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Abstract— This work proposes an algorithm which combines 
Estimation Distribution Algorithm with a chromosome 
compression scheme to solve large scale problems.  The search 
space reduction resulted from chromosome compression enables 
the proposed algorithm to solve one-million-bit problems and a 
one-billion-bit problem. Arithmetic Coding represents a 
compressed binary string with two real numbers. Using this 
representation, a model of highly fit individuals can be 
constructed.  This model can be used to evolve the solution in the 
manner of Estimation Distribution Algorithm.  The proposed 
algorithm is applied to large scale problems which are one-
million-bit OneMax, Royal Road, Trap functions.  It is also 
applied to one-billion-bit OneMax problem.  The experimental 
result shows that the proposed algorithm can solve million-bit 
OneMax problem in 4 seconds and billion-bit OneMax problem 
in 92 minutes using a normal PC-class computer. 

I. INTRODUCTION 

ECENTLY in genetic algorithm research, there has been 
a growing interest in solving very large scale problems.  

Kunasol et. al. solved one-million-bit genetic algorithm 
benchmark problems using genetic algorithm with LZW 
compression algorithm encoding (LZWGA) [1].  Sastry et. al. 
presented a parallel compact genetic algorithm to solve 
billion-bit problems [2].  Both methods attack very large scale 
problems from different points of view.  The first method 
solves the problems by search space reduction.  The second 
method solves the problem by parallelization and population 
modeling.   

There are varieties of way to reduce the search space.  For 
example, applying heuristic to a genetic operator [3], 
compressing introns [4], or using compressed encoding.  In 
Compressed GA [5], a chromosome is in a compressed 
encoding format similar to run-length encoding.  The 
experimental result shows that Compressed GA uses 805 
times less fitness evaluations than Simple GA when solving 
128-bit OneMax problem.   

To use Compressed GA, an appropriate number of bits of 
the repetition times (the run length) has to be specified.  The 
run length affects the performance of the algorithm.  To 

overcome this problem, Kunasol et. al. [6] proposed LZWGA 
that used a compressed encoding that can be decompressed 
using Lempel-Ziv-Welch (LZW) decompression algorithm.  
LZWGA can solve one-million-bit OneMax problem in 18 
minutes on average [1]. 

Both Compressed GA and LZWGA have the following 
disadvantages.  First, we have to determine the appropriate 
length of the compressed chromosome.  For the same 
problem, the length of a compressed chromosome is normally 
shorter than the length of a GA chromosome.  However, if the 
length is too small, the algorithm will not find a solution.  If it 
is too large, the algorithm might take longer time to run.  
Second, the length of the decompressed chromosome depends 
on an instance of a compressed chromosome and a 
decompression algorithm.  It is likely that the decompressed 
chromosome is shorter or longer than that is required to solve 
a problem.  If it is longer, we simply cut the excess.  If it is 
shorter, we have to systematically fill the chromosome with 
either 0 or 1. This heuristic may not be suitable for all 
problems.  Third, it is necessary to determine many 
parameters that are appropriate for various genetic operators 
such as a crossover rate and a mutation rate. 

This paper proposed another form of search space reduction 
using Arithmetic Coding.  Arithmetic Coding is a lossless 
compression technique.  It represents a binary string with two 
real numbers.  Moreover, these numbers are modeled by 
assuming bivariate normal distribution.  Therefore, the 
proposed algorithm combines Estimation of Distribution 
Algorithm (EDA) [7] with Arithmetic Coding. The 
combination of EDA with Arithmetic Coding (abbreviated as 
EDAAC) alleviates most of the disadvantages of Compressed 
GA and LZWGA.  To demonstrate its scalability, EDAAC is 
applied to solve several large scale test problems of the size 
one million bits and upto one billion bits. 

