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Abstract 
 

In this paper, the model of genetic programming, 
one of the evolutionary computation methods, was 
developed to predict melting point and solidification 
range of solders. The training data set consisted of 
solidus/liquidus temperatures that were calculated 
from the calculation of the phase diagrams 
(CALPHAD) approach. The difference between the 
training data and predicted data were used as the 
fitness function of the model via root mean square 
error method. Accuracy of the model was verified 
with the experimental results of various compositions 
of Sn-Ag-Cu-Bi-In solder alloys from the references. 
The agreement of predicted results and experimental 
data from literatures can be used to conclude that 
genetic programming is a powerful algorithm to 
predict the thermal properties of solder. It also can 
be used to demonstrate the relationship between the 
solder alloy compositions and their properties. 
However, the optimal search performance is also 
dependent of the parameter setting of the algorithm. 
 
Key Words: Genetic Programming; Lead-free Solder 
Alloys; Thermal Properties; Modeling 
 
1. Introduction 

Lead-based solders, particularly tin-lead solders, 
have been widely used in electronics industry for a 
long time. This is primarily due to a combined merit 
of low cost, adequate melting temperature range, 
good soldering properties, and proper physical, 
mechanical properties [1]. However, due to increased 
concerns regarding the toxicity and environmental 
impacts of lead, the RoHS directive was installed 
since 2006. From that year, no drop-in solutions for 
the banned Pb-Sn solder alloy have been found.  To 
design a new solder alloy, many key performance 
properties must be considered and optimized, for 

example, liquidus and solidus temperatures, the 
reflow-ability, etc. There have been constant efforts 
to improve the properties of lead-free solder alloys in 
various aspects. Very often, many researchers have 
focused on the property improvements which are 
influenced by minor additions of various alloying 
elements. Such trial-and-error experiments are costly 
and time-consuming especially when a wide 
multitude of multi-component alloy compositions 
needs to be investigated.  

Recently, the basis of natural evolution has been 
successfully used for solving various engineering 
problems. With these evolutionary computation 
methods, it is possible to analyze a huge number of 
solutions in the feasible region within the short time. 
Genetic Programming (GP) is one of the evolutionary 
computation methods that mimic the nature by 
applying some genetic operators to tree-based 
solutions and allowing only superior genetic traits to 
survive. Many fields of research have been 
investigated [2-4] by using genetic programming to 
find out the solution.  

In the proposed paper, genetic programming was 
investigated to predict melting temperature and 
solidification range of solder alloys by learning 
liquidus and solidus temperature data of various 
solder compositions that were calculated through 
CALPHAD method. The predicted results were 
compared with the experimental results from 
literature to verify the accuracy of the model. 
Moreover, the dependent of optimal search 
performance of the model and the parameter setting 
of the algorithm was also studied.  
 
2. Genetic Programming 

Genetic programming (GP) is an automated 
methodology inspired by biological evolution to find 
computer programs that best perform a user-defined 
task. Genetic programming was first introduced by 
John Koza [5] to solve genetic algorithms’ weakness. 
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4. Methodologies 
From the relationship between solder composition 

and its properties, genetic programming model in this 
paper was performed with five independent variables. 
Weighted percent composition of elements in solder: 
Sn (X1), Ag (X2), Cu (X3), Bi (X4) and In (X5) were 
selected as independent variables in this study. 

First, database of liquidus temperature and solidus 
temperature of 176 solder compositions were 
calculated via CALPHAD software, Thermo-Calc. 
From this the training data set for genetic 
programming was obtained on the basis of five solder 
composition variables. Each combination of five 
solder alloys composition, the corresponding liquidus 
temperature (TL) and solidus temperature (TS) were 
recorded.  

Also, the testing data were collected five solder 
composition variables and corresponding data, 
liquidus/solidus temperature. While training data 
were calculated through CALPHAD method, testing 
data were obtained from the experimental results of 
literatures. In this paper, testing data were comprised 
of 32 solder alloy compositions. 

