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Abstract

In this paper, the model of genetic programming,
one of the evolutionary computation methods, was
developed to predict melting point and solidification
range of solders. The training data set consisted of
solidus/liquidus temperatures that were calculated
from the calculation of the phase diagrams
(CALPHAD) approach. The difference between the
training data and predicted data were used as the
fitness function of the model via root mean square
error method. Accuracy of the model was verified
with the experimental results of various compositions
of Sn-Ag-Cu-Bi-In solder alloys from the references.
The agreement of predicted results and experimental
data from literatures can be used to conclude that
genetic programming is a powerful algorithm to
predict the thermal properties of solder. It also can
be used to demonstrate the relationship between the
solder alloy compositions and their properties.
However, the optimal search performance is also
dependent of the parameter setting of the algorithm.
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1. Introduction

Lead-based solders, particularly tin-lead solders,
have been widely used in electronics industry for a
long time. This is primarily due to a combined merit
of low cost, adequate melting temperature range,
good soldering properties, and proper physical,
mechanical properties [1]. However, due to increased
concerns regarding the toxicity and environmental
impacts of lead, the RoHS directive was installed
since 2006. From that year, no drop-in solutions for
the banned Pb-Sn solder alloy have been found. To
design a new solder alloy, many key performance
properties must be considered and optimized, for

example, liquidus and solidus temperatures, the
reflow-ability, etc. There have been constant efforts
to improve the properties of lead-free solder alloys in
various aspects. Very often, many researchers have
focused on the property improvements which are
influenced by minor additions of various alloying
elements. Such trial-and-error experiments are costly
and time-consuming especially when a wide
multitude of multi-component alloy compositions
needs to be investigated.

Recently, the basis of natural evolution has been
successfully used for solving various engineering
problems. With these evolutionary computation
methods, it is possible to analyze a huge number of
solutions in the feasible region within the short time.
Genetic Programming (GP) is one of the evolutionary
computation methods that mimic the nature by
applying some genetic operators to tree-based
solutions and allowing only superior genetic traits to
survive. Many fields of research have been
investigated [2-4] by using genetic programming to
find out the solution.

In the proposed paper, genetic programming was
investigated to predict melting temperature and
solidification range of solder alloys by learning
liquidus and solidus temperature data of various
solder compositions that were calculated through
CALPHAD method. The predicted results were
compared with the experimental results from
literature to verify the accuracy of the model.
Moreover, the dependent of optimal search
performance of the model and the parameter setting
of the algorithm was also studied.

2. Genetic Programming

Genetic programming (GP) is an automated
methodology inspired by biological evolution to find
computer programs that best perform a user-defined
task. Genetic programming was first introduced by
John Koza [5] to solve genetic algorithms’ weakness.



In genetic algorithms, genetic structure is adequate to
solve many problems but it is restrictive when size or
forms of solution cannot be assessed beforehand.
Koza’s extension, solutions of which were the
program syntax trees, permits explicitly hierarchical
variable length. The tree-based solutions of genetic
programming can be computer programs, mathematic
expressions, state transition rules, etc.

Possible solutions in genetic programming are
composed in a recursive manner from a set of
function genes F and the set of terminal genes 7. The
set of function genes F can include basic
mathematical functions, boolean functions, relation
functions, program flow control functions, and
functions defined with respect to the problem area
studied. The set of terminal genes 7 can include
numerical constants, logical constants, variables, etc.
Terminal genes are, in fact, function genes without
arguments.

First, the initial population was obtained from
random creation of computer programs (trees)
consisting of available set of function gene and set
of terminal gene. Each individual population
represents a random possible solution in the search
space and its genetic structure represents the
individual characteristics of each solution. Next step
is the fitness measurement of the individuals to
indicate the quality of solutions. Then, the genetic
operators: reproduction, crossover and mutation,
were applied to create the offspring for next
generation.

Reproduction gives a higher probability of
selection to more successful organisms. They are
copied unchanged into the next generation. Crossover
is the process that recombines genetic structure of
parents in order to generate two new offsprings by
exchange fragmented parts of their parents. Figure 1
shows the crossover operation of two tree-based
solutions. Mutation is the progress that randomly
changes a few genetic structures, subtree, of parents
to create one new offspring.
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Fig. 1 Crossover in Genetic Programming

The parents and offspring are mixed and go to the
selection process. In this process the solution with
higher fitness value will have more probability to be
selected to the next generation. Number of solutions
that were selected in this process was equal to the
population size.

