
Solving Large Scale Problems using Estimation
Distribution Algorithm with Arithmetic Coding

Worasait Suwannik*, and Prabhas Chongstitvatana†

* Department of Computer Science
Kasetsart University, Bangkok, Thailand

Tel: 66-2562-5555; E-mail: worasait.suwannik@gmail.com
† Department of Computer Engineering

Chulalongkorn University, Bangkok, Thailand
Tel: 66-2218-6983, E-mail: prabhas@chula.ac.th

Abstract— This work proposes an algorithm which combines
Estimation Distribution Algorithm with a chromosome
compression scheme to solve large scale problems. The search
space reduction resulted from chromosome compression enables
the proposed algorithm to solve one-million-bit problems and a
one-billion-bit problem. Arithmetic Coding represents a
compressed binary string with two real numbers. Using this
representation, a model of highly fit individuals can be
constructed. This model can be used to evolve the solution in the
manner of Estimation Distribution Algorithm. The proposed
algorithm is applied to large scale problems which are one-
million-bit OneMax, Royal Road, Trap functions. It is also
applied to one-billion-bit OneMax problem. The experimental
result shows that the proposed algorithm can solve million-bit
OneMax problem in 4 seconds and billion-bit OneMax problem
in 92 minutes using a normal PC-class computer.

I. INTRODUCTION

ECENTLY in genetic algorithm research, there has been
a growing interest in solving very large scale problems.

Kunasol et. al. solved one-million-bit genetic algorithm
benchmark problems using genetic algorithm with LZW
compression algorithm encoding (LZWGA) [1]. Sastry et. al.
presented a parallel compact genetic algorithm to solve
billion-bit problems [2]. Both methods attack very large scale
problems from different points of view. The first method
solves the problems by search space reduction. The second
method solves the problem by parallelization and population
modeling.

There are varieties of way to reduce the search space. For
example, applying heuristic to a genetic operator [3],
compressing introns [4], or using compressed encoding. In
Compressed GA [5], a chromosome is in a compressed
encoding format similar to run-length encoding. The
experimental result shows that Compressed GA uses 805
times less fitness evaluations than Simple GA when solving
128-bit OneMax problem.

To use Compressed GA, an appropriate number of bits of
the repetition times (the run length) has to be specified. The
run length affects the performance of the algorithm. To

overcome this problem, Kunasol et. al. [6] proposed LZWGA
that used a compressed encoding that can be decompressed
using Lempel-Ziv-Welch (LZW) decompression algorithm.
LZWGA can solve one-million-bit OneMax problem in 18
minutes on average [1].

Both Compressed GA and LZWGA have the following
disadvantages. First, we have to determine the appropriate
length of the compressed chromosome. For the same
problem, the length of a compressed chromosome is normally
shorter than the length of a GA chromosome. However, if the
length is too small, the algorithm will not find a solution. If it
is too large, the algorithm might take longer time to run.
Second, the length of the decompressed chromosome depends
on an instance of a compressed chromosome and a
decompression algorithm. It is likely that the decompressed
chromosome is shorter or longer than that is required to solve
a problem. If it is longer, we simply cut the excess. If it is
shorter, we have to systematically fill the chromosome with
either 0 or 1. This heuristic may not be suitable for all
problems. Third, it is necessary to determine many
parameters that are appropriate for various genetic operators
such as a crossover rate and a mutation rate.

This paper proposed another form of search space reduction
using Arithmetic Coding. Arithmetic Coding is a lossless
compression technique. It represents a binary string with two
real numbers. Moreover, these numbers are modeled by
assuming bivariate normal distribution. Therefore, the
proposed algorithm combines Estimation of Distribution
Algorithm (EDA) [7] with Arithmetic Coding. The
combination of EDA with Arithmetic Coding (abbreviated as
EDAAC) alleviates most of the disadvantages of Compressed
GA and LZWGA. To demonstrate its scalability, EDAAC is
applied to solve several large scale test problems of the size
one million bits and upto one billion bits.

The organization of this paper is as follows. Section 2
gives an overview of Arithmetic Coding and describes
Arithmetic Coding Decompression algorithm. Section 3
explains EDAAC. Section 4 explains the experiment on

R

358

1-4244-0977-2/07/$25.00 c© 2007 IEEE

solving one-million-bit OneMax, Royal Road, and Trap
functions. Section 5 explains the experiment on solving one-
billion-bit OneMax function. Section 6 provides a discussion
of the compressed encoding. Finally, Section 7 concludes the
paper.