The implementation of genetic programming 
were started from the available function set and 
terminal set. Function sets F were basic arithmetical 
functions (i.e., operations of addition, subtraction, 
multiplication, and division), square function and 
natural exponential function. The two latter functions 
have one argument, whereas the other functions have 
two arguments each. 

Terminal sets T were weighted percent 
composition of elements in solder: Sn (X1), Ag (X2), 
Cu (X3), Bi (X4) and In (X5). In order to increase 
genetic diversity of the population the random 
numbers from the range [0, 1] were added to the set 
of terminals.  

A root mean square error (RMSE) of all sample 
data for individual in the population was introduced 
as fitness function. It is defined as: 
 

 

 
where n is population size,  are actual 

liquidus/solidus temperature and the predicted 
liquidus/solidus results from the model, respectively. 
 
5. Parameters Setting 

The evolutionary process in genetic programming 
was controlled by many evolutionary parameters. In 
this research, varying of parameters has been studied 
for finding a dependency between predicting 
performance and the parameters. The method to 
initialize the population in the model was ramped 

half-by-half.  The population size was 20, 50 and 
100. Maximum number of generations to be run was 
300 and 500. One point crossover with the 
probability of crossover (Pc) 0.9 and 0.7 were 
applied. Probability to mutate (Pm) subtree of each 
individual were 0.1 and 0.25 and the probability to 
reproduction (Pr) was 0.1 and 0.2. The dynamic 
growth method was used to preserve the size of 
solution and the maximum tree depth is 10. The 
method for selection the individual to next generation 
was lexicographic tournament selection with 
tournament size of 4 and 7. Lexicographic selections 
choose the solution with both best fitness and less 
complexity (small tree). From this point, ten patterns 
of parameters were formed and used in this paper; 
detail of each pattern is shown in Table 1. 

 
Table 1 Parameter setting in genetic programming 
 

Pattern Pr Pc Pm Tour-Size PopSize MaxGen 
A 0.1 0.9 0.1 4 20 300 
B 0.1 0.9 0.1 4 20 500 
C 0.1 0.9 0.1 4 50 300 
D 0.1 0.9 0.1 4 50 500 
E 0.1 0.9 0.1 4 100 500 
F 0.1 0.7 0.25 4 50 500 
G 0.1 0.7 0.1 7 50 500 
H 0.1 0.9 0.1 7 50 500 
I 0.1 0.9 0.25 7 50 500 
J 0.2 0.9 0.25 7 50 500 

 
6. Results and Discussion 
 The genetic programming model was run all 
patterns (A-J) three times and each run the RMSE of 
the best solution was collected. The average RMSE 
value of each pattern indicated the predictive 
performance of the model; the lowest RMSE is the 
best parameters setting for genetic programming. 
Table 2 shows the average RMSE of each pattern. 
 
Table 2 Average RMSE of best solution in each run 
 

Pattern 
Average RMSE (3 runs) 
Liquidus Solidus 

A 5.5849 4.8807 
B 5.0805 3.1901 
C 6.4114 3.7341 
D 4.9033 2.6554 
E 4.8800 2.4867 
F 4.2284 2.6964 
G 4.5077 2.7327 
H 5.2669 2.2371 
I 5.7009 2.1783 
J 4.6046 2.9652 

 



 The results showed that the predicted liquidus 
temperature from pattern F was most fit to the  
training data with the average RMSE 4.2284. With 
the parameters setting followed the pattern F the best 
solution for prediction of liquidus temperature 
presented by Equation (1). 
 
TL = 1.47908 +2X1-2.02231X2+11X3+2X2X3 
       +2X4+Log[X3]+Log[16X34]+Log[0.094784  
       +16 X34]2+Log[X1+4 X32+X4]+Log[-            (1) 
       2.02231X2+X3+16X34+X4]+Log[X1+X5+ 
       (X2+X5)2]+Log[2X1*Abs[-X2+16X34+X5]]                         
 

This solution was compared to 32 experimental 
results from references to verify the accuracy of the 
model. The results demonstrated that the RMSE 
between experiments and genetic programming was 
10.6239. This value showed a little lower than the 
RMSE between experiments and CALPHAD which 
was 12.0956.  

