve the
correctness percentage. Aporntewan and Chongstitvatana [3]
also made an online evolvable hardware using GAs to search
for the circuit that satisfying the input/output sequence set.

Finding a FSM consistent with given input/output sequences
is a problem in the field of grammatical inference (GI). GI is
about the inference of any structure that can recognize a
language. These structure may be a finite state automaton, a
grammar or a push down automaton, etc. Many researchers
have worked on the GI. Some related works are summarized
here.

It is well known that finding a minimum size deterministic
finite automaton consistent with a set of given samples is NP-
complete [4]. Furthermore, Pitt and Warmuth [5] show that
even finding a DFA whose size is polynomial on the size of
minimum solution is also NP-complete.

Oliveira and Silva [6] propose an improved search method
over a method proposed by Biermann [7]. Their method is
known to be the current state of the art on finding a minimum
size FSM that is consistent with a given input/output
sequence set.

Lang, et al [8], propose an algorithm called “blue-fringe”
which is based on the idea of state merging. This method
constructs a prefix tree that describes the given positive and

negative example and then folds it up by merging compatible
pairs of state. This method is able to handle a large size of
problem (512 states).

Fogel, et al [9], use the evolutionary programming to infer
finite-state automata. Some researcher also try other form of
automata, e.g. Langhorst [10] used GAs for the induction of
pushdown automata to recognized the given language

Recently, Chongstitvatana and Aporntewan [2] attacked on
more realistic problem by using GAs to synthesize a Mealy
mode FSM which has multi-bit input/output. However, their
method is able to solve only small sizes of FSM. Our work
intends to improve the method of using GAs to synthesize a
FSM.

The next section gives a basic definition used in this paper.
Section 3 presents the use of GAs in the synthesis method
and our improvement. Section 4 describes the experiment and
its result. Finally, the last section provides the conclusion of
this work.

II. BASIC DEFINITION

In this section, we give the problem statement and the
definitions that will be used in this paper.

A. Definition
We use the definition of finite state machine as used by
Hopcroff and Ullman [11] as described here.

Definition 1 A Mealy machine is a six-tuple (Q,Σ,∆,δ,λ,q0)
where Q is a set of states, Σ is the input alphabet, ∆ is the
output alphabet, δ(q,a) : Q � Σ→Q is the transition
function, and λ (q,a) : Q � Σ→ ∆ is the output function.

We assume that the size of Q is m, the size of Σ is n and the
size of ∆ is o. We use q to denote a particular state, a to
denote a particular input and b to denote a particular output.

Definition 2 An input/output sequence S of length n is a set
of pairs {(i0,o0), (i1,o1),…, (in,on)} where (ii,oi) � Σ � ∆. An
input/output sequence set ζ is a set of S.

In this paper, we use M to denote a target FSM and M’ to
denote a evolving FSM. A finite state machine M =
(Q,Σ,∆,δ,λ,q0) is said to be consistent with an input/output
sequence S iff oi = λ(q0,i0i1i2…ii) for all 0 ≤ i ≤ n.

Nattee Niparnan, Prabhas Chongstitvatana

Computer Engineering Department

Chulalongkorn University

Bangkok, Thailand

nattee.n@student.chula.ac.th, prabhas@chula.ac.th

An Improved Genetic Algorithm for the Inference of Finite State Machine

B. Problem Statement
Given the input/output sequence set ζ, which composes of a
number of input/output sequences randomly generated from a
target machine M, the task is to find a Mealy machine M’ that
is consistent with all elements in the set ζ.

III. GENETIC ALGORITHM FOR THE PROBLEM

In this section, we firstly describe the previous method of
using GAs to attack the problem, then we describe our
improvement of the method.

A. Basic Approach
The most obvious choice is to use GAs to evolve the entire
machine. Assume that we know the number of state in the
target machine in advance. Input and output symbols are
observed from the input/output sequence. We need to
consider are the transition function and the output function.
We encode the next state and the output for every transition
of M’. The next part to be considered is the fitness
evaluation. We want to reward FSMs that is consistent with
the given input/output set. The more that FSM is consistent,
the higher score it should get. The most obvious choice is to
feed the input sequences to the synthesized FSM then
collects the output produced by that FSM. The output
produced will be compared with the output in the sequence,
the fitness is the number of similar bit in both sequences. If
every bit in both sequences is the same, the synthesized FSM
will be consistent with the given sequence.

