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 Abstract – Diffuse large B-cell lymphoma (DLBCL) is the most 
common subtype of non-Hodgkin’s lymphoma.  It is possible to 
classify normal and DLBCL patients using the data from cDNA 
microarrays technique that monitoring gene expression.  
Machine learning techniques are well-known methods for 
classification tasks.  In this paper, we propose a Genetic 
Programming based method to generate classifiers with high 
accuracy.  The proposed method employs cluster of classifiers to 
vote for the result.  Furthermore, the classifier is presented in 
form of a mathematical equation which is amendable to human 
interpretation. 
 
 

I.  INTRODUCTION 
 
 Diffuse large B-cell lymphoma (DLBCL) is the most 
common subtype of non-Hodgkin’s lymphoma. Less than 50% 
of DLBCL patients respond well to current therapy and have 
prolonged survival [1]. Many researchers attempt to study 
their special feature and try to identify normal and DLBCL 
patients automatically. 
 Alizadeh et al. [2] showed that there is diversity in gene 
expression among the tumours of DLBCL patients using 
complementary DNA (cDNA) microarrays technique. They 
identified two molecularly distinct forms of DLBCL such as 
germinal centre B-like (GC B-like) DLBCL and activated B-
like DLBCL. 
 Azuaje [3], [4]  proposed an automated approach to 
prediction and discovery of classes of cancer based on the 
processing of gene expression data generated by Alizadeh et 
al. Using artificial neural learning known as Simplified Fuzzy 
ARTMAP (SFAM), it can provide an effective and efficient 
method for the prediction and discovery of cancer categories. 
 Many researchers [5], [6], [7] tried to develop cancer 
classification and clustering systems using machine learning 
techniques based on gene expression data. The systems are 
able to classify the data with high accuracy or cluster the data 
significantly.  However, the knowledge embedded in these 
classifiers are difficult to understand by human.   
 In this paper, we used Genetic Programming to generate 
classifiers for identifying normal and DLBCL from data 
generated by Alizadeh. The classifier is formed as a 
mathematical formula which makes it more understandable for 
human.  In conjunction with Genetic Programming, we have 
used cluster of classifiers with a voting strategy to improve the 
accuracy of classification. 

 The paper is organized as follows. Section II presents an 
introduction to Genetic Programming. Section III describes 
the data and method implemented in this research. Section IV 
shows the result of the experiment and conclusions are 
presented in Section V. 
 
 

II.  INTRODUCTION TO GENETIC PROGRAMMING 
 
 Genetic Programming [8] is a search method that imitates 
natural evolution and natural selection. It is developed from 
Genetic Algorithms [9] and is differed by the way the solution 
is represented in a tree structure instead of a fixed length 
binary string. The solution comprises of nodes from a function 
set and a terminal set. A function set is a set of operators 
designed for the problems such as arithmetic operators, logical 
operators, control functions, etc. A terminal set is a set of 
operands of function such as constant, variable, etc. The 
algorithm of Genetic Programming is shown in Fig. 1 and 
details of each step are as follows: 
 

A. Generate an initial population of solutions 
The initial solutions are created to full the population. The 

structure of a solution is a tree.  There will be a large variation 
of solution structures through the process of this random 
generation (Fig. 2). 
 

B. Evaluate each solution by a fitness function 
Each solution is evaluated to determine its fitness.  The 

evaluation function, called "fitness function", is an important 
element in Genetic Programming.  The fitness function is 
problem specific.  For example, for a symbolic regression 
task, the fitness function usually is the minimization of 
prediction error in the training set.  Each solution will have a 
measure of goodness associated with it.   
 

C. Create a new population by genetic operators 
Genetic operations on the population have the goal of 

generating a new population that has better quality solutions.   
There are three genetic operators:  reproduction, crossover, 
and mutation.   
 

Reproduction 
A number of good solutions are selected to be reproduced to 

the next generation.  This process conserves good solutions. 
 



Crossover 
This operator recombines parts from two good solutions, 

called "parents", to create new solutions, called "offspring".  
Two good solutions are selected, the probability of a solution 
being selected is proportional to its fitness.  The crossover 
points, which determine the location to exchange parts, are 
randomly selected.  The subtrees from parents are exchanged.  
This process creates two new offspring (Fig. 3). 

 
Mutation 
To maintain diversity in the population and to encourage 

exploration of different solutions, the mutation operator 
changes some part of a solution randomly.  A solution is 

selected randomly and a location to be changed is selected.  A 
part is mutated by replacing it with a small random tree (Fig. 
4). 