For the best solution, the deviation of predicted 
results from the training and testing data set are 
shown in figures 3-4 and figures 5-6, respectively.  
 

 
 

Fig. 3 Liquidus temperature of predicted results  
and the training data 

 

 
 

Fig. 4 Liquidus temperature of predicted results  
and the training data 

 
 

Fig. 5 Liquidus temperature of predicted results  
and the testing data 

 

 
 

Fig. 6 Liquidus temperature of predicted results  
and the testing data 

 
 While, the pattern F gave the best model for 
predicting liquidus temperature, the best model to 
obtain the best solution for predicting solidus 
temperature was came along with the pattern I 
(RMSE 2.1783).  
 Equation 2 shows the best solution for predicting 
solidus temperature with the parameters setting 
followed pattern I. Please note that to avoid the error 
in the model, each division function in this research 
was set to zero if its denominator was equal to zero. 
 

TS= 0.57736+2X1+X2+X3+
X3

X2-X4
+

0.81144
X4

+
X2
X4

+ 

1.76592+X2-X4
X4

-2X4+
0.81144Log[X1-2X4+X5]

0.39357+X32X52 + 

   
X4(0.81144+3X4)(X3-X5)

1-0.420937X4+0.81144X3X4+3X3X42             (2) 

 
 

 Like liquidus, the predicted results of solidus 
temperature from the best solution in the model were 
compared with 32 experimental data from literature. 
Again, the results show a lower RMSE between 
experiments and genetic programming (RMSE 



4.1696) and a higher RMSE (4.3665) between 
experiments and CALPHAD. 

Based on this best solution, the difference 
between predicted results and the training data and 
difference between predicted results and testing data 
are shown in figures 7-8 and 9-10, respectively.  
 

 
 

Fig. 7 Solidus temperature of predicted results  
and the training data 

 

 
 

Fig. 8 Solidus temperature of predicted results  
and the training data 

 

 
 

Fig. 9 Solidus temperature of predicted results  
and the testing data 

 

 
 

Fig. 10 Solidus temperature of predicted results  
and the testing data 

 
7. Conclusion 

This paper proposed the model of genetic 
programming to predict liquidus/solidus temperature 
of any Sn-Ag-Cu-Bi-In solder compositions. The 
prediction accuracy is very high both for liquidus 
training data set and solidus training data. However, 
the optimal search performance is also dependent on 
the parameter setting of the algorithm. 

The best solution of liquidus prediction was 
obtained by the following parameters: the population 
size to 50; tournament size 4; maximum generation 
500; probability of reproduction, crossover, and 
mutation 0.1, 0.7, and 0.25, respectively. 

Meanwhile, the best solution for predicting 
solidus temperature has the following parameters 
setting: population size 50; tournament size 7; 
maximum generation 500; probability of 
reproduction, crossover, and mutation 0.1, 0.9, and 
0.25, respectively. 

The model is verified by the experimental data 
from literatures and the result showed very good 
prediction for both liquidus/solidus temperatures. 

The root mean square error between experiments 
and genetic programming was 10.6239 in liquidus 
prediction and was 4.1696 in solidus prediction. 
Moreover, both of them had a lower RMSE when 
compared to the RMSE between experiments and 
CALPHAD approach (12.0956 in liquidus and 
4.3665 in solidus). 

The agreement of the predicted results and the 
experimental data shows that genetic programming is 
a powerful algorithm to predict the thermal properties 
of solder, melting point and solidification range. The 
melting point of solders could represent by the 
liquidus temperature and the solidification range was 
the different between solidus and the liquidus 
temperature. 

With genetic programming approach, the obtained 
solution of this problem (mathematical expression) 
will help metallurgist to known the relationship 



between the solder alloy compositions and their 
properties and it will be benefit for designing new 
lead-free solder alloys without trial-and-error 
experiments. 
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