
Real Options Approach to Finding Optimal
Stopping Time in Compact Genetic Algorithm

Sunisa Rimcharoen, Daricha Sutivong and Prabhas Chongstitvatana
Department of Computer Engineering

Chulalongkorn University
Bangkok Thailand

suni16@hotmail.com, daricha.s@chula.ac.th, prabhas@chula.ac.th

Abstract—The real options technique has emerged as an
evaluation tool for investment under uncertainty. It
explicitly recognizes future decisions, and the exercise
strategy is based on the optimal decisions in future periods.
The real options approach has been applied to many
economic and financial problems, but few are in computer
science and engineering. The novelty of this work lies in
applying real options to a computational problem. This
paper proposes using the real options technique to find an
optimal stopping decision for the compact genetic
algorithm. The compact genetic algorithm, a kind of
genetic algorithms, represents the population as a
probability distribution over a set of solutions. This
distribution automatically captures the underlying
uncertainty of the problem, which can be simulated to
obtain an evolutionary process of the algorithm. The
experiments show preliminary results of employing the real
options approach to determine the optimal stopping time
for the compact genetic algorithm. The proposed technique
can be applied to analyze other machine-learning
algorithms, such as neural networks or other variations of
genetic algorithms.

.

Keywords: real options, optimal stopping time, compact
genetic algorithm

1 Introduction
Genetic algorithms are becoming a common technique

to solve difficult real-world problems. In spite of many
useful practical applications, there are very few studies on
an optimal stopping time in genetic algorithms. For
example, Aytug and Koehler [1-2] estimated an upper
bound of the number of iterations required to achieve a level
of confidence to guarantee that a simple genetic algorithm
converges. Meyer and Feng [3] proposed a fuzzy stopping
criterion for genetic algorithm to establish the termination
condition. A critical review of the state-of-the-art in the
design of termination conditions can be found in Safe,
Carballido, Ponzoni and Brignole [4].

This paper presents a different approach to analyze an
optimal stopping time by using the real options approach.
The optimal stopping problem is an important class of a
stochastic control problem that arises in economics and
finance, such as finding optimal exercise rules for financial
options. Fortunately, there are similarities in the problem of
finding an optimal stopping time in genetic algorithms and
finding optimal exercise rules for financial options. Thus,
this paper proposes using the real options analysis to address
uncertainty in the compact genetic algorithm, namely to find
an optimal stopping policy of the algorithm. The concept
behind this technique is that finding an optimal stopping
time of the algorithm can be viewed as deciding when to
exercise a call option. Using the special class of genetic
algorithms, the compact genetic algorithm, the underlying
uncertainty can be viewed as a probability distribution. This
forms a basis in using the real options approach in order to
find values to determine when it is worth stopping running
the algorithm.

There are many research works in genetic algorithms
and real options. Most earlier research used genetic
algorithms or genetic programming as a computational
technique in the option pricing model. For example, Chen
and Lee [5] studied the application of genetic algorithms to
option pricing. Chidambaran, Lee and Trigueros [6]
proposed a new methodology that used genetic
programming to approximate the relationship between the
price of a stock option and the properties of the underlying
stock price. Chen, Yeh and Lee [7] also provided some
initial evidences of the empirical relevance of genetic
programming to option pricing. The pricing formulas are
derived from genetic programming and then compared with
the Black-Scholes model. In the next year, Chen, Lee and
Yeh [8] proposed an extended version of hedging derivative
securities with genetic programming. Chidambaran [9] used
Monte Carlo simulations to generate stock and option price
data to develop a genetic option pricing program. Lazo,
Pacheco and Vellasco [10] proposed finding an optimal
decision rule for oil field development. In this research, the
Monte Carlo simulation was employed in the genetic
algorithm for simulating the possible paths of oil prices.
Contrary with those research works, this paper proposes
applying real options to a computational problem. The

approach opens up a new direction of analyzing the optimal
stopping time in terms of investment.