II. ARITHMETIC CODING

Arithmetic coding is a lossless data compression algorithm
[8]. The compression algorithm represents a binary string by
two real numbers ranged between [0, 1). The first number is
the probability that zero will occurs in the binary string. The
second number is the compressed message. The first number
is denoted by p and the second number c.

The coding is best explained by an illustration. The
following example demonstrates a decompression of
(p, c)=(0.4, 0.6) to a 4-bit binary string. As shown in
Figure 1, p divides the interval [0,1) into 2 sub-intervals: [0,
0.4) and [0.4, 1). Since the compressed message c is in the
second sub-interval, the algorithm outputs 1.

Next, the algorithm partitions the second interval [0.4, 1)
into two sub-intervals proportional to p. The resulting sub-
intervals are [0.4, 0.64) and [0.64, 1). Since the compressed
message c is in the first sub-interval, the algorithm outputs 0.

Next, the algorithm partitions the first interval [0.4, 0.64)
into sub-intervals proportional to p. The resulting sub-
intervals are [0.4, 0.496) and [0.496, 0.64). Since the
compressed message c is in the second sub-interval, the
algorithm outputs 1.

Finally, the algorithm partitions the second interval [0.496,
0.64) into sub-intervals proportional to p. The resulting sub-
intervals are [0.496, 0.5536) and [0.5536, 0.64). Since the
message c is in the second sub-interval, the algorithm outputs
1. The process is summarized in Table I.

EDAAC required only a decompression algorithm. A
pseudo code for Arithmetic Coding decompression used in
EDAAC is shown in Figure 2. The algorithm runs in O(l)
time, where l is the number of bits to be produced.

III. ESTIMATION DISTRIBUTION ALGORITHM WITH

ARITHMETIC CODING

The pseudo code of EDAAC is shown in Figure 3. The
algorithm begins by creating the first generation of
compressed chromosomes, P. The compressed chromosome
is decompressed using Arithmetic Coding Decompression
algorithm. Then, the fitness of an uncompressed chromosome
is evaluated. After all chromosomes are evaluated, highly fit
chromosome are selected (Q) and modeled (Π). The model Π
is then used to generate offspring R, which will be
decompressed and evaluated. The algorithm repeats the
process of selecting and modeling highly fit individuals, and
generating offspring until the termination criterion is met.
The algorithm terminates when a solution is found or a
maximum generation is reached.

Figure 1. Decompressing 4 bits from (p, c)=(0.4,0.6). The output is 1011.

TABLE I
INTERVAL AND OUTPUT FOR EACH ITERATION

α γ β Output
0.000000 0.400000 1.000000 1
0.400000 0.640000 1.000000 0
0.400000 0.496000 0.640000 1
0.496000 0.553600 0.640000 1

←1:
←2:
←3:
←4:

5:
←6:
←7:
←8:

9:
←10:
←11:
←12:

13:
14:

Algorithm: Arithmetic Coding Decompress
 input: p, c : double
 output: data : bit array

start ← 0
center ← p
end ← 1.0
for (i ← 0; i < data.length; i++) {
 if (c < center) {
 data[i] ← 0
 end ← center
 center ← start + (center − start) × p
 } else {
 data[i] ← 1
 start ← center
 center ← start + (end − center) × p
 }
}

start is the starting point of the first interval.
center is the starting point of the second interval.
end is the ending point of the second interval.

Figure 2. Arithmetic Coding Decompression pseudo code

1:
2:
3:
4:
5:
6:
7:
8:
9:

Algorithm: EDAAC
Π is the model
input: P, Q, R are population
output: the best individual in P

create n individuals as the first generation, P
decompress and evaluate all individuals
while not terminate

select n/2 individuals, P→ Q
model selected individuals, Π
generate n/2 offspring, Π→ R
decompress and evaluate all offspring
integrate population, Q ∪ R→ P

end while

Figure 3. EDAAC pseudo code

0.0

p=0.4

c=0.6

1.0

0

1

0
0

1

1 1
0

α

β

γ

2007 International Symposium on Communications and Information Technologies (ISCIT 2007) 359

A. Creating the First Generation

Unlike a conventional GA, a chromosome in EDAAC is
encoded as two double precision variables (64 bits). The first
variable is p and the second variable is c. The value for p and
c of the first generation chromosome are uniformly random
from the range [0, 1).