The organization of this paper is as follows.  Section 2 
gives an overview of Arithmetic Coding and describes 
Arithmetic Coding Decompression algorithm.  Section 3 
explains EDAAC.  Section 4 explains the experiment on 
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solving one-million-bit OneMax, Royal Road, and Trap 
functions.  Section 5 explains the experiment on solving one-
billion-bit OneMax function.  Section 6 provides a discussion 
of the compressed encoding.  Finally, Section 7 concludes the 
paper. 

II. ARITHMETIC CODING

Arithmetic coding is a lossless data compression algorithm 
[8].  The compression algorithm represents a binary string by 
two real numbers ranged between [0, 1).  The first number is 
the probability that zero will occurs in the binary string.  The 
second number is the compressed message.  The first number 
is denoted by p and the second number c. 

The coding is best explained by an illustration. The 
following example demonstrates a decompression of  
(p, c)=(0.4, 0.6) to a 4-bit binary string.  As shown in  
Figure 1, p divides the interval [0,1) into 2 sub-intervals: [0, 
0.4) and [0.4, 1).  Since the compressed message c is in the 
second sub-interval, the algorithm outputs 1. 

Next, the algorithm partitions the second interval [0.4, 1) 
into two sub-intervals proportional to p.  The resulting sub-
intervals are [0.4, 0.64) and [0.64, 1).  Since the compressed 
message c is in the first sub-interval, the algorithm outputs 0. 

Next, the algorithm partitions the first interval [0.4, 0.64) 
into sub-intervals proportional to p.  The resulting sub-
intervals are [0.4, 0.496) and [0.496, 0.64).  Since the 
compressed message c is in the second sub-interval, the 
algorithm outputs 1. 

Finally, the algorithm partitions the second interval [0.496, 
0.64) into sub-intervals proportional to p.  The resulting sub-
intervals are [0.496, 0.5536) and [0.5536, 0.64).  Since the 
message c is in the second sub-interval, the algorithm outputs 
1.  The process is summarized in Table I. 

EDAAC required only a decompression algorithm.  A 
pseudo code for Arithmetic Coding decompression used in 
EDAAC is shown in Figure 2.  The algorithm runs in O(l) 
time, where l is the number of bits to be produced. 

III. ESTIMATION DISTRIBUTION ALGORITHM WITH 

ARITHMETIC CODING

The pseudo code of EDAAC is shown in Figure 3.  The 
algorithm begins by creating the first generation of 
compressed chromosomes, P.   The compressed chromosome 
is decompressed using Arithmetic Coding Decompression 
algorithm.  Then, the fitness of an uncompressed chromosome 
is evaluated.  After all chromosomes are evaluated, highly fit 
chromosome are selected (Q) and modeled (Π).  The model Π
is then used to generate offspring R, which will be 
decompressed and evaluated.  The algorithm repeats the 
process of selecting and modeling highly fit individuals, and 
generating offspring until the termination criterion is met.  
The algorithm terminates when a solution is found or a 
maximum generation is reached. 

   

Figure 1. Decompressing 4 bits from (p, c)=(0.4,0.6).  The output is 1011. 

TABLE I 
INTERVAL AND OUTPUT FOR EACH ITERATION

α γ β Output 
0.000000 0.400000 1.000000  1 
0.400000 0.640000 1.000000  0 
0.400000 0.496000 0.640000  1 
0.496000 0.553600 0.640000  1 

←1: 
←2: 
←3: 
←4: 

5: 
←6: 
←7: 
←8: 

9: 
←10: 
←11: 
←12: 

13: 
14: 

Algorithm:  Arithmetic Coding Decompress 
    input:         p, c : double 
    output:      data : bit array

start ← 0 
center ← p
end ← 1.0 
for (i ← 0; i < data.length; i++) { 
    if (c < center) { 
        data[i] ← 0 
        end ← center
        center ← start + (center − start) × p
    } else { 
        data[i] ← 1 
        start ← center 
        center ← start + (end − center) × p
    } 
} 
  

start is the starting point of the first interval. 
center is the starting point of the second interval. 
end is the ending point of the second interval. 