B. The Improvement
The main drawback of the basic approach described in
previous subsection is that the evaluation counts the number
of similar bits of the output on every step. This method, while
reasonable, is not effectively evaluate the FSM as it should
be. Let us consider a target FSM M = (Q,Σ,∆,δ,λ0,q0) with
binary input and output and a synthesized FSM M’ =
(Q,Σ,∆,δ,λ1,q0) which its output function λ1 = ¬ λ0. When
we evaluate M’ with sequences set ζ generated from M, the
result will always be very bad because the output of M’
always differs from the sequences. But, in fact, M’ is very
similar to M except the output label is inversed.

Actually we do not need to evolve the output of M’. Consider
again the M’ in last paragraph and let λ1 be undefined. If we
feed the sequence of S to M’, the output sequence of M’ will
be λ1(q0,i0), λ1(q1,i1), λ1(qb,i2),… λ1(qn,in) where n is the length
of sequence and qa,qb,…qn are the appropriate states that M’
steps over due to M’ transition function. Next, considering
the output of sequence S, the output sequence is o0, o1,…,on;
o0 is λ0(q0,i0), o1 is λ0 (qa,i1) and on is λ0(qn,in). Since the
Q,Σ,∆,δ and q0 of M and M’ are the same, it is easy to see that
for arbitrary state q and q’ and arbitrary input a and a’, the
output generated by M’ and the output of sequence S (which
was generated by M), λ1(q,a) will correspond to only one λ
(q’,a’). We can define λ1(q,a) as λ(q’,a’).

 In conclusion, if M’ transition is the same as M, we can
determine the output of M’ by feeding the input/output
sequence generated from M and define the output of M’ from
the output of the feeding sequence.

This situation led us to find a new way to synthesize M’. The
basic idea is that we omit the synthesis of the output function
completely and concentrate on the state transition function.
The output function for the M’ will be inferred from the
sequences.

C. Representation
Since we synthesize only the transition function, we will
represent only the transition function in our chromosome.
For a machine with m states and n input alphabets, the
number of transition of that machine is m � n. In this work,
we use binary representation for the transition function. For
each transition, the next state is encoded. The number of bits
required for each transition is  Σlog .

A chromosome consists of the concatenation of m by n
transition. Let m be the number of states and let n be the
number of input alphabets. The arrangement of transition is
shown in Figure 1

D. Fitness Evaluation
We evaluate the transition function by counting the “conflict”
of the output. Let λ1 be the output function of M’. If the
transition function is good, each of λ1(q,a) will be mapped to
only one value, if not λ1(q,a) may map to more than one
value, we call this as a “conflict”.

We maintain the output count table OC. The OC is a three
dimensions array by size of m � n � o for counting the
number of output which should be b for the transition of state
q on input a. The OC is initially zero for every element. For
each input/output sequence, assume that the FSM currently is
in the state q, if the next input in the sequence is a and the
corresponding output is b, we will increase the OC[q,a,b] by
one. When all sequences are exhausted, OC[q,a,b] will be
the frequency of output that is b for transition of state q on
input a.

δ(q0,a0) δ(q0,a1) δ(q0,an) …

… δ (q1,a0) δ(q1,a1) δ(q1,an) …
.
.
… δ(qm,a0) ∆(qm,a1) δ(qm,an)

Fig. 1. Chromosome Representation

Formally, if for all x � ∆ there is one or none of OC[q,a,x]
that is more than 0, we will say that there is no conflict on λ
(q,a). On the other hand, if there is more than one of OC
[q,a,x] that is more than 0, we will say that there is a conflict
on λ (q,a).

We will illustrate the process of calculating OC on a small
example. Let us look at Figure 2 that shows an evolving state
machine M’. Assume that we have an input/output sequence
{(0,0),(0,1),(1,1),(0,0),(1,0),(0,0),(1,0)}. We start at state A.
The first input/output pair is (0,0) so we increase OC[A,0,0]

by one. From the transition of M’, we proceed to state B. The
next input/output pair is (0,1) so we increase OC[B,0,1] by
one. From the transition of M’, our machine is still in state B.
We repeat this process until all input/output pairs are
consumed. Table 1 shows the OC after the evaluation.

Next, we must infer the output of M’. We must define λ1(q,a)
for every state q on every input a. OC is used to infer the
output. Consider an arbitrary state q and an arbitrary input a,
and OC[q,a,x] for all x � ∆. The value of OC[q,a,x] can be
divided in to 3 cases. First case: for all x � ∆, OC[q,a,x] =
0, it means that the input sequences never use the transition
of state q on input a, so we can set λ1(q,a) to anything.
Second case: for all x � ∆, there is only one OC[q,a,x] that
is more than 0. It means that every time the transition of state
q on input a is used, there is only one value of output. Let x’
be the x that made OC[q,a,x] > 0, the required output is x’.
So we set λ1(q,a) to x’. The last case: if for all x � ∆, there is
more than one OC[q,a,x] that is more than 0, this case is a
conflict. Let x’ be the x that maximize OC[q,a,x], that is, the
most frequent output of the transition of state q on input a is
x’. Setting the output the transition of state q on input a to x’
will cause the least error. So, we set λ1(q,a) to x’ for this case.