The paper is organized as follows. Section 2 introduces
the concept of real options, and section 3 describes detailed
techniques of the compact genetic algorithm. Section 4
defines the test problems used in the experiments. Section 5
shows how to model the underlying uncertainty of the
problems. The real options valuation function is formulated
in section 6. Section 7 presents the results and analysis.
Finally, the concluding remarks of this study are in section
8.

2 The Real Options Approach
Real options are a financial concept that applies

financial options theory to investments in real assets (as
opposed to financial assets that are traded in the market). A
financial option is the right, but not an obligation, to buy or
sell an asset. An option that gives the holder the right to
purchase an asset at a specified price is a call option, while
an option that gives the holder the right to sell is a put
option. The financial options are useful for managing risks
in the financial world. The financial option concept was
extended to real assets when Myers [11] identified the fact
that many corporate real assets can be viewed as call
options. The real options approach addresses an investment
decision problem by analyzing not only the expected net
present value (NPV), but also considering the value of an
option to wait, expand, abandon, etc.

One of the techniques to find an option value is a
dynamic programming method. The idea of dynamic
programming is to split a whole sequence of decision into
two parts: the immediate choice and the remaining decision.
The detailed technique is described in Dixit and Pindyck
[12].

The value Ft(xt) is the expected net present value (NPV)
when the firm makes all the decisions optimally from this
point onwards. The value function called Bellman equation
or the fundamental of optimality is shown in equation (1).









+
+= ++)]([

1
1),(max)(11 ttttttutt xFε
ρ

uxπxF
t

 (1)

At each period t, choices available to the firm are
represented by the control variable(s) u. The value ut must
be chosen using only the information available at the time t,
namely xt. When the firm chooses the control variables ut, it
gets an immediate profit flow πt(xt, ut). The discount factor
between any two periods is 1/(1+ρ), where ρ is the discount
rate. The term εt[Ft+1(xt+1)] is the expected value from time
t+1 on called a continuation value.

An optimal stopping time is found by selecting the
maximum value between the termination payoff Ω(x) and
the continuation value. The Bellman equation becomes









+
+=]|)'([

1
1)(),(Ωmax)(xxFε
ρ

xπxxF . (2)

From equation (2), there are some payoff values as a
function of x achieved by termination, and other payoff
values as a function of x achieved through continuation. The
x values that produce the boundary payoff values form an
exercise region with termination being optimal on one side
and continuation on the other.

3 The Compact Genetic Algorithm
This section gives an overview of the compact genetic

algorithm, its characteristics and its algorithm. The genetic
algorithms, the branches of evolutionary computation, are
based upon the principle of natural evolution and the
principle of the survival of the fittest. Evolutionary
computation techniques abstract these evolutionary
principles into algorithms. In an evolutionary algorithm, a
representation scheme is chosen by a researcher to define a
set of solutions that form the search space for the algorithm.
The representation of genetic algorithm is a fixed-length bit
string and that of the compact genetic algorithm is a
probability vector. In general genetic algorithm, a number of
candidate solutions are created and evaluated using a fitness
function that is specific to the problem being solved. A
number of solutions are chosen to be parents for creating
new individuals or offspring. The survivors are selected
from the original population and the offspring to form a new
population of the next generation using their fitness values.

The compact genetic algorithm (cGA), proposed by
Harik, Lobo and Goldberg [13], is a special class of genetic
algorithms. The pseudocode of cGA is shown in figure 1.

1) initialize probability vector
 for i := 1 to l do p[i] := 0.5;

2) generate two individuals from the vector
 a := generate(p);
 b := generate(p);

3) let them compete
 winner, loser := compete(a, b);

4) update the probability vector towards
 the better one

 for i := 1 to l do
 if winner[i] ≠ loser[i] then
 if winner[i] = 1 then p[i] := p[i] + 1/n
 else p[i] := p[i] – 1/n;

5) check if the vector has converged
 for i := 1 to l do
 if p[i] > 0 and p[i] < 1 then
 return to step 2;

Figure 1. Pseudocode of the cGA

The parameters are population size(n) and chromosome
length(l). The cGA represents the population as a
probability distribution over the set of solution; thus, the
whole population needs not to be stored. In each generation,
cGA samples individuals according to the probabilities
specified in the probability vector. The individuals are
evaluated and the probability vector is updated towards the
better individuals. The cGA has an advantage of using a
small amount of memory and achieving comparable quality
with approximately the same number of fitness evaluations
as a simple genetic algorithm.