After completed all steps of genetic programming
which included: (1) initiate population, (2) fitness
measurement, (3) genetic modification, (4) selection
an iterative repetition of point 2 and 4 follows. After
a certain number of generations, the solutions are
usually much better adapted to the environment.
Therefore, ideally, in each generation the solutions
will converge to the best or optimized solutions.

The evolution concept of genetic programming
illustrates in the figure 2.
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Fig. 2 Genetic Programming Concept

3. Thermodynamic Modeling

Thermodynamic modeling was investigated to
calculate phase equilibria in a multi-component
system and employed the calculation of the phase
diagrams (CALPHAD) approach [6] to describe the
basic properties, liquidus / solidus temperature, of
candidate solder alloy to replace lead-containing
solder.

The current thermodynamic database that used for
CALPHAD approach in this research includes the
following elements:

Sn-Ag-Cu-Bi-In

Liquidus temperature and solidus temperature
play an important role to the reliable of interconnects
between metal and solder. Moreover, from these two
properties, the thermal characteristics of solder such
as melting point and solidification range could be
predicted.



4. Methodologies

From the relationship between solder composition
and its properties, genetic programming model in this
paper was performed with five independent variables.
Weighted percent composition of elements in solder:
Sn (X)), Ag (X3), Cu (X;), Bi (X4) and In (X5) were
selected as independent variables in this study.

First, database of liquidus temperature and solidus
temperature of 176 solder compositions were
calculated via CALPHAD software, Thermo-Calc.
From this the training data set for genetic
programming was obtained on the basis of five solder
composition variables. Each combination of five
solder alloys composition, the corresponding liquidus
temperature (T) and solidus temperature (Ts) were
recorded.

Also, the testing data were collected five solder
composition variables and corresponding data,
liquidus/solidus temperature. While training data
were calculated through CALPHAD method, testing
data were obtained from the experimental results of
literatures. In this paper, testing data were comprised
of 32 solder alloy compositions.

The implementation of genetic programming
were started from the available function set and
terminal set. Function sets F were basic arithmetical
functions (i.e., operations of addition, subtraction,
multiplication, and division), square function and
natural exponential function. The two latter functions
have one argument, whereas the other functions have
two arguments each.

Terminal sets 7 were weighted percent
composition of elements in solder: Sn (X)), Ag (X5),
Cu (X3), Bi (X4) and In (Xs). In order to increase
genetic diversity of the population the random
numbers from the range [0, 1] were added to the set
of terminals.

A root mean square error (RMSE) of all sample
data for individual in the population was introduced
as fitness function. It is defined as:

RMSE = ’—?=1(y—y)2
n

where n is population size, y and y are actual
liquidus/solidus temperature and the predicted
liquidus/solidus results from the model, respectively.

5. Parameters Setting

The evolutionary process in genetic programming
was controlled by many evolutionary parameters. In
this research, varying of parameters has been studied
for finding a dependency between predicting
performance and the parameters. The method to
initialize the population in the model was ramped

half-by-half. The population size was 20, 50 and
100. Maximum number of generations to be run was
300 and 500. One point crossover with the
probability of crossover (Pc) 0.9 and 0.7 were
applied. Probability to mutate (Pm) subtree of each
individual were 0.1 and 0.25 and the probability to
reproduction (Pr) was 0.1 and 0.2. The dynamic
growth method was used to preserve the size of
solution and the maximum tree depth is 10. The
method for selection the individual to next generation
was lexicographic tournament selection with
tournament size of 4 and 7. Lexicographic selections
choose the solution with both best fitness and less
complexity (small tree). From this point, ten patterns
of parameters were formed and used in this paper;
detail of each pattern is shown in Table 1.

Table 1 Parameter setting in genetic programming

Pattern | Pr | Pc | Pm | Tour-Size | PopSize | MaxGen
A 0.1 109 0.1 4 20 300
B 0.1 109 | 0.1 4 20 500
C 0.1 {09 | 0.1 4 50 300
D 0.1 {09 | 0.1 4 50 500
E 0.1 {09 | 0.1 4 100 500
F 0.1 [ 0.7 | 0.25 4 50 500
G 0.1 107 0.1 7 50 500
H 0.1 {09 | 0.1 7 50 500
I 0.1 [ 09| 0.25 7 50 500
J 02 109|025 7 50 500

6. Results and Discussion

The genetic programming model was run all
patterns (A-J) three times and each run the RMSE of
the best solution was collected. The average RMSE
value of each pattern indicated the predictive
performance of the model; the lowest RMSE is the
best parameters setting for genetic programming.
Table 2 shows the average RMSE of each pattern.