Fig. 2. Evolving State Machine

From all cases described, we infer the output for each
transition as follow. Let x’ be the x that maximize OC[q,a,x]
for all x � ∆, define λ(q,a) as x’.

TABLE I
OUTPUT COUNT TABLE

State A State BInput
Output 0 Output 1 Output 0 Output 1

0 3 0 0 1
1 0 0 2 1

Let us look again at the previous example. This time we will
define the output function λ1 for the machine M’. After the
process of feeding the input/output sequence, we have the
output count table as shown in Table 1. For the transition of
state A on input 1, we see that both the OC[A,1,0] and the
OC[A,1,1] are zero. Therefore we can set λ1(A,1) to anything.
Next, consider the transition of state A on input 0 and the
transition of state B on input 0. Both of them have only one
output count that is more than zero. Therefore we set λ1(A,0)
and λ1(B,0) to 0 and 1 respectively. Finally, the transition of
state B on input 1, we have a conflict. Both output counts are

more than zero. Therefore we set λ1(B,1) to 0, since 0 is the
most frequent output used.

The output count table also indicates the goodness of the
transition function on the input/output sequence set. We
define fitness function as follow, let T be the transition
function.

The idea is that for a transition with no conflict, we reward a
score on how frequent that transition is used. For the
transitions that generate a conflict, we reward a score on how
severe is the conflict. If the conflict is severe (the required
output is uniformly distributed among the output alphabet ∆),
we will reward low score. If the conflict is small (the required
output is mostly b1 and few for b2,b3, etc.), we will reward
high score.

For input/output sequence set ζ of x strings of length y each,
this function would yield a value of x � y for the transition
function T that generate no conflict at all. When we assign
the output function λ for T as described in the previous
paragraph, we will get a FSM that is consistent with S.

IV. EXPERIMENT AND RESULT

We test our method with three set of problems, each of which
composes of randomly generated finite state machines. These
FSMs were reduced and their unreachable states were
removed. The reduction resulted in FSMs with their states
vary from 2 to 32 states. All machines in the set 1 have one
bit output, all machines in the set 2 have two bits output and
all machines in the set 3 have three bits output. Every
machine has one bit input. For each FSM, we randomly
generate input/output sequence set. Each set composes of
twenty strings of length 30 resulting in 600 pairs of
input/output mapping. We applied our method on every set.
For each set, 10 runs were performed with at most 5,000
generations per each run for problem in the set 1 and 10,000
generations for problems in the set 2 and 3.

From our preliminary study, we noticed that to evolve a
transition function capable of handling a sequence generated
from a FSM of size m, if the size of M’ is slightly larger than
m, the solution could be found faster. If the size of M’ is too
large, this gain of speed will drop. So, we assigned a size of
M’ according to the size of M as shown in Table 2.

TABLE II
SIZE OF GENE

Size of M Size of M’ Gene’s Size
3-15

16-31
32

16
32
64

128
320
768

We use a rank-based selection method. The number of
individuals in each generation is 100. The single point

∑∑
= =

=

m

i

n

j
objiOCbjiOCbjiOCTF

1 1
21]),,[],...,,[],,,[max()(

A

1 0

0

1

B

crossover is used with probability of 0.5 and the mutation
rate is 0.1.

Our experiments were performed on 833MHz Pentium with
256 Megabytes of memory running Linux. The problem
which we could not find the solution took approximately 1
hour of execution time.

We compare our method with the method described in
Section 3.1 called the reference method. For both methods,
we use the same set of problems and parameters. Figure 3
shows the number of average generation used by our method
(labeled Imp.) and the reference method (labeled Ref.) to
produce the answer for the problem set 1. The run which
does not produce a correct solution is also included in the
calculation of the average value. A value of 5,000 indicates
that the method is not able to solve the problem. For ease of
comparison, the problems were sorted by the number of
generations used by the reference method, so the graph of the
reference method is a smooth and increasing function.
Problem set 1 has 400 problems. Our method was able to
solve 192 problems while the reference method solved only
162 problems.

Fig 3. Average Generation Used for Set 1

Fig. 4. Fraction of Problem Solved for Set 1

Figure 4 shows the percentages of problems solved according
to the number of state in the target machine. The largest size
that we are able to solve is 19 states while the reference
method is able to solve only up to the size of 15 states. For
one bit input and output, our method is slightly better than
the reference method. However, the improved method does
not show much of its power in the case of one bit output.
Next, we perform an experiment on the problem set 2, which
has 2 bits output.