For example, the update method of the compact genetic
algorithm is shown in figure 2, assuming a step size of 0.25.

Figure 2. Updating method in the cGA

4 Description of Test Problems
In these experiments, we choose a 10-bit one-max

problem and a 3x5 bit trap problem as the test problems.
One-max is a simple test problem or a toy problem for a
genetic algorithm. This problem finds a maximum value
where all bits are one. The fitness value is assigned
according to the number of bits that are one in the
chromosome. Thus, the maximum value is equal to the
chromosome length. An example is shown in table 1.

Table 1. Example of one-max problem

Chromosome String Fitness
1011100010 5
1110010101 6
0010001011 4
1111100000 5
1111111111 10

The trap problem [14] is a difficult test problem for a

genetic algorithm. The general k-bit trap function is defined
as:

()






−
−

=
=− otherwise

1

if

;

;
... ow

ow

high

10

k
fuf

kuf
bbF l

l
kk

 (3)

where bi ∈ {0, 1}, u = ∑ −

=

1

0

k

i ib , and fhigh > flow. Usually,

fhigh is set at k and flow is set at k-1. The test function Fk × m is
defined as:

() () { }k
i

m

i
ikmmk BBFBBF 1,0,...

1

0
10 ∈=∑

−

=
−× (4)

This function fools gradient-based optimizers to favor
zeroes, but the optimal solution is composed of all ones. The
k and m may vary to produce a number of test functions. For
example, a 3x5 bit trap function is shown in table 2.

Table 2. Example of the 3x5 bit trap function

Ind. b0b1b2 b3b4b5 b6b7b8 b9b10b11 b12b13b14 Fit.

1 111 111 000 111 000 13.0
2 000 000 111 000 111 12.0
3 111 111 011 111 111 12.0
4 111 000 000 111 000 12.0
5 111 001 010 111 111 11.0
6 000 000 000 000 111 11.0
7 111 001 110 111 111 10.0
8 000 000 000 000 000 10.0

5 Modeling Underlying Uncertainty
The underlying uncertainty of the compact genetic

algorithm is naturally its fitness value. According to the
algorithm, when a candidate solution is sampled from the
probability distribution, it is evaluated and the fitness value
is assigned. This value is associated with the distribution. In
order to characterize change in the fitness value in the
compact genetic algorithm, the algorithm is simulated many
times, statistics of the fitness movement are collected.
Generally, the fitness value will increase over time, as the
probability distribution is evolved.

To model the uncertainty in the real options application,
the general process is to identify the key uncertainties and to
model them using a stochastic process that fits the problem,
such as a geometric brownian motion or a mean-reverting
process. In the compact genetic algorithm, however, the
uncertainty can be viewed as the change of the fitness value
in each step. At the beginning, the average fitness value of a
10-bit one-max problem is 5.0 because we initialize the
probability vector with a uniform distribution. In the next
step, this fitness may rise from 5.0 to 6.0, 7.0, …, 10.0 or

Vector P generates two samples

0.5 0.5 0.5 0.5
0 1 1 1

1 0 1 0

Fitness

3

2

- 0.25 + 0.25 + 0.25

0.25 0.75 0.5 0.75

P

New P
if winner[i] ≠ loser[i] then
 if winner[i] = 1 then

 p[i] = p[i] + stepsize
 else
 p[i] = p[i] - stepsize

fall to 4.0, 3.0, …, 0.0. We can find the probability of
occurrence of these values and use it to characterize the
underlying uncertainty of the compact genetic algorithm.