B. Decompressing and Evaluating Individuals

Because the chromosome in EDAAC is compressed, it has
to be decompressed to a binary string before its fitness can be
evaluated. A compressed chromosome is decompressed using
Arithmetic Coding Decompression algorithm. The de-
compression stops when it outputs a binary string with the
length equals to that of the problem size. For example, for
100-bit OneMax problem, the decompression stops when the
algorithm outputs a 100-bit binary string. However, some
value of p and c cannot be decompressed to the desired
number of bits. In that case, the remaining bits are filled with
0’s.

C. Modeling Highly Fit Individuals

Highly fit chromosomes are selected using any traditional
genetic algorithm selection method. The algorithm selects n/2
individuals and computes μp, μc, σp, σc, and ρ of those
individuals, where

• μp, μc are the means of p’s and c’s of the selected
individuals,

• σp, σc are the standard deviation of p’s and c’s of the
selected individuals,

• ρ is the correlation coefficient of p’s and c’s of the
selected individuals.

D. Generating Offsprings

An offspring (pg, cg) is generated by sampling from the
model Π. pg is a normally distributed random variable with
the mean μp and the standard deviation σp. cg is a normally
distributed random variable with the mean μg and the standard
deviation σc. μg is obtained from the following formula.

 (1)

n/2 offspring are generated, evaluated, and integrated with
n/2 previously selected individuals. These n individuals will
be the population of the next generation.

IV. SOLVING ONE-MILLION-BIT PROBLEMS

One-million-bit well known problems in genetic algorithm
literature are used to test the proposed algorithm. Those
problems are OneMax, Royal Road, and Trap problems.
EDAAC was executed with the parameters shown in Table II.
The population size is 200 individuals. Please notice that this
size is very small considering the size of the problems.

The algorithm is implemented in Java language. It was

compiled and run using JDK 1.6 on Pentium 4 HT 3GHz with
1 GByte of RAM. The program required a great deal of
memory especially in solving the one-billion-bit problem. A
one-billion-bit chromosome required 125,000,000 bytes. In
order to allocate such amount of memory, we run the Java
program with the option –Xmx1000m to set the maximum
heap size to 1000 MB. The experiment is repeated for 30
times and the average figures are reported.

A. OneMax

OneMax or a bit counting problem is a widely used
problem for testing the performance of various genetic
algorithms. The problem is defined as follows.

 Fk(b1...bk) = (2)

where bi is in {0,1}.

Figure 4 shows the fitness curve of EDAAC in solving
OneMax problem. On average, EDAAC can solve the one-
million-bit OneMax in 12.4 generations or 2,480 fitness
evaluations. The number of fitness evaluation is much
smaller than the theoretical prediction of using compact GA
to solve OneMax [2]. The theoretical prediction is Θ(l log l)
fitness evaluations. The number of fitness evaluation is much
smaller than that of LZWGA. LZWGA solves the same
problem using 15,400 fitness evaluations [1].

EDAAC can find a solution in about 3.4 seconds while
LZWGA can solve the same problem in about 18 minutes [1].

TABLE II
PARAMETERS OF EDAAC

Parameter Value

Population size 200

Selection method Tournament (size=4)

Number of best individual to keep 1

Maximum generations 500

B. Royal Road

A simple Royal Road functions [9] denoted by R are
defined as:

1 if x∈si R(x) = ∑ ci δi(x), where δi(x) =
0 otherwise.

(3)

For a problem with block size k, si is a schema that have 1
defined in the range i×k to ((i+1)×k)−1. All other positions
contain a wild card ‘*’. Each schema si is given with a
coefficient ci.

∑
=

k

i
ib

1

)(pg
p

c
cg p μ

σ

σ
ρμμ −+=

i

360 2007 International Symposium on Communications and Information Technologies (ISCIT 2007)

Figure 4. Fitness curve of EDAAC in solving one-million-bit OneMax
problem.

Figure 5. Fitness curves of EDAAC in solving one-million-bit Royal Road
functions with various block sizes ranging from 8 to 64 bits.

Figure 6. Fitness curves of EDAAC in solving one-million-bit Trap function
with various trap sizes ranging from 8 to 64 bits.