Fig. 5. Average Generation Used for Set 2

Fig. 6. Fraction of Problem Solved for Set 2

Figure 5 and 6 show the average generation used and the
fraction of problem solved for the problem set 2 respectively.
A value of 10,000 indicates that the solution could not be
found. For the 2 bits output problem set, our method shows
more improvement on the number of generations used.
Problem set 2 has a total of 200 problems. Our method solves
154 problems while the reference method solves 127
problems. The largest size that our method is able to solve is
20 while the reference method’s largest size is 16.

Fig. 7. Average Generation Used for Set 3

Figure 7 and 8 show the average generation used and the
fraction of problem solved for the problem set 3. A value of
10,000 indicates that the solution could not be found.
Problem set 3 composed of 200 machines with 3 bits output.
Again, we can see clearly the improvement. Our method
solves 166 problems while the reference method solves 127
problems. The largest size that our method and the reference
method can solve are both 20.

Fig. 8. Fraction of Problem Solved for Set 3

V. CONCLUSION

In this work, we presented a new approach of using the GA
in the problem of inferring the finite state machine that is
consistent with a given input/output mapping. This approach
addresses some limitations in the previous methods used by
many researchers. Our method mainly reduces the search
space in the problem and guides the search process in a more
accurate direction.

We attack realistic problems by picking the Mealy FSM,
since most digital circuit design use the Mealy FSM. We also
interest in the multi-bit output over the single bit output.

From the experiment, the improved method reduces the
average generation used to find a solution. It also increases
the problem size that GA can handle. The improved method
can solve the problem of larger size than the reference
method. The improvement of our method can be clearly seen
on the multi-bit output since we reduce the effort used for the
output part.

Please note that, the goal of this method is to synthesize a
machine that is consistent with a given input/output sequence
set. We do not aim to synthesize a machine that is equivalent
with the target machine. We do not measure the correctness
of the solution and the target machine. However, we can use
larger and longer size of input/output sequence set to increase
the correctness of the solution (Chongstitvatana and
Aporntewan 1999).

REFERENCES

[1] C. Manovit, C. Aporntewan, and P. Chongstitvatana,
“Synthesis of synchronous sequential logic circuits
from partial input/output sequence,” in Proc. of Int.
Con. on Evolvable Systems, pp.98-105, 1998

[2] P. Chongstitvatana, and C. Aporntewan, “Improving
correctness of Finite-state machine synthesis from
multiple partial input/output sequences,” in Proc. of the
1st NASA/DoD Workshop of Evolvable Hardware,
pp.262-266, 1999

[3] C. Aporntewan and P. Chongstitvatana, “An on-line
evolvable hardware for learning finite-state machine,”
in Proc. of Int. Conf. on Intelligent Technologies,
pp.125-134, 2000

[4] E. M. Gold, “Complexity of automaton identification
from given data,” Inform. Control, Vol. 37, pp.302–
320, 1978

[5] L. Pitt and M. Warmuth, “The minimum consistent
DFA problem cannot be approximated within any
polynomial,” Journal of ACM, Vol. 40(1) pp.95–142,
1993

[6] A. L. Oliveira and J. P. M. Silva, “Efficient Algorithms
for the Inference of Minimum Size DFAs,” Machine
Learning 44, pp.93-119, 2001

[7] A. W. Biermann and J. A. Feldman, “On the synthesis
of finite-state machines from samples of their
behavior,” IEEE Transactions on Computers, Vol. 21
pp.592–597, 1972

[8] K. L. Lang, B. A. Pearlmutter and R. Price, “Results of
the Abbadingo One DFA learning competition and a
new evidence driven state merging algorithm,” in
Fourth International Colloquium on Grammatical
Inference, volume 1433 of Lecture Notes in Computer
Science, pp 1-12, 1998

[9] L. J. Fogel, A. J. Owens and M. J. Walsh, Artificial
Intel-ligence through Simulated Evolution, John Wiley
& Sons, 1966

[10] M. M. Lankhorst, “A genetic algorithms for the
induction of pushdown automata,” in Proc. of Int.
Conf. on Evolutionary Computation, Vol. 2, pp.741–
746, 1995

[11] J. Hopcroft and J. Ullman, Introduction to Automata
Theory, Languages, and Computation, 1979

	INTRODUCTION
	BASIC DEFINITION
	Definition
	Problem Statement

	GENETIC ALGORITHM FOR THE PROBLEM
	Basic Approach
	The Improvement
	Representation
	Fitness Evaluation

	EXPERIMENT AND RESULT
	CONCLUSION
	REFERENCES