 
These steps are repeated until the termination criteria are 

met.  The termination criterion for the run may be defined by 
the best fitness value or a maximum number of generations.  
Throughout generations, the quality of solutions is improved. 
The result from each run is different as the search for a 
solution is probabilistic and the solution for this problem is not 
unique.  
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Fig.1. Genetic Programming algorithm 
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Fig.2. Solution in Population of Genetic Programming 

 
 
 
 

 
 

Fig.3. Crossover operator 
 
 
 

 
 

Fig.4. Mutation operator 

 
III.  THE DATA AND METHODS IMPLEMENTED 
 

In this research, we used the data generated by Alizadeh et 
al. [2]. The data is the expression levels from a number of 
genes using cDNA microarray technique.  The data is 
described in Section A.  Section B presents the feature of 
Genetic Programming classifier. Section C shows the details 
of parameters.  The evaluation of the result will be discussed 
in Section D. 

 
A.   cDNA microarray data 

 
The data consisted of 63 cases (45 DLBCL and 18 normal) 

described by the expression level of the genes: CD10, BCL-6, 
TTG-2, IRF-4 and BCL-2, which were used in the experiment 
of Azuaje [4].  These 5 genes have 13 environments in 
expression levels. Their values are defined as follows: 

 
)3(
)5(logexp_ 2 CyInt
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 where Int(Cy5) and Int(Cy3) are the intensities of red and 
green colors which are scanned after the hybridization of the 
samples with the arrayed DNA probes. The full data and 
experimental methods are available on the web of Alizadeh et 
al. (http://llmpp.nih.gov/lymphoma) 
 
B.  Genetic Programming classifier 
  
 A classifier is represented by a classification tree. The tree 
represented an arithmetic equation (Fig 5). It consists of 
symbols from the function set F and the terminal set T. The 
function set F comprises of arithmetic operators and the 
terminal set T comprises of 10 constants and 13 variables 
defined as follows:  F = {+, -, *, / } and T = { 0.. 9,  x1.. x13 
}. The variables represent the value of the expression level of 
genes in each environment. Each variable is defined in Table 
I. 
 

TABLE I 
 DEFINITION OF VARIABLE USED IN GP CLASSIFIER 

Variable Gene Clone_ID 
x1 
x2 
x3 
x4 
x5 
x6 
x7 
x8 
x9 

x10 
x11 
x12 
x13 

CD10 
CD10 
CD10 
BCL-6 
BCL-6 
TTG-2 
TTG-2 
IRF-4 
IRF-4 
BCL-2 
BCL-2 
BCL-2 
BCL-2 

200814 
1286850 
701606 
712395 
1340526 
712829 
685456 
270770 
1272196 
232714 
342181 
1336385 
342181 

 



 
C.  Parameters and Methods 
 
 The parameters of Genetic Programming runs used in the 
experiment are shown in Table II.  Initial population of 
equations is generated randomly.  Genetic operators are 
applied to create a new generation of population as described 
in Section 2.  The details of the process are as follows: 
 
 Fitness Function 
 To evaluate the fitness of a candidate, its equation is 
evaluated.  Its variables are instantiated as follows.  The 
variables (x1-x13) are from the cDNA microarray data. If the 
result of evaluating an equation is more than 0, it will be 
classified as Class 1 (DLBCL group). Otherwise it will be 
classified as Class 2 (normal group).  An equation is evaluated 
with data in the training set and the total number of the correct 
classification is counted as the fitness value of the equation.  
The term 1/size is included as a penalty for a large solution 
and to encourage a compact solution. The higher fitness value 
indicates the better solution. The fitness function defined as 
follow: 
 

)(
1)_(_
TreeSize

tionClassificaCorrectTotalvaluefitness +=      (2) 

 
 Selection 
 The Tournament Selection [8] is used in the experiment. 
The tournament size is 20. 
 
 Reproduction 
 The top 10% of high fitness value individuals will be 
selected to create a new generation. 

 
 Crossover 
 Two equations are selected with the selection method as 
described above. The crossover points are selected randomly 
to swap the structure of each equation at the crossover points. 
After crossover, if the size of equation is within the limit of 
the maximum size, it will be accepted to be in the new 
generation. Otherwise, it will be discarded. Crossover is 
repeated until the offspring are created equal to the target 
number. 