Table 2 Average RMSE of best solution in each run

Average RMSE (3 runs)
Pattern — :

Liquidus Solidus
A 5.5849 4.8807
B 5.0805 3.1901
C 6.4114 3.7341
D 4.9033 2.6554
E 4.8800 2.4867
F 4.2284 2.6964
G 4.5077 2.7327
H 5.2669 2.2371
1 5.7009 2.1783
J 4.6046 2.9652




The results showed that the predicted liquidus
temperature from pattern F was most fit to the
training data with the average RMSE 4.2284. With
the parameters setting followed the pattern F the best
solution for prediction of liquidus temperature
presented by Equation (1).

T = 1.47908 +2X1-2.02231X2+11X3+2X2X3
+2X4+Log[X3]+Log[16X3*+Log[0.094784
+16 X3*]*+Log[X1+4 X3%*+X4]+Log[- (1)
2.02231X2+X3+16X3*+X4]+Log[X1+X5+
(X2+X5)*+Log[2X 1*Abs[-X2+16X3*+X5]]

This solution was compared to 32 experimental
results from references to verify the accuracy of the
model. The results demonstrated that the RMSE
between experiments and genetic programming was
10.6239. This value showed a little lower than the
RMSE between experiments and CALPHAD which
was 12.0956.

For the best solution, the deviation of predicted
results from the training and testing data set are
shown in figures 3-4 and figures 5-6, respectively.
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Fig. 4 Liquidus temperature of predicted results
and the training data
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Fig. 5 Liquidus temperature of predicted results
and the testing data
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Fig. 6 Liquidus temperature of predicted results
and the testing data

While, the pattern F gave the best model for
predicting liquidus temperature, the best model to
obtain the best solution for predicting solidus
temperature was came along with the pattern I
(RMSE 2.1783).

Equation 2 shows the best solution for predicting
solidus temperature with the parameters setting
followed pattern 1. Please note that to avoid the error
in the model, each division function in this research
was set to zero if its denominator was equal to zero.

X3 0.81144 X2
——t
X2-X4 X4

Ts=0.57736+2X1+X2+X3+

X4
1.76592+X2-X4 " 0.81144Log[X1-2X4+X5] .
X4 0.39357+X32X5>
X4(0.81144+3X4)(X3-X5) @

1-0.420937X4+0.81144X3X4+3X3X4?

Like liquidus, the predicted results of solidus
temperature from the best solution in the model were
compared with 32 experimental data from literature.
Again, the results show a lower RMSE between
experiments and genetic programming (RMSE



4.1696) and a higher RMSE (4.3665) between
experiments and CALPHAD.

Based on this best solution, the difference
between predicted results and the training data and
difference between predicted results and testing data
are shown in figures 7-8 and 9-10, respectively.
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Fig. 7 Solidus temperature of predicted results
and the training data
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Fig. 8 Solidus temperature of predicted results
and the training data
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Fig. 9 Solidus temperature of predicted results
and the testing data
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Fig. 10 Solidus temperature of predicted results
and the testing data

7. Conclusion

This paper proposed the model of genetic
programming to predict liquidus/solidus temperature
of any Sn-Ag-Cu-Bi-In solder compositions. The
prediction accuracy is very high both for liquidus
training data set and solidus training data. However,
the optimal search performance is also dependent on
the parameter setting of the algorithm.

The best solution of liquidus prediction was
obtained by the following parameters: the population
size to 50; tournament size 4; maximum generation
500; probability of reproduction, crossover, and
mutation 0.1, 0.7, and 0.25, respectively.

Meanwhile, the best solution for predicting
solidus temperature has the following parameters
setting: population size 50; tournament size 7,
maximum  generation  500;  probability  of
reproduction, crossover, and mutation 0.1, 0.9, and
0.25, respectively.

The model is verified by the experimental data
from literatures and the result showed very good
prediction for both liquidus/solidus temperatures.

The root mean square error between experiments
and genetic programming was 10.6239 in liquidus
prediction and was 4.1696 in solidus prediction.
Moreover, both of them had a lower RMSE when
compared to the RMSE between experiments and
CALPHAD approach (12.0956 in liquidus and
4.3665 in solidus).

The agreement of the predicted results and the
experimental data shows that genetic programming is
a powerful algorithm to predict the thermal properties
of solder, melting point and solidification range. The
melting point of solders could represent by the
liquidus temperature and the solidification range was
the different between solidus and the liquidus
temperature.

With genetic programming approach, the obtained
solution of this problem (mathematical expression)
will help metallurgist to known the relationship



between the solder alloy compositions and their
properties and it will be benefit for designing new
lead-free solder alloys without trial-and-error
experiments.
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