In this work, we model the uncertainty of the compact
genetic algorithm by observing the fitness values from many
runs and keeping track of them over time. Because the
underlying uncertainty of this problem can be automatically
obtained by simulating the compact genetic algorithm, we
do not need to employ any particular stochastic process,
such as a geometric brownian motion or a mean-reverting
process. We can construct a probability tree of the compact
genetic algorithm straightforwardly. Using this method, real
options can be applied to a wide variety of applications that
use the learning method including the genetic algorithm.

By running the compact genetic algorithm, we have
fitness values in each generation (time step). We accumulate
the possible changes of fitness values in each generation
over many runs and then calculate the probability of all
possible values in each state. For example, in a 10-bit one-
max problem, the possible average values are 0.0, 0.5, 1.0,
.., 9.0, 9.5, and 10.0. The range of these values is increased
by 0.5 because the compact genetic algorithm has two
populations, so the average fitness of two individuals ends
with .0 or .5. Therefore, a 10-bit one-max problem has 21
possible values. Figure 3 shows the lattice of all possible
values along with their associated probability.

Figure 3. Lattice of a 10-bit one-max problem

6 Value Function of Option

This paper proposes applying the real options analysis to
the compact genetic algorithm. We select the compact
genetic algorithm because the uncertainty can be directly
represented. The underlying uncertainty depends on a
probability vector. In each time step, two individuals are
sampled from the distribution and fitness values of these
candidates are assigned by the evaluation routine. The
probability vector drives these values, and the algorithm
uses these values to update the probability vector according

to the best candidate. A certain cost per one sampling is
assigned in order to account for an effort spent in running
the algorithm. The average fitness of these candidates is
used as a representative fitness value. As the candidate
solutions are sampling from the probability vector, there is a
chance that one sampling is good and the other is bad.
Therefore, we use the average value to be a representative of
the information in order to neutralize the event.

Let π(x) denote the profit, and Ω(x) is the termination
payoff. We apply the Bellman equation, where the value
function is









+
+=]|)'([

1
1)(),(Ωmax)(xxFε
ρ

xπxxF . (5)

The termination payoff is shown in equation (6).

Ω(x) = g(x) * v (6)

Where g(x) is the fitness value of x, and v is the price.
We illustrate the method with a simple example. In this
case, there is no profit and discounting. Equation (5)
becomes

{ }]|)'([),(max)(xxFxxF εΩ= . (7)

Note that in this work we do not use the discount factor
because in each state the compact genetic algorithm takes a
few milliseconds to run; thus, the future value is not
distinguishable from the present value. We also ignore the
profit term π(x) because the compact genetic algorithm does
not produce any immediate profit flow. The solution value
is obtained from the fitness value at the time the algorithm
terminates.

To implement this idea, we assume that one sampling
costs one dollar and one fitness value is worth 100 dollars.
The compact genetic algorithm samples two individuals, so
it must pay two dollars in each generation. Here, the
termination payoff is the fitness value multiplied by 100
dollars and the continuation must pay two dollars for a new
sampling because the compact genetic algorithm requires
two evaluations per time step. We formulate the option
value of this case as below:

F(x) = max { g(x)*100, ε[F(x′) | x] - 2 }. (8)

In these benchmark problems, we assume artificial cost
and price in order to test the model. However, in the real-
world problem, the fitness value’s worth and the algorithm
cost can be determined according to the application. For
example, in a bin packing problem, we know how a profit

10.0

9.50

9.00
:
:
:
:

1.50

1.00

0.50

0.00

5.00

 t = 1 t = 2 t = 3 t = 4 t = n

10.0

9.50

9.00
:
:
:
:

1.50

1.00

0.50

0.00

10.0

9.50

9.00
:
:
:
:

1.50

1.00

0.50

0.00

10.0

9.50

9.00
:
:
:
:

1.50

1.00

0.50

0.00

depends on the number of pieces packed into the bin. Thus,
equation (8) can be adapted to real-world parameter values.