 

 
Fig.5. (left) The tree represented an arithmetic equation 

(right) The equation derived from the tree 

 
TABLE II 

 THE PARAMETERS WHICH BE USED TO CREATE THE CLASSIFIERS 
Population Size 1,000 
Maximum Size of Tree Not more than 20 times of the number of 

variables (20 x 13 = 260) nodes. 
Maximum number of 
Generation 

500 

Reproduction Rate 10% 
Crossover Rate 80% 
Mutation Rate 10% 
Termination Criteria Correctly classify the training data 100% 

or exceed the maximum number of 
generations 

 
 Mutation 
 An equation is selected and mutation is applied.  There are 
two types of mutation, they are defined as follows: 

1) Type1 Structure change mutation: a node in a tree is 
selected and replaces with a terminal node (0-9 or x1-
x13) randomly chosen.  

2) Type2 Value change mutation: a node is selected and 
replaces with a random choice from the symbol set of its 
own type. For example: if the value of node selected is 
an operator, it will be replaced by a value in function set 
randomly chosen. 

 
D.  Evaluation criteria 
 
 To evaluate the performance of a classifier, we used a 
method known as round robin or leave one out method [10]. 
There are 63 records of data, 62 records are used as training 
set and one record is used as a test. We exchange a test data 
through to 63 records and evaluate an equation in terms of its 
accuracy, sensitivity and specificity which are defined as 
follows: 
 

N
TNTPAccuracy )( +

=                           (3) 

)( FNTP
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=                          (4) 
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+

=                          (5) 

 
 where N is a total number of tested cases, TP is a total 
number of DLBCL subjects correctly classified, TN is a total 
number of normal subjects correctly classified, FP is a total 
number of normal subjects classified as DLBCL and FN is a 
total number of DLBCL subjects classified as normal. 
 Accuracy indicates the effectiveness of a classifier for 
classifying all data correctly. Sensitivity indicates the 
effectiveness of classifier to classify DLBCL data correctly. 
Specificity indicates the effectiveness of a classifier for 
classifying normal data correctly. 
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IV.  EXPERIMENTAL RESULT 

 
 Each run of the experiment consists of 63 runs of different 
training data.  A genetic programming run consists of 63 runs, 
each run generates a best classifier for its training set.  Genetic 
Programming is a randomized algorithm and the result of each 
run is different. The experiment is repeated 10 times and 
averaged value of accuracy, sensitivity and specificity.  To 
improve the accuracy further we used a majority voting 
strategy from a number of different classifiers, all of which 
were from different run.  The number of classifiers is varied 
from 1, 3 and 5. The result is shown in Table III. The machine 
used in the experiment is a PC with 1.5GHz processor, 512 
Mbytes memory.  Each run takes on the average, 190 seconds.  
The total amount of time of the whole experiment is 
190×63×10 = 119700 seconds or 33.25 hours. 

Fig. 6.  The comparison of experimental result 
 
 

If   (  (  (  x13  -  (  (  4  -  (  (  (  x3  -  1  )  +  (  x2  *  x7  )  
)  -  x9  )  )  *  x12  )  )  +  9  )  +  (  (  (  (  x9  *  6  )  
+  9  )  /  (  (  (  x13  *  6  )  +  (  x10  /  x6  )  )  +  1  )  
)  -  x8  )  )  > 0    We compare this result with the result of Azuaje’s 

experiment in the best case (vigilance value (ρ) is equal to 
0.95) and found that the Genetic Programming classifier is 
more effective to classify the data. The best result comes from 
using 5 classifiers to vote.  The comparison of results is shown 
in Fig 6. An example of a Genetic Programming classifier is 
shown in Fig 7. Fig 8 shows the same classifier in a 
mathematical equation form.  The average size of a solution is 
89.5 nodes. 

Then 
 Class 1: DLBCL 
Else (include divide by 0) 
 Class 2: normal 
End If 

Fig. 7.  An example of  a Genetic Programming classifier 
 
 

 V.  DISCUSSION AND CONCLUSION 
TABLE III   THE EXPERIMENTAL RESULT 

 These results suggest that Genetic Programming classifiers 
can be useful for classifying DLBCL out of normal data. 
Furthermore, when a majority voting strategy is used in 
conjunction with Genetic Programming classifiers, the 
correctness of classification is improved. However, it takes 
more computation time to create many classifiers. 

Number of 
Classifiers 

Accuracy (%) Sensitivity (%) Specificity (%) 

1 
3 
5 

78.72 
84.91 
88.09 

83.10 
88.88 
92.22 

67.77 
74.99 
77.77 

 
 When a classifier is presented in an equational form, its 
meaning is more amendable to human interpretation.  The 
equation shows the relation of expression of each gene. These 
relationships may help us to understand which gene is 
important for the treatment of the disease. 
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Fig. 8.  A Genetic Programming classifier in a mathematical equation form 
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