Figure 2. Arithmetic Coding Decompression pseudo code 

1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 

Algorithm: EDAAC   
Π is the model
input:      P, Q, R are population 
output:    the best individual in P

create n individuals as the first generation, P
decompress and evaluate all individuals 
while not terminate

select n/2 individuals, P→ Q
model selected individuals, Π
generate n/2 offspring, Π→ R
decompress and evaluate all offspring 
integrate population, Q ∪ R→ P  

end while  

Figure 3. EDAAC pseudo code 
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A. Creating the First Generation 

Unlike a conventional GA, a chromosome in EDAAC is 
encoded as two double precision variables (64 bits).  The first 
variable is p and the second variable is c.  The value for p and 
c of the first generation chromosome are uniformly random 
from the range [0, 1).  

B. Decompressing and Evaluating Individuals 

Because the chromosome in EDAAC is compressed, it has 
to be decompressed to a binary string before its fitness can be 
evaluated.  A compressed chromosome is decompressed using 
Arithmetic Coding Decompression algorithm.  The de-
compression stops when it outputs a binary string with the 
length equals to that of the problem size.  For example, for 
100-bit OneMax problem, the decompression stops when the 
algorithm outputs a 100-bit binary string.  However, some 
value of p and c cannot be decompressed to the desired 
number of bits.  In that case, the remaining bits are filled with 
0’s. 

C. Modeling Highly Fit Individuals 

Highly fit chromosomes are selected using any traditional 
genetic algorithm selection method.  The algorithm selects n/2 
individuals and computes μp, μc, σp, σc, and ρ of those 
individuals, where 

• μp, μc  are the means of p’s and c’s of the selected 
individuals, 

• σp, σc  are the standard deviation of p’s and c’s of the 
selected individuals, 

• ρ is the correlation coefficient of p’s and c’s of the 
selected individuals. 

D. Generating Offsprings 

An offspring (pg, cg) is generated by sampling from the 
model Π.  pg is a normally distributed random variable with 
the mean μp and the standard deviation σp.  cg is a normally 
distributed random variable with the mean μg and the standard 
deviation σc.  μg is obtained from the following formula. 

                                                                                        (1) 

n/2 offspring are generated, evaluated, and integrated with 
n/2 previously selected individuals.  These n individuals will 
be the population of the next generation. 

IV. SOLVING ONE-MILLION-BIT PROBLEMS

One-million-bit well known problems in genetic algorithm 
literature are used to test the proposed algorithm.  Those 
problems are OneMax, Royal Road, and Trap problems.   
EDAAC was executed with the parameters shown in Table II.  
The population size is 200 individuals. Please notice that this 
size is very small considering the size of the problems. 

The algorithm is implemented in Java language.  It was 

compiled and run using JDK 1.6 on Pentium 4 HT 3GHz with 
1 GByte of RAM.  The program required a great deal of 
memory especially in solving the one-billion-bit problem.  A 
one-billion-bit chromosome required 125,000,000 bytes.  In 
order to allocate such amount of memory, we run the Java 
program with the option –Xmx1000m to set the maximum 
heap size to 1000 MB.  The experiment is repeated for 30 
times and the average figures are reported. 

A. OneMax  

OneMax or a bit counting problem is a widely used 
problem for testing the performance of various genetic 
algorithms.  The problem is defined as follows. 

                        Fk(b1...bk) =     (2) 

where bi is in {0,1}. 

Figure 4 shows the fitness curve of EDAAC in solving 
OneMax problem.  On average, EDAAC can solve the one-
million-bit OneMax in 12.4 generations or 2,480 fitness 
evaluations.  The number of fitness evaluation is much 
smaller than the theoretical prediction of using compact GA 
to solve OneMax [2].  The theoretical prediction is Θ(l log l) 
fitness evaluations.  The number of fitness evaluation is much 
smaller than that of LZWGA.  LZWGA solves the same 
problem using 15,400 fitness evaluations [1].  