.

Figure 7 Fitness curve of EDAAC in solving one-billion-bit OneMax
problem.

We conducted the experiment on various block sizes: 8, 16,
32, and 64. The fitness curves of EDAAC experiment on
solving the Royal Road problem are shown in Figure 5. The
percentage of successful run, the execution time, and the
number of generation that EDAAC used to solve Royal Road
problems shows in Table III. EDAAC can find a solution for
all runs in about 13-15 generations.

C. Trap

The general k-bit trap functions are defined as:

 Fk(b1...bk) = fhigh ; if u=k (4)
 flow−(u×flow)/(k-1) ; otherwise

where bi is in {0,1}, u=∑=

k

i ib
1

 and fhigh > flow. Usually, fhigh

is set at k and flow is set at k−1. The Trap functions denoted by
Fm×k are defined as:

 Fm×k(K1...Km) = ∑Fk(Ki), Ki∈{0,1}k (5)

The m and k are varied to produce a number of test
functions. The Trap functions fool the gradient-based
optimizers to favor zeros, but the optimal solution is
composed of all ones. The Trap function is a fundamental
unit for designing test functions that resist hill-climbing
algorithms.

We performed the experiment with Trap functions of
various trap sizes: 8, 16, 32, and 64 bits. The chromosome
length is one million bits. The fitness curves of EDAAC
experiments on solving trap functions are shown Figure 6.
The success rate, running time, and the average generations
for successful runs are shown in Table IV. Larger trap size
reduces the success rate and takes longer time for the problem
to be solved. Notice that the algorithm will terminate after the
500th generation. However, from 30 runs, the maximum
generation of successful run is only 28 generations.

i=1

m

2007 International Symposium on Communications and Information Technologies (ISCIT 2007) 361

TABLE III
SUCCESS RATE AND AVERAGE GENERATION IN SOLVING ROYAL ROAD

PROBLEM OF VARIOUS SIZES IN MILLION BITS PROBLEM

Block size Success Time (seconds) Generation

8 100% 5.6 13.0

16 100% 4.6 13.2

32 100% 4.6 14.4

64 100% 6.0 15.1

TABLE IV
SUCCESS RATE AND AVERAGE GENERATION IN SOLVING TRAP PROBLEM OF

VARIOUS SIZES IN MILLION BITS PROBLEM. THE TIME AND THE GENERATION

ARE AVERAGED FROM SUCCESSFUL RUNS.

Trap size Success Time (seconds) Generation

8 100% 9.9 16.9

16 53% 14.1 18.9

32 20% 16.2 19.3

64 3% 11.7 18.0

V. SOLVING ONE-BILLION-BIT ONEMAX PROBLEM

Sastry et. al. implemented parallel Compact Genetic
Algorithm to solve one-billion-bit Noisy OneMax problem
[2]. They conduct the experiment on 128- and 256- processor
partitions of 1280-processor cluster.

We conduct the experiment on one-billion-bit problem
using a normal PC-class machine (the same machine used in
one-million-bit problem). The memory requirement for a
one-billion-bit chromosome is 125,000,000 bytes. In fact, to
solve OneMax problem using EDAAC, it is not necessary to
allocate such large amount of memory. Arithmetic Coding
Decompression can easily be modified to be a stream
decompression. With a stream decompression (on-line one-
bit-at-a-time), very small amount of memory can be used to
evaluate a one-billion-bit OneMax chromosome. However, in
this paper, we did not use the stream decompression. We
allocate the amount of data that can store a one-billion-bit
chromosome to get a better understanding of the execution
time of large scale problems.

EDAAC can find a solution to one-billion-bit OneMax in
about 22.5 generations on average. The program can solve
the problem in 92.2 minutes using one PC-class computer.
Figure 7 shows the fitness curve of EDAAC in solving the
problem.

VI. DISCUSSION

In theory, Arithmetic Coding can compress a binary string
of any length using two real numbers without losing any
information. This is because we can partition the interval
forever. However, in an actual implementation, a real number
is represented by a limited number of bits. Therefore, those
numbers cannot produce binary string of arbitrary length.