7 Results and Analysis
For preliminary studies, we use a 10-bit one-max

problem and a 3x5 bit trap problem as the test examples.
First, we solve these problems with the compact genetic
algorithm and keep track of the probability distribution of
each fitness value over time. The probabilities are averaged
over 10,000 runs. The number of generations or time steps
is set to 100. We use these data to construct a lattice of the
fitness distribution. Second, we calculate an option value
according to equation (5) using a dynamic programming
approach. The option values are averaged over 100 runs.
Finally, we summarize an option value and an exercise
policy. We also calculate the standard deviation (sd) of the
option values obtained over 100 runs and plot the values of
± 1sd in the graph to illustrate the confidence level in the
answer. Figure 4 shows the exercise region of a 10-bit one-
max problem.

0

200

400

600

800

1000

1 11 21 31 41 51 61 71 81 91

upper threshold

upper threshold + sd

upper threshold - sd

lower threshold

lower threshold + sd

lower threshold - sd

Fi
tn

es
s

V
al

ue

Time
Figure 4. Exercise region of a 10-bit one-max problem

As shown in figure 4, the algorithm should decide to

stop the search when the fitness value rises above the upper
threshold because the fitness value is already high and it is
not worth the sampling cost to continue. If the fitness value
is lower than the lower threshold, the algorithm should also
decide to stop because with the current population, it is
unlikely to achieve a better result relative to the cost
required. In this problem, the option values play an
important role for an algorithm in deciding whether to stop
or continue. If an option has a positive value, the algorithm
will decide to put an effort to search for more samplings. On
the other hand, if an option has no value, the algorithm will
terminate or reset. This decision helps the algorithm to
avoid useless effort and time spent on a valueless sampling.

Most people use the genetic algorithm to find an optimal
solution regardless of time and effort used to achieve it.
However, from efficiency standpoint, the algorithm should
trade off between effort and solution improvement in
deciding when to stop. The real options approach shows that
we can analyze the optimal stopping time for running the
algorithm. In the above experiment, we show a preliminary
result that employs the real options approach in determining
the optimal stopping time of the compact genetic algorithm
in a simple problem. Next, we also show the experiment in a
more difficult problem, namely the trap problem.

In the trap problem, a nearly optimal solution deludes
the compact genetic algorithm into the trap. Therefore, the
probability of success is less than the one-max problem.
We test the proposed technique with the trap problem
besides the one-max problem. First, we run the problem
with the compact genetic algorithm and keep the
probability distribution of each fitness value over time. The
probabilities are averaged over 10,000 runs. Then, we use
these data to construct a lattice of fitness distribution.
Using this lattice, we can calculate an option value
according to equation (5) using a dynamic programming
approach. The option values are averaged over 100 runs.
Finally, the option value and the exercise policy are
obtained. Figure 5 illustrates the exercise region of the 3x5
bit trap problem.

0

200

400

600

800

1000

1200

1400

1600

1 11 21 31 41 51 61 71 81 91

upper threshold

upper threshold + sd

upper threshold - sd

lower threshold

lower threshold + sd

lower threshold - sd

Fi
tn

es
s

V
al

ue

Time
Figure 5. Exercise region of a 3x5 bit trap problem

 There are many differences between the exercise
regions of the two problems. In a one-max problem, the
threshold is clearer than the trap problem. The exercise
threshold of the one-max problem confirms that the solution
quality in this problem is gradually improving. It guarantees
that the compact genetic algorithm will achieve the optimal
solution if the fitness value lies within a continuation region.
On the other hand, the fitness value in the trap problem can
be fluctuating. The solution may fall in a trap. Thus,
although the fitness value falls into the continuation region,

Stop

Continue

Stop

Stop

Stop

Continue

it does not guarantee to achieve the optimality. The upper
bound threshold of the trap problem does not reach the
optimal solution. This characteristic also shows a rarity of
finding an optimal solution in a hard problem.