EDAAC can find a solution in about 3.4 seconds while 
LZWGA can solve the same problem in about 18 minutes [1]. 

TABLE II 
PARAMETERS OF EDAAC 

Parameter Value 

Population size 200 

Selection method Tournament (size=4) 

Number of best individual to keep 1 

Maximum generations 500 

B. Royal Road 

A simple Royal Road functions [9] denoted by R are 
defined as: 

1 if x∈si          R(x) = ∑ ci δi(x),  where δi(x) = 
0 otherwise. 

(3) 

For a problem with block size k, si is a schema that have 1 
defined in the range i×k to ((i+1)×k)−1.  All other positions 
contain a wild card ‘*’.  Each schema si is given with a 
coefficient ci. 

∑
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Figure 4. Fitness curve of EDAAC in solving one-million-bit OneMax 
problem. 

 
Figure 5. Fitness curves of EDAAC in solving one-million-bit Royal Road  
functions with various block sizes ranging from 8 to 64 bits. 

Figure 6. Fitness curves of EDAAC in solving one-million-bit Trap function 
with various trap sizes ranging from 8 to 64 bits. 

. 

Figure 7 Fitness curve of EDAAC in solving one-billion-bit OneMax 
problem. 

We conducted the experiment on various block sizes: 8, 16, 
32, and 64.  The fitness curves of EDAAC experiment on 
solving the Royal Road problem are shown in Figure 5.  The 
percentage of successful run, the execution time, and the 
number of generation that EDAAC used to solve Royal Road 
problems shows in Table III.  EDAAC can find a solution for 
all runs in about 13-15 generations. 

C. Trap 

The general k-bit trap functions are defined as: 

 Fk(b1...bk) =  fhigh ; if u=k  (4) 
  flow−(u×flow)/(k-1) ; otherwise 

where bi is in {0,1}, u=∑=

k

i ib
1

 and fhigh > flow.  Usually, fhigh

is set at k and flow is set at k−1.  The Trap functions denoted by 
Fm×k are defined as: 

 Fm×k(K1...Km) = ∑Fk(Ki),  Ki∈{0,1}k (5) 

The m and k are varied to produce a number of test 
functions.  The Trap functions fool the gradient-based 
optimizers to favor zeros, but the optimal solution is 
composed of all ones.  The Trap function is a fundamental 
unit for designing test functions that resist hill-climbing 
algorithms. 

We performed the experiment with Trap functions of 
various trap sizes:  8, 16, 32, and 64 bits.  The chromosome 
length is one million bits.  The fitness curves of EDAAC 
experiments on solving trap functions are shown Figure 6.  
The success rate, running time, and the average generations 
for successful runs are shown in Table IV.  Larger trap size 
reduces the success rate and takes longer time for the problem 
to be solved.  Notice that the algorithm will terminate after the 
500th generation.  However, from 30 runs, the maximum 
generation of successful run is only 28 generations.   

i=1 

m 
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TABLE III 
SUCCESS RATE AND AVERAGE GENERATION IN SOLVING ROYAL ROAD 

PROBLEM OF VARIOUS SIZES IN MILLION BITS PROBLEM

Block size Success Time (seconds) Generation 

8 100% 5.6 13.0 

16 100% 4.6 13.2 

32 100% 4.6 14.4 

64 100% 6.0 15.1 

TABLE IV 
SUCCESS RATE AND AVERAGE GENERATION IN SOLVING TRAP PROBLEM OF 

VARIOUS SIZES IN MILLION BITS PROBLEM.  THE TIME AND THE GENERATION 

ARE AVERAGED FROM SUCCESSFUL RUNS. 