We conduct an experiment to measure the length of binary

string that can be decompressed from two double precision
(64 bits) variables before the interval cannot be any smaller.
We run a program that decompresses random numbers in
various precisions. During the decompression, the program
checks whether it can partition the interval into a smaller one.
(The split is in the lines 7, 8 and 11, 12 of the pseudo code in
Figure 2.) This can be done by checking whether the new
interval is not smaller than the previous interval. Figure 8
shows the average number of bits that can be decompressed
from p in various ranges. The result shows that, on average,
when p is closer to the bound of the range [0, 1), the algorithm
can decompressed longer binary string. Moreover, p is a bias
toward more zero’s or one’s in a decompressed binary string.
When p is close to zero, the decompression algorithm will
produce more 1’s. For example, when (p, c)≈(4.42×10−7,
0.61) and ≈(8.62×10−10, 0.70), the decompression algorithm
will produce all 106 and 109 one’s respectively. Those values
are the best chromosome obtained from two EDAAC runs.

In addition, we conducted an experiment to show the
average number of bits that can be decompressed from
decimal numbers with various precisions. The precisions we
tested in the experiment are 10, 20, 40, 80 digits and a double
precision. The result is shown in Figure 9. The white
rectangle in the figure is a data from a double precision
variable. The graph shows that the number of bit that can be
decompressed is about 10 times the precision of the decimal
number.

VII. CONCLUSION AND FUTURE WORK

EDAAC can solve one-million-bit OneMax, Royal Road,
and Trap functions very fast. It can solve one-billion-bit
OneMax in reasonable amount of time using a normal PC-
class computer. We believe that our result on computation
time is a significant improvement over other method to solve
large scale problems. However, one might argue that such
compressed encoding GA performed well on those problems
because they have a high regularity solution. It would be
interesting to investigate how EDAAC solves other large
scale problems that the solution is not all 1's or all 0's.

ACKNOWLEDGEMENT

We would like to thank Thotsaphon Thanatipanonda for
giving the idea on how to show the average number of bits
that can be decompressed from double precision variables.

362 2007 International Symposium on Communications and Information Technologies (ISCIT 2007)

Figure 8. Average number of bits that can be decompressed from various
values of p.

Figure 9. Average number of bits that can be decompress from a decimal
number with various digits.

REFERENCES

[1] N. Kunasol, W. Suwannik, P. Chongstitvatana, “Solving One-
Million-Bit Problems Using LZWGA,” Proceedings of
International Symposium on Communications and Information
Technologies (ISCIT), October 18-20, 2006.

[2] K. Sastry, D. E. Goldberg, D. E., X. Llorà, “Towards billion bit
optimization via efficient genetic algorithms,” IlliGAL Report
No. 2007007. University of Illinois at Urbana-Champaign,
Urbana IL, 2007.

[3] S. Chen and S. Smith, “Improving Genetic Algorithms by
Search Space Reduction (with Applications to Flow Shop
Scheduling),” GECCO-99: Proceedings of the Genetic and
Evolutionary Computation Conference, Morgan Kaufmann,
1999.

[4] F.G. Lobo, K. Deb, D.E. Goldberg, G. Harik, L. Wang,
“Compressed Introns in a Linkage Learning Genetic
Algorithm,” Genetic Programming : Proceedings of the Third
Annual Conference, Madison, Wisconsin, pages 551-558, 1998.

[5] W. Suwannik, N. Kunasol, P. Chongstitvatana, “Compressed
Genetic Algorithm,” Proceedings of Northeastern Computer
Science and Engineering Conference, pages 203-211, March
31-April 1, 2005. (abstract in English)

[6] N. Kunasol, W. Suwannik, P. Chongstitvatana, “LZW-
Encoding in Genetic Algorithm,” Proceedings of Electrical
Engineering Conference (EECON-28), pages 861-864, October
20-21, 2005. (abstract in English)

[7] T.K. Paul and H. Iba, “Linear and Combinatorial Optimizations
by Estimation of Distribution Algorithms,” 9th MPS
Symposium on Evolutionary Computation, IPSJ, Japan, 2002.

[8] J. Rissanen, “Generalized Kraft Inequality and Arithmetic
Coding,” IBM J. Res. Develop., vol. 20, pp. 198-203, 1976.

[9] M. Mitchell, J. Holland, S. Forrest, “When Will a Genetic
Algorithm Outperform Hill Climbing?,” Advances in Neural
Information Processing Systems, vol. 6, pages 51-58, 1994.

2007 International Symposium on Communications and Information Technologies (ISCIT 2007) 363

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