From figure 4 and figure 5, the exercise regions suggest
that, at the beginning, the one-max problem requires a
higher solution quality for stopping than the trap problem.
This is because good solutions abound in the one-max
problem. On the other hand, good solutions in the trap
problem are rare. The one-max problem has a large area of
lower stopping region than the trap problem. This denotes
that for a relatively easy problem, if the population cannot
improve its quality fast enough, the algorithm should not
continue. On the contrary, the harder trap problem attempts
to keep a lower-fitness solution in order to maintain
diversity.

Note that the standard deviation of the upper threshold in
the one-max problem drops to zero toward the end. Since
the upper bound is at the optimal fitness and the
continuation region converges toward this optimal value,
this explains an important insight that the compact genetic
algorithm guarantees the optimal solution in the one-max
problem, given that the evaluations stay in the continuation
region.

8 Concluding Remarks
This paper proposes applying the real options technique

to finding an optimal stopping decision for running the
compact genetic algorithm. The novelty of this work lies in
introducing a new methodology to determine an optimal
stopping time of a machine-learning algorithm. In the
experiment, we show preliminary results from employing
the real options approach to analyze the 10-bit one-max
problem and the 3x5 trap problem. The results illustrate that
the proposed technique can provide a stopping strategy for
the algorithm. For the studied problems with the compact
genetic algorithm, the exercise regions are broken into three
areas. Specifically, the algorithm should stop the search
when the fitness value rises above the upper threshold or
when the fitness value falls below the lower threshold. This
methodology can also be used to analyze the characteristic
of other learning algorithms, such as neural networks or
other variations of genetic algorithms.

References
[1] H. Aytug and G. J. Koehler, Stopping criterion for

finite length genetic algorithms, in INFORMS
Journal on Computing, 1996.

[2] H. Aytug and G. J. Koehler, New stopping criterion
for genetic algorithm, in European Journal of
Operational Research, 2000.

[3] L. Meyer and X. Feng, A fuzzy stop criterion for
genetic algorithms using performance estimation, In
proceedings of the Third IEEE Conference on Fuzzy
Systems, 1994.

[4] M. Safe, J. Carballido, I. Ponzoni and N. Brignole,
On stopping criteria for genetic algorithms, in SBIA,
2004.

[5] S-H Chen and W-C Lee, Option pricing with genetic
algorithms: separating out-of-the-money from in-
the-money, in Proceeding of the IEEE International
Conference on Intelligent Processing Systems, 1997.

[6] N. K. Chidambaran, C. H. J. Lee and J. R. Trigueros,
An adaptive evolutionary approach to option pricing
via genetic programming, in Proceeding of the Third
Annual Genetic Programming Conference, 1998.

[7] S-H Chen, A-H Yeh and W-C Lee, Option pricing
with genetic programming, in Proceeding of the
Third Annual Genetic Programming Conference,
1998.

[8] S-H Chen, W-C Lee and C-H Yeh, Hedging
derivative securities with genetic programming, in
International Journal of Intelligent Systems in
Accounting, Finance and Management, 1999, 8(4):
237-251.

[9] N. K. Chidambaran, Genetic programming with
monte carlo simulation for option pricing, in
Proceeding of the 2003 Winter Simulation
Conference, 2003.

[10] J. G. L. Lazo, M. A. C. Pacheco and M. M. B. R.
Vellasco, Real option decision rules for oil field
development under market uncertainty using genetic
algorithms and monte carlo simulation, in the
Seventh Annual Real Options Conference, 2003.

 [11] S. C. Myers, Determinants of corporate borrowing,
in Journal of Financial Economics, 1977, 5(2): 147-
175.

[12] A. K. Dixit and R. S. Pindyck, Investment under
uncertainty, Princeton University Press, Princeton,
NJ, 1994.

[13] G. R. Harik, F. G. Lobo and D. E. Goldberg, The
compact genetic algorithm, in IEEE Transactions on
Evolutionary Computation, 1999, 3(4): 287-297.

 [14] D. H. Ackley, A connectionist machine for genetic
hillclimbing, Kluwer Academic Publishers, Boston,
MA, 1987.