Trap size Success Time (seconds) Generation 

8 100% 9.9 16.9 

16 53% 14.1 18.9 

32 20% 16.2 19.3 

64 3% 11.7 18.0 

V. SOLVING ONE-BILLION-BIT ONEMAX PROBLEM

Sastry et. al. implemented parallel Compact Genetic 
Algorithm to solve one-billion-bit Noisy OneMax problem 
[2].  They conduct the experiment on 128- and 256- processor 
partitions of 1280-processor cluster.   

We conduct the experiment on one-billion-bit problem 
using a normal PC-class machine (the same machine used in 
one-million-bit problem).  The memory requirement for a 
one-billion-bit chromosome is 125,000,000 bytes.  In fact, to 
solve OneMax problem using EDAAC, it is not necessary to 
allocate such large amount of memory.  Arithmetic Coding 
Decompression can easily be modified to be a stream 
decompression.  With a stream decompression (on-line one-
bit-at-a-time), very small amount of memory can be used to 
evaluate a one-billion-bit OneMax chromosome.  However, in 
this paper, we did not use the stream decompression.  We 
allocate the amount of data that can store a one-billion-bit 
chromosome to get a better understanding of the execution 
time of large scale problems. 

EDAAC can find a solution to one-billion-bit OneMax in 
about 22.5 generations on average.  The program can solve 
the problem in 92.2 minutes using one PC-class computer.  
Figure 7 shows the fitness curve of EDAAC in solving the 
problem.  

VI. DISCUSSION

In theory, Arithmetic Coding can compress a binary string 
of any length using two real numbers without losing any 
information.  This is because we can partition the interval 
forever.  However, in an actual implementation, a real number 
is represented by a limited number of bits.  Therefore, those 
numbers cannot produce binary string of arbitrary length. 

We conduct an experiment to measure the length of binary 

string that can be decompressed from two double precision 
(64 bits) variables before the interval cannot be any smaller.  
We run a program that decompresses random numbers in 
various precisions.  During the decompression, the program 
checks whether it can partition the interval into a smaller one.  
(The split is in the lines 7, 8 and 11, 12 of the pseudo code in 
Figure 2.)  This can be done by checking whether the new 
interval is not smaller than the previous interval.  Figure 8 
shows the average number of bits that can be decompressed 
from p in various ranges.  The result shows that, on average, 
when p is closer to the bound of the range [0, 1), the algorithm 
can decompressed longer binary string.  Moreover, p is a bias 
toward more zero’s or one’s in a decompressed binary string.  
When p is close to zero, the decompression algorithm will 
produce more 1’s.  For example, when (p, c)≈(4.42×10−7, 
0.61) and ≈(8.62×10−10, 0.70), the decompression algorithm 
will produce all 106 and 109 one’s respectively.  Those values 
are the best chromosome obtained from two EDAAC runs. 

In addition, we conducted an experiment to show the 
average number of bits that can be decompressed from 
decimal numbers with various precisions.  The precisions we 
tested in the experiment are 10, 20, 40, 80 digits and a double 
precision.  The result is shown in Figure 9.  The white 
rectangle in the figure is a data from a double precision 
variable.  The graph shows that the number of bit that can be 
decompressed is about 10 times the precision of the decimal 
number. 

VII. CONCLUSION AND FUTURE WORK

EDAAC can solve one-million-bit OneMax, Royal Road, 
and Trap functions very fast.  It can solve one-billion-bit 
OneMax in reasonable amount of time using a normal PC-
class computer.  We believe that our result on computation 
time is a significant improvement over other method to solve 
large scale problems.  However, one might argue that such 
compressed encoding GA performed well on those problems 
because they have a high regularity solution.  It would be 
interesting to investigate how EDAAC solves other large 
scale problems that the solution is not all 1's or all 0's. 
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Figure 8.  Average number of bits that can be decompressed from various 
values of p.   

Figure 9. Average number of bits that can be decompress from a decimal 
number with various digits. 
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